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Abstract: Quantitative photoacoustic tomography is an imaging modality in which distribu-
tions of optical parameters inside tissue are estimated from photoacoustic images. This optical
parameter estimation is an ill-posed problem and it needs to be approached in the framework
of inverse problems. In this work, utilising surface light measurements in quantitative photoa-
coustic tomography is studied. Estimation of absorption and scattering is formulated as a min-
imisation problem utilising both internal quantitative photoacoustic data and surface light data.
The image reconstruction problem is studied with two-dimensional numerical simulations in
various imaging situations using the diffusion approximation as the model for light propagation.
The results show that quantitative photoacoustic tomography augmented with surface light data
can improve both absorption and scattering estimates when compared to the conventional quan-
titative photoacoustic tomography.
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1. Introduction

Photoacoustic tomography (PAT) is an imaging modality based on the photoacoustic effect gen-
erated through the absorption of an externally introduced light pulse. The method combines
optical contrast with high spatial resolution of ultrasound. The optical contrast is provided by
distinctive absorption spectra by different chromophores. The chromophores of interest are, for
example, haemoglobin, melanin and optionally various contrast agents. The ultrasonic waves
carry this optical information directly to the surface with minimal scattering, thus retaining
accurate spatial information as well. Nowadays, PAT can be used to provide images of soft bio-
logical tissues with high spatial resolution. It has successfully been applied to the visualisation
of different structures in biological tissues, such as human blood vessels, microvasculature of
tumors, and the cerebral cortex in small animals. For more information about PAT, see e.g. the
reviews by [1–8] and the references therein.

Quantitative photoacoustic tomography (QPAT) is a technique which aims at estimating the
absolute concentrations of the chromophores from photoacoustic images, i.e. from the recon-
structed initial pressure distribution [9]. This is an ill-posed problem which needs to be ap-
proached in the framework of inverse problems. The concentrations of the chromophores can
be estimated either by directly estimating them from photoacoustic images obtained at vari-
ous wavelengths [10–16] or by first recovering the absorption coefficients at different wave-
lengths and then calculating the concentrations from the absorption spectra [9, 10, 13, 16]. Dif-
ferent approaches for the solution of the optical inverse problem of QPAT have been consid-
ered, see e.g. [17–35]. As an alternative to the conventional two stage approach, estimation
of the optical parameters directly from the photoacoustic time-series has also been considered
recently [34, 36–41]. In this work, the two stage approach is taken and it is assumed that the
acoustic inverse problem, i.e. estimation of the initial pressure, has been solved. Further, one
wavelength, i.e. estimation of absorption and scattering, is considered. Extensions of the devel-
oped numerical approach to one stage approach and spectral QPAT are straightforward.

It has been shown that, in order to obtain accurate estimates for absorption in QPAT, the
scattering effects need to be taken into account [24,25,29,42]. Estimation of scattering is more
ill-posed than absorption, and thus more sensitive to errors in data and modelling [25, 42]. Fur-
thermore, it has been shown that false scattering values can lead to errors in absorption esti-
mates [29].

In this work, improving QPAT by including information from surface measurements of light
is investigated. Surface light measurements have been previously utilised in QPAT using the
following approaches. In [43, 44], a two-step approach was suggested in which scattering dis-
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tribution was first solved using diffuse optical tomography (DOT) measurements, and then this
information was utilised in the estimation of the absorbed optical energy density in photoa-
coustic imaging. Furthermore, in [45], also utilising a two-step approach, a DOT experiment
was first used to determine constant values for absorption and scattering, and then these were
later utilised as background values in QPAT image reconstruction. In [46], a hybrid approach
was introduced. In the approach, the vector field method developed in [24] was generalised
and utilised in the estimation of the boundary parameters from surface light and the optical
parameters inside the domain from absorbed optical energy.

In this work, estimating optical parameters using both absorbed optical energy density and
surface light measurements is considered. In the approach, these two data sources are utilised
simultaneously in order to solve the inverse problem of QPAT in a Bayesian framework. The
approach is investigated in various imaging situations including differently sized domains and
various internal structures of the optical parameters. Furthermore, in this paper, simultaneous
estimation of the optical parameters and the Grüneisen coefficient is investigated. Simultaneous
estimation of the absorption, scattering and Grüneisen parameters is non-unique if only one
wavelength of light is used to obtain the QPAT data [13]. In this work, enhancing QPAT with
surface light measurements is suggested to overcome this problem.

In QPAT, the most common approach has been to use the diffusion approximation (DA) as the
light transport model, although the radiative transfer equation (RTE) has also been utilised [15,
21,25,38,47,48].Recently, utilising Monte Carlo simulation methods have also been considered
[35, 49]. In this work, the diffusion approximation (DA) is used as the forward model for light
propagation. The DA is a valid approximation in a highly scattering medium further than a
few scattering lengths from the light source, and thus it can be regarded as a relatively safe
approximation for the simulation cases considered in this work.

The rest of the paper is organised as follows. The forward and inverse problem of QPAT are
described in Section 2 and the related numerical implementations are given in Section 3. The
results of simulations are shown in Section 4 and the conclusions are given in Section 5.

