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Abstract: In this paper, we present two models for automatically extracting red blood cells 
(RBCs) from RBCs holographic images based on a deep learning fully convolutional neural 
network (FCN) algorithm. The first model, called FCN-1, only uses the FCN algorithm to 
carry out RBCs prediction, whereas the second model, called FCN-2, combines the FCN 
approach with the marker-controlled watershed transform segmentation scheme to achieve 
RBCs extraction. Both models achieve good segmentation accuracy. In addition, the second 
model has much better performance in terms of cell separation than traditional segmentation 
methods. In the proposed methods, the RBCs phase images are first numerically reconstructed 
from RBCs holograms recorded with off-axis digital holographic microscopy. Then, some 
RBCs phase images are manually segmented and used as training data to fine-tune the FCN. 
Finally, each pixel in new input RBCs phase images is predicted into either foreground or 
background using the trained FCN models. The RBCs prediction result from the first model is 
the final segmentation result, whereas the result from the second model is used as the internal 
markers of the marker-controlled transform algorithm for further segmentation. Experimental 
results show that the given schemes can automatically extract RBCs from RBCs phase images 
and much better RBCs separation results are obtained when the FCN technique is combined 
with the marker-controlled watershed segmentation algorithm. 
© 2017 Optical Society of America 

OCIS codes: (090.1995) Digital holography; (100.6890) Three-dimensional image processing; (170.3880) Medical 
and biological imaging; (150.0150) Machine vision; (150.1135) Algorithms. 
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1. Introduction 
Because the limitations inherent in traditional two-dimensional (2D) imaging techniques 
when used with transparent or semitransparent biological organisms, three-dimensional (3D) 
imaging systems have been developed and are widely used for transparent or semitransparent 
biological specimen imaging and visualization [1–6]. Among these 3D imaging methods, 
digital holographic microscopy (DHM), a low-cost, noninvasive, and rapid visualization 
approach, is being extensively researched and has been successfully applied to specimen, 
such as cardiomyocytes and red blood cells (RBCs) measurement [6–20]. 

In this study, the hologram of RBCs was recorded using DHM and RBCs phase images 
reconstructed from their holograms using a numerical reconstruction algorithm [21-22]. The 
RBCs obtained from DHM can provide cell thickness and 3D morphology information that is 
helpful in RBC quantitative analysis and beneficial to medical diagnosis. In order to conduct 
further RBCs analysis, determination of specific RBCs in RBCs phase images is essential. 
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Therefore, analyzing RBC-based properties from extracted RBCs would be much more 
accurate and beneficial to patients. For instance, the number of RBCs is related to patient’s 
health and can be used to investigate hypotheses about pathological processes in clinical 
pathology, while the cell concentration is very important in molecular biology for adjusting 
the amount of chemicals applied in experiments. Moreover, it is much easier to identify any 
abnormality and analyze RBC-related diseases from segmented RBCs images. 

However, the task is tedious and time-consuming if the RBCs are segmented and counted 
manually. Consequently, many automated algorithms have been proposed for RBCs 
segmentation. Three main kinds of cells segmentation approaches have been presented: 
region-based, edge-based, and energy-based [23–32]. The RBCs segmentation methods 
presented in [23-24] are region-based algorithms, whereas those presented in [25-26] and [27-
28] are edge-based and energy-based, respectively. However, most of the segmentation 
methods applied to RBCs images are based on 2D imaging systems, with only a few being 
based on RBCs phase images obtained via DHM imaging. In addition, most of these 
techniques cannot segment the RBCs images when multiple RBCs are connected. In our 
previous work, we combined the marker-controlled watershed algorithm with morphological 
operations and segmented RBCs phase images obtained using the DHM technique with good 
results [26]. Nevertheless, the approach proposed in [26] cannot properly segment heavily 
overlapped and multiple touched RBCs as well. Therefore, developing a more robust 
algorithm for RBC phase image segmentation is essential for further RBC analysis. 

Deep learning is a promising technique that is able to achieve results superior to those 
obtainable using traditional methods. Consequently, it is extensively studied in the computer 
vision community [33–40]. Krizhevsky et al. [35] used convolutional neural networks for 
image classification to very good effect. Mikolov et al. [36] and Liu et al. [37] obtained good 
performance from recurrent neural networks in text classification and translation. Long et al. 
[38] proposed a fully convolutional neural network (FCN) for semantic segmentation and 
obtained surprising outcomes. FCNs have the advantage of end-to-end training and produce 
pixel-wise prediction. Moreover, the size of the image inputted to an FCN algorithm can be 
arbitrary, which differs from other image segmentation deep learning algorithms, such as 
convolutional neural networks [35]. Some other kinds of FCN algorithms such as U-net [33] 
and SegNet [34] are also proposed for semantic segmentation and applied to biological 
images. In this study, we apply the FCN technique to RBCs phase images for RBCs 
segmentation. We develop two RBCs segmentation schemes. In the first scheme, FCN-1, the 
RBCs phase images and their manually segmented RBCs are used as a true label to train the 
FCN model. The trained model is then applied to predict RBCs phase image pixels as either 
foreground (RBCs) or background for RBCs segmentation. In the second scheme named as 
FCN-2, we combine the FCN model with the marker-controlled watershed transform 
algorithm to segment the RBCs. In FCN-2, we only use the fully convolutional neural 
network to predict the inner part of each red blood cell and then regard the predicted results as 
internal markers of marker-controlled watershed algorithm so as to further segment the RBCs. 
In the second scheme, the training label image is not the mask of all the segmented cells; it is 
erosion results of that mask, which represents the inner area of each RBC. 

Consequently, we first use a 3D imaging technique called off-axis DHM to record these 
RBCs and then apply the numerical reconstruction algorithm to reconstruct RBCs phase 
images from their holograms. Next, two kinds of training images are prepared from RBCs 
phase images and the FCNs trained for the two different schemes. One of the FCNs is used to 
predict all of the cells, whereas the other is only used to predict the inside part of each RBC 
and the predicted results further combine with the marker-controlled watershed method to 
segment the RBCs. We then compare the segmentation results from the two methods with 
those obtained using other methods in terms of segmentation accuracy and cell separation 
ability. Our experimental results indicate that our methods achieve good segmentation results 
overall, with the FCN-2 model giving the best performance in terms of separation of 
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overlapped RBCs. The remainder of this paper is organized as follows. Section 2 describes 
the principle underlying off-axis DHM. Section 3 discusses FCNs. Section 4 outlines the 
RBCs segmentation procedure. Section 5 presents and discusses the experimental results 
obtained. Section 6 presents concluding remarks. 

2. Off-axis digital holographic microscopy 
Off-Axis DHM is a three-dimensional imaging technique that has been researched for 
application in the area of cell biology, including 3D cell visualization, classification, 
recognition, and tracking [6–17, 41–44]. Off-axis DHM, which is also a noninvasive 
interferometric microscopy technique, provides a quantitative measure of the optical path 
length. Figure 1 shows the schematic of an off-axis DHM system used to capture the 
hologram of an imaging target sample. As shown in Fig. 1, off-axis DHM is a modified 
Mach-Zehnder configuration in which a laser diode source is used in off-axis geometry [45]. 
Usually, a low intensity laser is used as the light source for target sample illumination in the 
DHM imaging system (a λ = 682nm laser diode source is utilized in this experiment). In off-
axis DHM, the laser beam from the laser diode source is split into object wave and reference 
wave. Then, the object wave passing through the imaging target sample is diffracted and 
further magnified by a 40 × /0.75 numerical aperture microscopy objective. Subsequently, a 
hologram consisting of interference patterns between reference beam and diffracted and 
magnified object beam in the off-axis geometry is recorded via a charge-coupled device 
(CCD) camera. As a result, the quantitative phase images are numerically reconstructed from 
the recorded hologram using a specific numerical algorithm, as described in [21,22]. Thanks 
to current computing power, the phase images can be reconstructed from the hologram at a 
speed of 100 images per second, which achieves real-time processing. 
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Fig. 1. Schematic of an off-axis digital holographic microscopy (DHM). 

3. Fully convolutional neural networks 
Fully convolutional neural networks (FCNs), an extension of convolutional neural networks 
[35], have become the mainstream algorithm in the field of semantic segmentation since the 
amazing performance achieved by Long et al. [38]. FCNs have the advantage of training and 
inferring on images with arbitrary sizes and making pixel-wise prediction for semantic 
segmentation. They have been attracting increasing attention and have been successfully 
applied to biomedical images, such as cardiac segmentation in MRI and liver and lesion 
segmentation in CT, with good results [46,47]. 