2. Methods

2.1. Forward model

In quantitative photoacoustic tomography, a short pulse of laser light is used to illuminate the
tissue region of interest. The propagation of light can be described using the radiative transfer
equation (RTE) [50]. In biomedical imaging, the RTE is often approximated with the diffusion
approximation (DA)

1
c

∂Φ(r , t)
∂t

− ∇ ·
1

d(µa(r) + µ′s(r))
∇Φ(r , t) + µa(r)Φ(r , t) = 0, r ∈ Ω (1)

Φ(r , t) +
1

2γd

1
d(µa(r) + µ′s(r))

∂Φ(r , t)
∂n̂

=

{ Is (r ,t )
γd
, r ∈ ǫ j

0, r ∈ ∂Ω \ ǫ j
(2)

whereΦ(r , t) [W/mm2] is the photon fluence at time instancet, c is the speed of light in the
medium,µa(r) [mm−1] is the absorption coefficient,µ′s(r) [mm−1] is the (reduced) scattering
coefficient,d is the dimension (d = 2, 3), Is(r , t) [W/mm2] is a diffuse boundary current at the
source positionǫ j ⊂ ∂Ω, ∂Ω is the boundary of the domainΩ, γd is a dimension-dependent
constant which takes valuesγ2 = 1/π andγ3 = 1/4 andn̂ is an outward unit normal. The DA is
a valid approximation in situations in which the radiance is almost an uniform distribution, i.e. in
a scattering dominated medium further than a few scattering lengths from the light source [50].

As light propagates within the tissue, it is absorbed by chromophores. This generates lo-
calised increases in pressure. This pressure increase propagates through the tissue as an acous-
tic wave and is detected by ultrasound sensors at the surface of the tissue. The propagation of
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the acoustic wave occurs on a microsecond time scale, about five orders of magnitude slower
than the optical propagation, so only the total absorbed optical energy density is of interest and
not the rate of the absorption. Thus, in QPAT, light propagation can be modelled using a time-
independent (continuous wave) model of light transport. The time-independent form of the DA
is of the form

− ∇ ·
1

d(µa(r) + µ′s(r))
∇Φ(r) + µa(r)Φ(r) = 0, r ∈ Ω (3)

Φ(r) +
1

2γd

1
d(µa(r) + µ′s(r))

∂Φ(r)
∂n̂

=

{ Is (r )
γd
, r ∈ ǫ j

0, r ∈ ∂Ω \ ǫ j
(4)

whereΦ(r) =
∫

∞

−∞
Φ(r , t)dt [J/mm2] is the time-independent fluence andIs(r) [J/mm2] is

a time-independent boundary light source. Furthermore, the absorbed optical energy density
H(r) [J/mm3] is

H(r) = µa(r)Φ
(

µa(r), µ′s(r)
)

(5)

and the initial acoustic pressurep0(r) [Pa] is [9]

p0(r) = p(r , t = 0) = G(r)H(r) (6)

whereG(r) [unitless] is the Grüneisen parameter which is used to identify the photoacoustic
efficiency. The time evolution of the resulting photoacoustic wave fields can be modelled using
the equations of linear acoustics [51].

2.1.1. Measuring surface light

In this work, utilising surface light measurements in QPAT is investigated. Basically, this cor-
responds on using both QPAT and diffuse optical tomography data in determining the opti-
cal parameters. In a typical DOT measurement setup, the target is illuminated using either a
short pulse of light (time-domain measurement systems), intensity modulated light (frequency-
domain systems) or continuous light [52]. The measurable quantity is exitanceΓ

+(r , · ) on the
boundary of the target

Γ
+(r , · ) = −

1
d(µa(r) + µ′s(r))

∂Φ(µa(r), µ′s(r), · )

∂n̂
= 2γnΦ(µa(r), µ′s(r), · ). (7)

Depending on the measurement system, the exitance can be time-dependentΓ
+(r , t) [W/mm2],

frequency-dependentΓ+(r , ω) [J/mm2] or intensity onlyΓ+(r) [J/mm2]. The time-domain and
frequency-domain data are related through Fourier-transform. In addition, other moments can
be calculated from time-dependent measurements [53]. In this work, we consider frequency-
domain data. In practice, these can be obtained either by a frequency-domain measurement
device or by measuring the time-response of a time-domain system and Fourier-transforming
the data into the frequency domain. Similarly, in order to solve the modelled exitance, the time-
domain DA (1)-(2) or its counterpart in frequency domain

iω
c
Φ(r , ω) − ∇ ·

1
d(µa(r) + µ′s(r))

∇Φ(r , ω) + µa(r)Φ(r , ω) = 0, r ∈ Ω (8)

Φ(r , ω) +
1

2γd

1
d(µa(r) + µ′s(r))

∂Φ(r , ω)
∂n̂

=

{

Is (r ,ω)
γd
, r ∈ ǫ j

0, r ∈ ∂Ω \ ǫ j
(9)

whereω is the angular modulation frequency of the input light and i is the imaginary unit, is
used.
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2.2. Inverse problem of QPAT

In this work, the optical inverse problem of QPAT, i.e. estimation of distributions of the op-
tical parameters from photoacoustic images, is considered. The problem is approached in the
framework of Bayesian inverse problems [28, 54]. A discrete observation model for QPAT in
the presence of additive noise is

Hmeas= H(µa, µ
′

s) + eqpat (10)

whereHmeas ∈ R
mqpat is a measurement vector wheremqpat is the number of measurements

which in this case is the number of illuminations multiplied with the number of discretised ele-
ments to represent the data space,µa = (µa1 , . . . , µaK )T ∈ RK andµ′s = (µ′s1

, . . . , µ′sK
)T ∈ RK

are discretised absorption and scattering coefficients,K is the number of discretised parameters,
H is the discretised forward operator corresponding to model (3)-(5) andeqpat ∈ R

mqpat denotes
the noise.