Different from convolutional neural networks, there are no fully connected layers in the 
FCNs [38]. Figure 2 (Row A) shows the general network architecture of an FCN. The 
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network is constructed with some basic layers, which consist of convolution (conv), pooling 
(pool), activation, and deconvolution (deConv) [35, 38]. Convolution layer which is the 
convolution operation between image or feature map and a kernel refers to the feature 
extraction; pooling mainly refers to max pooling in the FCN that results in shrinkage of 
feature maps in spatial dimension, max pooling has the advantage of leading to faster 
convergence rate by selecting superior invariant features that can enhance the performance of 
generalization; activation layer in FCN algorithm mainly refers to the rectified linear units 
(Relu) [38], which is defined as f(x) = max(0, x), where x is the input value to a neuron. 
Because an FCN is an end-to-end and pixel-to-pixel training/prediction technique, the FCN 
output must be the same size as the ground truth image, i.e., the same size as the input image. 
Consequently, the deconvolutional (deConv) layer is used to map the feature resolution into 
the same size of input image. The deconvolutional operation is achieved by upsampling the 
previous coarse output maps followed by convolutional manipulation. Therefore, the FCN 
can consume an image of arbitrary size and output a dense prediction map of the same size. 
The local connectivity property of the convolutional, pooling, Relu, and deconvolutional 
layers also result in FCN having a translation invariant feature [38]. A loss layer is included 
in the FCN training phase so that the network parameters are learned by minimizing the cost 
value [38]. Some other layers such as batch normalization, dropout, and softmax are also 
widely used in FCNs [33,34,38]. Specifically, each layer of data in the FCN is a three-
dimensional array in size of h × w × d, where h and w are spatial dimensions, and d is the 
dimension of feature. The basic units in FCN (convolution, pooling, and activation functions) 
only operate on local input regions and depend on relative spatial coordinates. Assigning xij 
for data vector at location (i, j) in a particular layer, and yij represents the output of this layer 
or the input of next layer, the yij is derived by following expression [38]: 

 { }( ), 0 ,ij ks si i sj jf i j kδ δ δ δ+ += ≤ ≤y x  (1) 

where k is the kernel size, s is the stride, fks is the function determined by the layer type that a 
matrix multiplication for convolutional layer, a spatial max for max pooling layer, or an 
elementwise nonlinear function such as Relu for an activation layer, an interpolation function 
followed by matrix multiplication for deconvolutional layer, and so on for other types of 
layers. The functional form in Eq. (1) is maintained by kernel size and stride satisfying with 
the following transformation rule [38]: 

 ( ) ( )1 ,ks k s k k s ss
f g f g′ ′ ′ ′ ′+ −

=   (2) 

where   represents function composition. 
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Fig. 2. Fully convolutional neural networks [38]. Row A: Single-stream net, upsamples stride 
32 predictions back to pixels in a single step (FCN-32s); Row B: Fusing predictions from both 
the final convolutional layer and the pool4 layer for additional prediction (FCN-16s); Row C: 
Fusing predictions from the final convolutional layer, pool4, and pool3 for additional 
prediction (FCN-8s). 

The parameters of an FCN model only exist in the kernel used in the convolutional and 
deconvolutional layer. Thus, the total number of parameters required for an FCN is much 
smaller than that for a fully connected deep neural network when the same number of hidden 
units is utilized. Further, the number of parameters is even smaller than that in convolutional 
neural networks. The relatively small number of parameters required by an FCN is beneficial 
in network training. In an FCN, the feed-forward passing through the network provides a 
dense prediction map and the loss function defined as a sum over the spatial dimensions of 
the final layer combined with information from the ground truth label image is minimized by 
the backpropagation algorithm in order to learn the network [48]. That is, the forward 
direction in an FCN is for inference, whereas the backward direction is for learning. 

Following a series of successful application of FCN to semantic segmentation, many new 
algorithms based on the FCN technique and specific scenarios have been proposed. They are 
widely studied in the image segmentation, classification, and tracking fields [38, 49,50]. Long 
et al. [38] proposed two other FCN architectures with different upsampling scale to 
compensate the shortcoming of the main FCN architecture, which requires a total of 32 × 
upsampling. The other two FCN architectures (FCN-16s and FCN-8s in [38]) fuse the pooling 
information at different layers and reportedly give significantly better semantic segmentation 
results than the original. The network architectures of FCN-16s and FCN-8s are also shown in 
Fig. 2 (Row B is FCN-16s and Row C is FCN-8s). For example, in FCN-8s, the coarse output 
from the FCN model is first 4 × upsampled and the pool4 image is 2 × upsampled. Then, 
these upsampled images are fused with the image at the pool3 layer and the fused images are 
finally 8 × upsampled to obtain the prediction image with the same size as the input image. 
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(b)                     (c)                      (d)

(a)                                                               

 

Fig. 3. RBC’s phase images and ground truth label images. (a) RBC’s 3D profile obtained by 
off-axis DHM, (b) A reconstructed RBCs phase image, (c) A ground truth label image for the 
FCN-1 model, (d) A ground truth label image for the FCN-2 model. Bar is 10μm. 

4. RBCs segmentation 
In this section, the RBCs phase image segmentation procedure is presented. The RBC 
hologram is first recorded using off-axis DHM and the corresponding RBCs phase image 
numerically reconstructed using the numerical algorithm in [21-22]. Training data sets were 
prepared in order to use the FCNs for RBCs phase image segmentation. We designed two 
kinds of training data sets for RBCs segmentation using the FCN model. In the first scheme 
(FCN-1), we manually segmented the RBCs in the RBCs phase image and used the mask of 
the segmented RBCs phase image as the ground truth label image, in which ones denote the 
RBCs target and zeros the background. One of the RBCs phase images obtained by off-axis 
DHM is shown along with the corresponding prepared ground truth label images in Fig. 3. 
The FCN was trained by minimizing the error defined between the ground truth label image 
and the prediction image resulting from the FCN inference process. Then, the trained FCN 
was used to predict the class (0: background, 1: RBCs target) of each pixel in the RBCs phase 
image. In this approach, the segmented results are viewed as the final RBCs segmentation 
results because the training data set expresses the entire segmented RBCs. In the second 
scheme (FCN-2), the ground truth label image only denotes the center part of each RBC in 
the RBCs phase image. These ground truth label images were obtained conducting 
morphological erosion [51] on the ground truth label image from the first scheme (FCN-1) 
with a structuring elements of size seven. One of the ground truth label images used with the 
FCN-2 model is given in Fig. 3. Consequently, the FCN-2 scheme was trained and used to 
predict the center part of each RBC. Because this method cannot segment RBCs directly, we 
combined the FCN model with the marker-controlled watershed transform method for RBCs 
phase image segmentation. The predicted center part of RBCs from FCN is perfectly viewed 
as the internal markers of the marker-controlled watershed transform algorithm. Thus, the 
RBCs phase images were finally segmented using the marker-controlled watershed 
segmentation algorithm. Flowcharts for the two schemes are presented in Fig. 4. 
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Fig. 4. Flowchart for (a) FCN-1 model, (b) FCN-2 model. 

image pool1 pool2 pool3 pool4 pool5 conv7

4× upsampled
prediction (FCN-4s)4× conv7

2× pool4

pool3

: One black bar represents one convolution 
followed by Relu operation (Convolution+Relu)

: Red bar only denotes deconvolution 
operation without Relu operation

 

Fig. 5. FCN structure used for RBCs phase image segmentation. 

The original FCN model in [38], which performs max pooling layer five times, is not very 
robust to small object segmentation [40] due to the large upsampling scale value. In this 
study, we only used the max pooling layer four times. The proposed FCN structure is given in 
Fig. 5. As can be seen in the figure, there is no max pooling operation at the second layer and 
the image size in the pool2 layer is the same as that of the previous layer. Further, the image 
in the pool5 layer is 4 × upsampled and fused with the 2 × upsampling image at the pool4 
layer and the image at the pool3 layer. The final layer is 4 × upsampled from the fused image. 
The relative small upsampling scale value in the last layer can help to get fine segmentation 
results. For FCN training, the pre-trained VGG-16 Caffe model [52] was used to initialize the 
parameters in the two schemes. Here, these parameters within layers that are also existed in 
the VGG-16 network are initialized with corresponding weight values in pre-trained VGG-16 
Caffe model [52] while other parameters are randomly initialized [33–35]. Training a deep 
learning model with pre-trained model is a good strategy to help converge the network while 
training a network from scratch usually needs more training image and times [38]. 
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Fig. 6. Segmentation results for the four segmentation algorithms. (a) Original RBC phase 
images, (b) Segmentation results using FCN-1, (c) Segmentation results using FCN-2, (d) 
Segmentation results using Yi et al.’s method [26], (e) Segmentation results using Yang et al.’s 
method [55]). 