Let us assume thatµa, µ′s andHmeasare random variables. The solution of the inverse problem
is the posterior probability density which is obtained through Bayesian formula and can be
written in the form

π(µa, µ
′

s|Hmeas) ∝ π(Hmeas|µa, µ
′

s)π(µa, µ
′

s) (11)

whereπ(Hmeas|µa, µ
′

s) is the likelihood density andπ(µa, µ
′

s) is the prior density. Assuming that
the unknownsµa and µ′s and noisee are mutually independent and Gaussian distributed, i.e.
µa ∼ N (ηµa, Γµa), µ

′

s ∼ N (ηµ′

s , Γµ′

s) ande ∼ N (ηe ,qpat, Γe ,qpat), whereηµa, ηµ′

s andηe ,qpat are
the means andΓµa, Γµ′

s
andΓe ,qpat are the covariances for the absorption, scattering and noise,

respectively, the posterior density (11) becomes

π(µa, µ
′

s|Hmeas) ∝exp

{

−
1
2

(Hmeas− H(µa, µ
′

s) − ηe ,qpat)T
Γ
−1
e ,qpat(Hmeas− H(µa, µ

′

s) − ηe ,qpat)

−
1
2

(µa − ηµa)
T
Γ
−1
µa

(µa − ηµa) −
1
2

(µ′s − ηµ′

s
)T
Γ
−1
µ′

s
(µ′s − ηµ′

s
)

}

. (12)

The practical solution for the inverse problem is obtained by calculating point estimates
from the posterior density. Since we are interested in computationally efficient inverse prob-
lem solvers, we consider here themaximum a posteriori(MAP) estimate. It is obtained as

(µ̂a, µ̂
′

s) = arg max
(µa, µ

′

s)
π(µa, µ

′

s|Hmeas)

= arg min
(µa, µ

′

s)

{

1
2

∥

∥

∥Le ,qpat(Hmeas− H(µa, µ
′

s)) − ηe ,qpat

∥

∥

∥

2
2

+
1
2

∥

∥

∥Lµa(µa − ηµa)
∥

∥

∥

2
2
+

1
2

∥

∥

∥Lµ′

s(µ
′

s − ηµ′

s)
∥

∥

∥

2
2

}

(13)

whereLe ,qpat is the Cholesky decomposition of the inverse of the noise covariance matrix
Γ
−1
e ,qpat= LT

e ,qpatLe ,qpat, andLµa andLµ′

s
are the Cholesky decompositions of the inverse of the

prior covariance matrices for absorption and scattering,Γ
−1
µa
= LT

µa
Lµa andΓ−1

µ′

s
= LT

µ′

s
Lµ′

s
, re-

spectively. Thus, in the image reconstruction problem of QPAT, we seek to find the discretised
distributions of absorption and scattering coefficients (µ̂a, µ̂

′

s) which solve the minimisation
problem (13).

2.2.1. QPAT augmented with surface light data

A discrete observation model for DOT in the presence of additive noise is

Γ
+

meas= Γ
+(µa, µ

′

s) + edot (14)
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whereΓ+meas ∈ R
mdot is a measurement vector of light exitance measured at the detectors on

the surface of the target wheremdot is the number of measurement,Γ+ is the discretised for-
ward operator corresponding to model (7)-(9) andedot ∈ R

mdot denotes the noise. Following
a similar derivation as for QPAT, the inverse problem of QPAT augmented with surface light
measurements can formulated as a minimisation problem

(µ̂a, µ̂
′

s) = arg min
(µa, µ

′

s)

{

1
2

∥

∥

∥Le ,qpat(Hmeas− H(µa, µ
′

s) − ηe ,qpat)
∥

∥

∥

2
2

+
1
2

∥

∥

∥Le ,dot(Γ+meas− Γ
+(µa, µ

′

s) − ηe ,dot)
∥

∥

∥

2
2

+
1
2

∥

∥

∥Lµa(µa − ηµa)
∥

∥

∥

2
2
+

∥

∥

∥Lµ′

s
(µ′s − ηµ′

s
)
∥

∥

∥

2
2

}

(15)

whereηe ,dot is the mean of the noise of the surface light measurements andLe ,dot is the Cholesky
decomposition of the inverse of the noise covariance matrix of the surface light measurements
Γ
−1
e ,dot = LT

e ,dotLe ,dot.