5. Experimental results 
All the RBCs analyzed in our experiment were taken from healthy laboratory personnel in the 
Laboratoire Suisse d’ Analyse Du Dopage, CHUV and their holograms recorded with off-axis 
DHM. The RBCs phase images were reconstructed from these RBCs off-axis holograms 
using a computational numerical algorithm. One of the reconstructed RBCs phase images is 
given in Figs. 3(a) and 3(b). We manually segmented 50 RBCs phase images for the training 
and testing data sets. The size of each RBCs phase image was 700 × 700. To increase the size 
of the training and testing images, we randomly cropped five images with size 384 × 384 
from each 700 × 700 RBCs phase image. The ratio of the training data set to the testing data 
set was set to 7:3. The corresponding ground truth label images for Fig. 3(b) RBCs phase 
image in the FCN-1 and FCN-2 models are also shown in Fig. 3. For the FCN training, 
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stochastic gradient descent [53] was used to optimize the loss function in order to fine-tune 
the FCN model. The momentum value was set to 0.99 and the weight decay, which is used to 
regularize the loss function, was 0.0005. Further, the learning rate was set to 0.01 and 
decreased by a factor of 10 every 1000 iterations. The weights for the shared layers were 
initialized with trained VGG-16 neural networks and those for the varied layers with values 
randomly extracted from normal distribution. The iteration number is set to be 4000. Our 
FCN models were trained on a computer equipped with an NVIDIA Tesla K20 GPU and 
running Ubuntu 15.04. The training time for the FCN models with the given specification was 
58 minutes on the Caffe deep learning framework [54]. 

In order to show the feasibility of our two proposed schemes for RBCs phase image 
segmentation, they were compared to two other methods, one by Yi et al. [26] and the other 
by Yang et al. [55]. Three of the RBCs phase images segmentation results from these 
methods are given in Fig. 6. Visually, it is clear from Fig. 6 that all the algorithms perform 
well for RBCs phase images in which there are no overlapped RBCs. On the other hand, our 
proposed methods, especially the FCN-2 model, appear to perform better on those RBCs 
phase images with touched and overlapped RBCs. Here, the segmentation accuracy (SA) is 
used for quantitative analysis of the segmentation results. The SA is defined as follows: 
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where Sseg and Sgt are the segmented region and the “ground truth” region, which are 
manually extracted as the gold standard, and | |• signifies the number of pixel points in a 

certain region, Sseg or Sgt. The segmentation accuracy tends to be one when the segmentation 
results are very similar to the ground truth. The higher the SA is, the better the performance of 
a segmentation algorithm. In this study, 20 RBCs phase images, each consisting of 
approximately 70 RBCs, were used to calculate the segmentation accuracy among these 
methods. The quantitative evaluation of the segmentation results for our proposed methods 
and the methods by Yi et al. [26] and Yang et al. [55] are given in Table 1. As stated above, 
FCN-1 is the first scheme in our proposed RBCs phase image segmentation method and FCN-
2 is the second one. 

Table 1. Segmentation Accuracy on RBCs Phase Image 

Visualization FCN-1 FCN-2 Yi et al. [26] Yang et al. [55] 

SA 
(average/std) 

0.9503 
(0.0085) 

0.9557 
(0.0168) 

0.9440 
(0.0126) 

0.9283 
(0.0306) 