2.2.2. Simultaneous estimation of the Grüneisen parameter

Generally, estimation of the absorption, scattering and Grüneisen parameter is non-unique if
only one wavelength of light is used [24]. This has been overcome by using multiple opti-
cal wavelengths and estimating the optical parameters and the Grüneisen coefficient simulta-
neously [13, 15, 16]. In this work, simultaneous estimation of the absorption, scattering and
Grüneisen parameter is considered using initial pressure and surface light as data. The minimi-
sation problem is of the form

(µ̂a, µ̂
′

s, Ĝ) = arg min
(µa, µ

′

s ,G)

{

1
2

∥

∥

∥Le ,p(p0,meas− p0(µa, µ
′

s,G)) − ηe ,p
∥

∥

∥

2
2

+
1
2

∥

∥

∥Le ,dot(Γ+meas− Γ
+(µa, µ

′

s) − ηe ,dot)
∥

∥

∥

2
2
+

1
2

∥

∥

∥Lµa(µa − ηµa)
∥

∥

∥

2
2

+
1
2

∥

∥

∥Lµ′

s
(µ′s − ηµ′

s
)
∥

∥

∥

2
2
+

1
2
‖LG(G − ηG)‖22

}

(16)

whereG = (G1 , . . . , GK )T ∈ R
K is the discretised distribution of the Grüneisen parameter

which was assumed to be Gaussian distributed and independent of the noise,p0,measis the initial
pressure obtained from measurements,p0(µa, µ

′

s,G) is the modelled initial pressure, andηe ,p
is the mean andLe ,p is the Cholesky decomposition of the inverse of the noise covariance
matrix Γ−1

e ,p = LT
e ,pLe ,p of the initial pressure data. Further,ηG is the mean andLG is the

Cholesky decomposition of the inverse of the covariance matrixΓ
−1
G
= LT

G
LG of the prior for

the Grüneisen parameter.

3. Numerical implementations

3.1. FE-approximation of the DA

In this work, a finite element method (FEM) is used for the numerical solution of the DA. In
order to obtain the FE-approximation, first a variational problem is formulated of the DA with
its boundary condition, and then the solution of the variational problem is approximated in a
piece-wise linear basis. As a result, a matrix equation can be derived. For more details, see
e.g. [25,55].

In the case of QPAT, the FE-approximation of the time-independent DA with the diffuse
boundary source model, Eqs. (3)-(4), is obtained by solving the matrix equation

AqpatΦqpat= bqpat (17)
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whereΦqpat is the fluence in the nodes of the FE-mesh andAqpat= K +C + R. In the case of the
frequency-domain DA, Eqs. (8)-(9), the FE-approximation of the DA on an angular modulation
frequencyω is obtained by solving the matrix equation

AdotΦdot = bdot (18)

whereΦdot is the fluence in the nodes of the FE-mesh andAdot = K +C + R + Z. The matrices
K ,C, R andZ and the source vectorsbqpat andbdot are of the form

K(p, q) =
∫

Ω

1
d(µa+ µ

′

s)
∇ϕq(r) · ∇ϕp(r)dr (19)

C(p, q) =
∫

Ω

µaϕq(r)ϕp(r)dr (20)

R(p, q) =
∫

∂Ω

2γdϕq(r)ϕp(r)dS (21)

Z(p, q) =
iω
c

∫

Ω

ϕq(r)ϕp(r)dr (22)

bqpat(p) =
∫

ε j

2Isϕp(r)dS (23)

bdot(p) =
∫

ε j

2Is(ω)ϕp(r)dS (24)

whereϕq(r) andϕp(r) are FE-basis functions,q , p = 1, . . . , N , andN is the number of nodes.
The QPAT data, absorbed optical energy density,H can be computed from the fluenceΦqpat

obtained with (17) using Eq. (5) and the surface light measurementsΓ
+ can be computed from

the fluenceΦdot obtained with (18) using Eq. (7).

3.2. Gauss-Newton iteration

In this work, the minimisation problems (13), (15) and (16) are solved using a Gauss-Newton
method. In the case of QPAT image reconstruction problem augmented with surface light
measurements, Eq. (15), the Gauss-Newton iteration can be written in a form

x(i+1) = x(i) + s(i)

(

JT
(i)L

T
eLeJ(i) + LT

xLx

)

−1 (

JT
(i)L

T
eLe(Fmeas− F(i) − ηe) − LT

xLx (x(i) − ηx)
)

(25)
where x = (µa, µ

′

s)
T
= (µa1 , . . . , µaK , µ

′

s1
, . . . , µ′sK

)T ∈ R
2K are the estimated absorption

and scattering parameters which in this work are represented in piece-wise constant bases
µa(r) ≈

∑K
k=1 µak χ

(µa)
k

(r) andµ′s(r) ≈
∑K

k=1 µ
′

sk χ
(µ′

s)
k

(r) whereχk (r) is a characteristic function
of the elementΩk . It should be noted that other bases can also be used for the representation
of the optical parameters and that different discretisations can be used for different parameters.
Furthermore,Fmeas=

(

Hmeas, Γ
+
meas

)T are the measured absorbed optical energy density and ex-
itance,F =

(

H , Γ+
)T is the solution of the discretised forward models for QPAT, Eqs. (17) and

(5), and DOT, Eqs. (18) and (7),s is the step length of the minimisation algorithm determined
using a line-search method, and

Le =

(

Le ,qpat 0
0 Le ,dot

)

, ηe =

(

ηe ,qpat

ηe ,dot

)

, Lx =

(

Lµa 0
0 Lµ′

s

)

, ηx =

(

ηµa

ηµ′

s

)

.

Further,J is the Jacobian of the form

J =















J
qpat
µa J

qpat
µ′

s

Jdot
µa

Jdot
µ′

s















(26)
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where Jacobians for absorption and scattering areJ
qpat
µa =

(

j
qpat(1)

µa , . . . , j
qpat(K )

µa

)

, J
qpat
µ′

s
=

(

j
qpat(1)

µ′

s
, . . . , j

qpat(K )

µ′

s

)

, Jdot
µa
=

(

jdot(1)

µa
, . . . , jdot(K )

µa

)

andJdot
µ′

s
=

(

jdot(1)

µ′

s
, . . . , jdot(K )

µ′

s

)

where the

columnsk = 1, . . . , K of each matrix are obtained by vectorisation of

j
qpat(k )

µa = −µ
(k)
a MqpatA

−1
qpat
∂Aqpat

∂µak
A−1

qpatbqpat+ χkMqpatA
−1
qpatbqpat (27)

jdot(k )

µa
= −MdotA

−1
dot
∂Adot

∂µak
A−1

dotbdot (28)

j
qpat(k )

µ′

s
= −µ

(k)
a MqpatA

−1
qpat
∂Aqpat

∂µ′sk
A−1

qpatbqpat (29)

jdot(k )

µ′

s
= −MdotA

−1
dot
∂Adot

∂µ′sk
A−1

dotbdot (30)

where

∂Aqpat

∂µak
(p, q) =

∂Adot

∂µak
(p, q) = −

1

d(µak + µ
′

sk )2

∫

Ωk

∇ϕq(r) · ∇ϕp(r)dr +
∫

Ωk

ϕq(r)ϕp(r)dr

(31)

∂Aqpat

∂µ′sk
(p, q) =

∂Adot

∂µ′sk
(p, q) = −

1

d(µak + µ
′

sk )2

∫

Ωk

∇ϕq(r) · ∇ϕp(r)dr (32)

andMqpat ∈ R
mqpat×N is a measurement matrix which contains the discretised measurement

operator for QPAT which maps the piece-wise linear solution of the QPAT forward model to
piece-wise constant data space andMdot ∈ R

mdot×N is a measurement matrix which contains
the discretised measurement operator for surface light which maps the piece-wise linear solution
of the DOT forward model to detector measurements.

The Gauss-Newton algorithm for the solution of the conventional QPAT problem (13), can
be formulated from (25) by dropping the DOT related matrices and vectors from the forward
modelF, measurement vectorFmeas, noise statisticsLe , ηe and the Jacobian matrixJ .

In the case of estimating the absorption, scattering and Grüneisen parameter simultaneously
from the initial pressure and surface light data, i.e. the minimisation problem (16), the Gauss-
Newton iteration is of the form

x̃(i+1) = x̃(i) + s(i)

(

J̃T
(i)L̃

T
e L̃e J̃(i) + L̃T

x L̃x

)

−1 (

J̃T
(i)L̃

T
e L̃e(F̃meas− F̃(i) − η̃e) − L̃T

x L̃x (x̃(i) − η x̃)
)

(33)
where where ˜x = (µa, µ

′

s,G)T
= (µa1 , . . . , µaK , µ

′

s1
, . . . , µ′sK ,G1, . . . ,GK )T ∈ R

3K are the

estimated absorption, scattering and Grüneisen parameters,F̃meas =
(

p0,meas, Γ
+
meas

)T are the
measured initial pressure and exitance,F̃ =

(

p0, Γ
+
)T is the solution of the discretised forward

models and

L̃e =

(

Le ,p 0
0 Le ,dot

)

, η̃e =

(

ηe ,p
ηe ,dot

)

, L̃x =



















Lµa 0 0
0 Lµ′

s
0

0 0 LG



















, η x̃ =



















ηµa

ηµ′

s

ηG



















.

Further,J̃ is the Jacobian of the form

J̃ =















J̃
qpat
µa J̃

qpat
µ′

s
J̃

qpat
G

Jdot
µa

Jdot
µ′

s
0















(34)

where Jacobians for the absorption, scattering and Grüneisen parameter areJ̃
qpat
µa =

(

j̃
qpat(1)

µa , . . . , j̃
qpat(K )

µa

)

, J̃qpat
µ′

s
=

(

j̃
qpat(1)

µ′

s
, . . . , j̃

qpat(K )

µ′

s

)

andJ̃qpat
G
=

(

j̃
qpat(1)

G
, . . . , j̃

qpat(K )

G

)

where
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the columnsk = 1, . . . , K of each matrix are obtained by vectorisation of

j̃
qpat(k )

µa = −G(k)µ
(k)
a MqpatA

−1
qpat
∂Aqpat

∂µak
A−1

qpatbqpat+G
(k)MqpatA

−1
qpatbqpat (35)

j̃
qpat(k )

µ′

s
= −G(k)µ

(k)
a MqpatA

−1
qpat
∂Aqpat

∂µ′sk
A−1

qpatbqpat (36)

j̃
qpat(k )

G
= −µ

(k)
a MqpatA

−1
qpatbqpat (37)

andJdot
µa

andJdot
µ′

s
are as in (28) and (30).