It is clear from Table 1 that the FCN-2 method achieved the best segmentation results in 
terms of segmentation accuracy. This is because it can appropriately handle the RBCs 
touching and overlap problem in RBCs phase images, whereas the methods by Yi et al. [26] 
and Yang et al. [55] cannot separate multiple connected RBCs or heavily overlapped RBCs. 
To demonstrate the RBCs separation ability of the connected or overlapped RBCs of these 
segmentation algorithms, some segmentation results for regions with connected or overlapped 
RBCs are given in Fig. 7. It is clear from the figure that the proposed FCN-2 scheme 
separates the RBCs well in the RBCs phase images. Yang et al.’s method [55] uses two 
structuring elements with different sizes to separate the connected target. The method can 
only divide two connected cells; furthermore, defining the size of the structuring element is 
difficult. Yi et al.’s method [26] separates the connected RBCs using morphological 
operations, and has difficulty defining the size of the structuring element used because the 
size of each RBC and connected area is different. The FCN-1 model would achieve better 
performance in terms of RBCs separation if more data containing connected RBCs were used 
for training. 
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Fig. 7. RBCs separation. (a) Connected RBCs region in original RBCs phase images, (b) RBCs 
separation results using FCN-1, (c) RBCs separation results using FCN-2, (d) RBCs separation 
results using Yi et al.’s method [26], (e) RBCs separation results using Yang et al.’s method 
[55]. 
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In this study, the metrics under-separating, over-separating, and encroachment errors were 
adopted to quantitatively measure the RBCs separation ability of these RBCs phase image 
segmentation methods. Under-separating is defined as the number of non-separated RBCs for 
the connected or overlapped RBCs and over-separating signifies the number of RBC divisions 
within a single non-touching RBC. The encroachment error refers to the number of incorrect 
RBC separations. The measured values for under-separating, over-separating, and 
encroachment error for 33 RBCs phase images with 150 overlapped RBC regions and 
approximately 1000 RBCs are given in Table 2. RBCs separation evaluation curves for the 
four methods are also shown in Fig. 8. It is clear that the methods proposed in this paper have 
better separation ability that those by Yi et al. [26] and Yang et al. [55]. Moreover, the FCN-2 
method produced the best result in terms of RBC separation ability. This means that 
combining FCN with the marker-controlled watershed transform algorithm can further 
improve the segmentation performance. 

Table 2. RBCs Separation Evaluation 

 Under Split Over Split Encroachment Error 

FCN-1 32 2 2 

FCN-2 9 1 1 

Yi et al. [26] 56 2 4 
Yang et al. [55] 34 11 15 

The time consumed by the FCN fine-tuning process based on the Caffe deep learning 
framework was 58 minutes. The average computing time for RBC phase image 
prediction/segmentation was 11.36 seconds for FCN-1 and 12.96 seconds for FCN-2 on the 
20 RBCs phase images with size 700 × 700. In contrast, the average computing times on 700 
× 700 images using Yi et al.’s method [26] and Yang et al.’s method [55] were 4.67 seconds 
and 7.83 seconds, respectively. Thus, it is to be noted that our methods achieve superior 
segmentation accuracy and RBCs separation performance but sacrifice efficiency in terms of 
computing time. However, as computing power will continue to increase into the foreseeable 
future, this is not a major problem. 
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Fig. 8. RBCs separation evaluation results. 

6. Conclusions 
In this study, two models based on FCNs were developed and used for automated RBCs 
extraction in RBCs phase images numerically reconstructed from digital holograms obtained 
using off-axis DHM. In the first model, only fully convolutional networks are utilized for the 
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semantic segmentation of RBCs phase images, whereas the second model combines fully 
convolutional networks with the marker-controlled watershed transform algorithm for RBCs 
segmentation. The parameters of the FCNs were initialized using a VGG 16-layer net and 
fine-tuned by manually labeled RBCs phase images in the two models separately. 
Experimental results show that the two proposed approaches can automatically segment the 
red blood cells in RBCs phase images. However, connected and overlapped RBCs in RBCs 
phase images are better handled by the second proposed model. Comparison results reveal 
that our methods achieve better performance than two other proposed algorithms in terms of 
RBCs segmentation accuracy and RBCs separation ability for overlapped RBCs. All the 
individual methods in this paper are already existed whereas it is a total new idea to combine 
FCNs with marker-controlled watershed transform approach to separate connected RBCs. To 
the best of our knowledge, it is also the first work to apply deep learning algorithm to the 
digital holographic RBCs images. The proposed methods are useful for quantitatively 
analyzing red blood morphology and other features that enable diagnosis of RBC-related 
diseases, and can be used in a variety of cell identification approaches [56]. 
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