4. Results

The proposed approach was tested with simulations which were implemented in two-
dimensional rectangular domains. Estimating absorption and scattering was investigated with
varying domain size and varying parameter distributions using absorbed optical energy density
and exitance as data. Furthermore, simultaneous estimation of the absorption, scattering and
Grüneisen parameter was investigated using initial pressure and exitance as data. The results
were compared to conventional QPAT reconstructions. The simulations were performed with
a Windows workstation with Intel(R) processor with 2 cores, a speed of 3.16 GHz and 8 GB
RAM usingmatlab (R2014a, The MathWorks Inc. Natick, Massachusetts, USA).

4.1. Data simulation

In all of the simulations, four planar illuminations, one at each side of the rectangle, with a
uniform intensity covering the whole side length and a total energy of 1 J, were used. It should
be noted that, since the numerical simulations are performed with a noise amplitude related to
the data, the absolute magnitude of the input light energy does not affect the results of these
simulations. The absorbed optical energy density, i.e. QPAT data, was simulated by using the
FE-solution of the DA (17) to obtain the fluence and then multiplying that with the absorption
to get the absorbed optical energy density using Eq. (5). To get the initial pressure distribution,
the absorbed optical energy density was multiplied with the Grüneisen parameter using Eq. (6).
In all simulations, Gaussian distributed noise with zero mean and standard deviation of 1 % of
the maximum absorbed optical energy density or initial pressure was added to the simulated
data.

Furthermore, the boundary light data was simulated by first solving the FE-approximation
of the frequency domain DA (18) for fluence, and then calculating the exitance using Eq. (7).
The exitance was solved in 174 equally distributed detector points (58 at each side) on the
object boundary excluding the illumination side of the target. In the simulations, the angular
modulation frequency ofω = 100·106 rad/s was used. Gaussian distributed noise with standard
deviation of 1 % of the amplitude and phase was added to the simulated data.

The number of nodes and elements of the FE-discretisations used in the simulations are given
in Table 1. The optical parameters were represented in piece-wise constant bases using the
elements of the FE-discretisation.

4.2. Reconstructing the parameters of interest

The absorption and scattering distributions were reconstructed using the suggested augmented
QPAT approach by minimising (15). The minimisation problem was solved using the Gauss-
Newton method (25) equipped with a line search algorithm for the determination of the step
length. The results were compared to the conventional QPAT reconstructions by minimising
(13). Furthermore, the absorption, scattering and Grüneisen parameter distributions were recon-
structed using the suggested augmented QPAT approach by minimising (16). The minimisation
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Table 1. The number of nodes and elements in the FE-discretisations used in simulating
the data.

nodes elements
varying domain size 20 mm× 20 mm: 3975 7708

40 mm× 40 mm: 4089 7936
60 mm× 60 mm: 3750 7258

varying parameter distributions (20 mm× 20 mm) 2 cubes: 3673 7104
8 cubes: 3881 7520

18 cubes: 3717 7192
32 cubes: 4010 7778

simultaneous estimation of the Grüneisen parameter (10 mm× 10 mm): 3966 7690

Table 2. The number of nodes and elements in the FE-discretisations used in the recon-
structions.

domain size nodes elements
10 mm× 10 mm: 2013 3784
20 mm× 20 mm: 2489 4736
40 mm× 40 mm: 2489 4736
60 mm× 60 mm: 2218 4194

problem was solved using the Gauss-Newton method (33) equipped with a line search algo-
rithm for the determination of the step length. All minimisation problems converged in less
than 15 iterations. Typically, the augmented QPAT took few more simulations to converge than
the conventional QPAT. The number of nodes and elements of the FE-discretisations used in
the reconstructions is given in Table 2. The optical parameters were represented in piece-wise
constant bases by the elements of the FE-discretisations.

In this work, the prior model for the unknown parametersµa, µ′s andΓwas chosen to be based
on the Ornstein-Uhlenbeck process [16, 56]. The prior is a Gaussian distribution with meanη

and covariance matrixΓ which was defined as being proportional to

Γ= σ2
Ξ (38)

whereσ is the standard deviation of the prior andΞ is a matrix which has its elements defined
as

Ξi j = exp(−||ri − r j | |/ξ), (39)

wherei andj denote the row and column indices of the matrix,ri andr j denote the coordinates
of the centre of elementsi and j, andξ is the characteristic length scale of the prior describing
the spatial distance that the parameter is expected to have (significant) spatial correlation for. In
this work, the mean and standard deviation of the prior were chosen based on expected mean
and variation that the parameters were assumed to have, and the characteristic length scale was
chosen based on size of the structures that the medium was assumed to have. The mean, standard
deviation and characteristic length scale used in the simulations are given in Table 3.

The validity of the reconstructions was evaluated by computing the mean relative errors for
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Table 3. The mean and standard deviation of the prior distributions for the absorption
ηµa (mm−1), σµa (mm−1), scatteringηµ′

s
(mm−1), σµ′

s
(mm−1) and Grüneisen parameter

ηG (unitless),σG (unitless), and the characteristic length scaleξ(mm) used in the simula-
tions.

ηµa σµa ηµ′

s σµ′

s ηG σG ξ

varying domain size: 0.1 0.2 2 0.5 1
varying parameter distributions: 0.1 0.2 2 0.5 1

simultaneous estimation of the Grüneisen: 0.2 0.2 1 0.25 0.3 0.1 1

the estimates

Eµa = 100%·
‖ µ̂a − µ

TRUE
a ‖2

‖µTRUE
a ‖2

(40)

Eµ′

s
= 100%·

‖ µ̂′s − µ
′

s
TRUE
‖2

‖µ′s
TRUE‖2

(41)

EG = 100%·
‖Ĝ − GTRUE‖2

‖GTRUE‖2
(42)

whereµTRUE
a , µ′s

TRUE andGTRUE are the simulated parameters interpolated to the reconstruction
grid andµ̂a, µ̂′s andĜ are the estimated parameters.

4.3. Results

4.3.1. Varying domain size

The performance of the augmented QPAT in different size domains was investigated. The sizes
of the simulation domains were 20 mm× 20 mm, 40 mm× 40 mm and 60 mm× 60 mm. The ab-
sorption and scattering inclusions were stripe-like structures with thickness of 2 mm and length
of the side-length of the domain minus 1 mm. The stripes were located with a distance of 3 mm
from each other. The simulated parameter distributions and the reconstructions are shown in
Fig. 1. The relative errors for the estimated absorption and scattering, Eqs. (40)-(41), are given
in Table 4.

As it can been seen, the absorption distributions reconstructed using the augmented QPAT
and the conventional QPAT approaches are almost the same quality in the 20 mm× 20 mm
size domain. The scattering estimates, on the other hand, obtained with the augmented QPAT
resemble the original distribution more than the estimates obtained with the conventional QPAT.
The difference between the two approaches becomes more apparent when the domain size in-
creases. Especially in the domain of size 40 mm× 40 mm, the reconstructions are clearly better
quality when the surface light data has been utilised in the reconstructions. In the largest do-
main, 60 mm× 60 mm, the quality of both conventional and augmented QPAT is weaker than
in the smaller domains. That is, one is reaching the limit where QPAT reconstructions cannot
significantly be improved by including exitance data.

The calculated mean relative errors, Table 4, support these results. The relative errors of
the absorption and scattering estimates obtained with the augmented QPAT are smaller than
those of the conventional QPAT reconstructions. The most accurate estimates are obtained in
the 20 mm× 20 mm domain and as the domain size increases the relative errors of the estimates
increase as well. The most significant improvement into the accuracy of the estimates by the
augmented QPAT is obtained in 40 mm× 40 mm for absorption estimates.
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Fig. 1. Absorption (columns 1–3) and scattering (columns 4–6) distributions in different
size domains: 20 mm×20 mm (first row), 40 mm×40 mm (second row) and 60 mm×60 mm
(third row). Columns from left to right: simulated absorption (first column), reconstructed
absorption obtained using the augmented (second column) and conventional (third column)
QPAT, simulated scattering (fourth column), reconstructed scattering obtained using aug-
mented (fifth column) and conventional (sixth column) QPAT.

Table 4. Mean relative errors for absorptionEµa (%) and scatteringEµ′

s
(%) obtained with

augmented QPAT and conventional QPAT.

augmented QPAT conventional QPAT
Eµa Eµ′

s
Eµa Eµ′

s

varying domain size 20 mm× 20 mm: 4.4 18.0 8.9 25.0
40 mm× 40 mm: 7.5 26.9 26.1 33.9
60 mm× 60 mm: 22.4 28.6 31.2 34.2

varying parameter 2 cubes: 4.2 20.3 19.1 34.7
distributions 8 cubes: 8.7 31.5 18.5 37.5

18 cubes: 7.7 34.9 24.5 42.1
32 cubes: 7.4 37.5 26.4 44.2

The convergence of the minimisation problems was visualised by calculating the mean rela-
tive errors for absorption and scattering, Eqs. (40)-(41), at each iteration and plotting the results.
All the simulations had a similar behaviour, and thus only the results of once case (simulations
in 20 mm× 20 mm domain) are shown in Fig. 2. As it can be seen, the augment QPAT required
more iterations to converge than the conventional QPAT but it converged to more accurate esti-
mates for absorption and scattering.

4.3.2. Variations in the optical parameter distribution

The capability of the augmented QPAT approach to reconstruct fine structures in internal optical
parameter distributions was investigated. The simulation domain size was 20 mm×20 mm. In all
simulations, the absorption and scattering were given two different values but their distribution
was varied from coarse to fine structures. The total area of absorbing and scattering inclusions
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Fig. 2. Mean relative errors for absorptionEµa (left image) and scatteringEµ′

s
(right image)

against iteration obtained with augmented QPAT and conventional QPAT in 20 mm×20 mm
domain.

was kept the same in all cases. The simulated and the reconstructed absorption and scattering
distributions are shown in Fig. 3. The mean relative errors for absorption and scattering, Eqs.
(40)-(41), are given in Table 4.

As it can be seen, QPAT augmented with surface light measurements gives better quality re-
constructions both for absorption and scattering. In the absorption reconstructions, the shapes
of the absorption inclusions are well defined by both methods. However, it seems that the aug-
mented QPAT gives more accurate values for the absorbing inclusions. In the case of scattering,
the inclusions are better distinguished if augmented QPAT data is used. The relative errors of the
absorption and scattering estimates obtained with the augmented QPAT are smaller than those
obtained with the conventional QPAT. That is, the augmented QPAT provides more accurate
quantitative estimates for the optical parameters.

4.3.3. Simultaneous estimation of the Grüneisen parameter

The simultaneous estimation of the absorption, scattering and Grüneisen parameter was inves-
tigated in 10 mm× 10 mm domain. For comparison, two types of conventional QPAT recon-
structions, Eq. (13), were computed. In the first one, the Grüneisen parameter was assumed to
have a constant valueG = 0.3, which is the mean of the simulated Grüneisen parameter dis-
tribution. In the second one, the simulated Grüneisen parameter distribution was mapped to the
reconstruction mesh. This can be considered the best possible reference for the reconstructions,
which however is unrealistic since, in practice, the Grüneisen parameter distribution is unknown.
The simulated and reconstructed parameter distributions are shown in Fig. 4. The mean relative
errors, Eqs. (40)-(42), are given in Table 5.

As it can be seen, the approach can produce as good quality reconstructions for absorption
and scattering as the reference approach with the correct Grüneisen parameter distribution and
better than the reference approach with the constant Grüneisen parameter. The relative errors for
the absorption are larger and the relative errors for the scattering are smaller when compared to
the the reference approach with the correct Grüneisen parameter distribution. Further, the rela-
tive errors are smaller when compared with the reference approach with the constant Grüneisen
parameter. Thus, the simulations show that simultaneous estimation of the absorption, scatte-
ring and Grüneisen parameter may be possible using the QPAT augmented with surface light
measurements.
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Fig. 3. Absorption (columns 1–3) and scattering (columns 4–6) parameters with different
distributions of the optical parameters (rows 1–4). Columns from left to right: simulated
absorption (first column), reconstructed absorption obtained using the augmented (second
column) and conventional (third column) QPAT, simulated scattering (fourth column), re-
constructed scattering obtained using the augmented (fifth column) and conventional (sixth
column) QPAT.
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Fig. 4. Absorption (first row), scattering (second row) and Grüneisen (third row) param-
eters. Columns from left to right: simulated distributions (first column), reconstructions
obtained using the augmented QPAT (second column), and reconstructions obtained using
the conventional QPAT with a constant (third column) and correct (fourth column) values
of the Grüneisen parameter.

                                                                              Vol. 8, No. 10 | 1 Oct 2017 | BIOMEDICAL OPTICS EXPRESS 4394 



Table 5. Mean relative errors for absorptionEµa (%), scatteringEµ′

s
(%) and Grüneisen

parameterEG (%) obtained with augmented QPAT and conventional QPAT.

Eµa Eµ′

s EG

augmented QPAT: 9.49 6.09 7.04
conventional QPAT, constant Grüneisen parameter: 20.63 15.04
conventional QPAT, correct Grüneisen parameter: 4.71 26.39

5. Conclusions

In this work, improving QPAT by combining information from surface measurements of light
was investigated. The QPAT image reconstruction problem was formulated as a minimisa-
tion problem in which absorption and scattering distributions were reconstructed utilising both
QPAT and surface light data. Furthermore, simultaneous estimation of the Grüneisen parameter
was investigated. The approach was tested with simulations.

The results show that including surface light measurements into the QPAT image reconstruc-
tion improves both quality of the reconstructed absorption and scattering images as well as their
quantitative estimates. The results are in line with other approaches in which surface light data
has been utilised in QPAT [46]. Furthermore, the simulations demonstrate some of the situations
in which the augmented QPAT is most useful when compared to the conventional QPAT, i.e. in
distinguishing scattering, in larger domains, and when the medium consists of fine structures.

The augmented QPAT was also tested in simultaneous estimation of the optical parameters
and the Grüneisen parameter. The results show that simultaneous estimation of all parameters
results into better estimates for absorption and scattering than the conventional QPAT approach
where the Grüneisen parameter was assumed to be constant. This indicates that it may be pos-
sible to estimate the Grüneisen parameter simultaneously with the optical parameters if QPAT
is augmented with surface light measurements. However, it should be noted that the uniqueness
of this minimisation problem remains to be studied.

In this work, the augmented QPAT was tested with numerical simulations in a two-
dimensional setting using the diffusion approximation as the light transport model at one optical
wavelength. The future work includes implementing the methodology using more realistic and
numerically more challenging radiative transfer equation as well as extension of the methodol-
ogy to spectral QPAT.
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