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Abstract: Collagen IV scaffolds assemble through an intricate pathway that begins intracellularly and

is completed extracellularly. Multiple intracellular enzymes act in concert to assemble collagen IV
protomers, the building blocks of collagen IV scaffolds. After being secreted from cells, protomers are

activated to initiate oligomerization, forming insoluble networks that are structurally reinforced with

covalent crosslinks. Within these networks, embedded binding sites along the length of the protomer

lead to the “decoration” of collagen IV triple helix with numerous functional molecules. We refer to
these networks as “smart” scaffolds, which as a component of the basement membrane enable the

development and function of multicellular tissues in all animal phyla. In this review, we present key

molecular mechanisms that drive the assembly of collagen IV smart scaffolds.
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Introduction

Type IV collagen is a unique component of the base-

ment membrane (BM) present in all animal

phyla.1–4 It is a member of the collagen superfamily

that comprises 28 different types in vertebrates.5–8

Unlike other vertebrate collagens, collagen IV occurs

only in the BM and contains up to six genetically

distinct a-chains designated a1(IV) to a6(IV). Three

helical polypeptide a-chains combine to form a colla-

gen IV protomer. For example, two a1 chains and

one a2 chain combine to form the a112 collagen IV
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protomer. Out of the many potential combinations,

the a-chains interact and assemble with a remark-

able specificity to form only three distinct protomers,

that is a112, a345, and a556.7 The a1(IV) and

a2(IV) chains were first to be described and thus

called “classical” chains. They are present in the BM

of all tissues, whereas the other four chains have

restricted tissue distribution during development.7

For example, the a3(IV), a4(IV), and a5(IV) chains

are present in the glomerular basement membrane

of the kidney and in the BM of lung, testis, and eye,

whereas the a5(IV) and a6(IV) chains are found in

the BM of skin, smooth muscle, and the kidney.9

Most mutations in COL4A1 and COL4A2, the genes

encoding a1(IV) or a2(IV), respectively, cause multi-

system disorders with heterogeneous pathogenic

mechanisms and often lead to embryonic lethal-

ity.10–14 Mutations in COL4A3, COL4A4, and

COL4A5, the genes encoding a3(IV), a4(IV), or a5(IV)

chains, respectively, lead to renal failure and deaf-

ness in adult patients with Alport’s syndrome.15,16

Once secreted into the extracellular space, the

triple-helical protomers self-associate to form distinct

networks providing a molecular scaffold for interac-

tions between other BM components such as laminin

networks, perlecans, and proteoglycans to form a

mature BM. At the cellular level, collagen IV scaffolds

are found underlying epithelial cells and surrounding

Schwann cells, myocytes, and adipocytes to name a

few examples (Fig. 1). The scaffolds provide a struc-

tural support for nearby cells, and they tether other

extracellular molecules, including growth factors,

laminins, proteoglycans, and nidogens. This complex,

embedded in the BM, possesses a diverse set of bio-

logic functions, including cell adhesion, migration,

development, tissue regeneration and wound healing,

immobilization of growth factors and enzymes, and in

molecular sieving.17–19 Such biologic activity places

great importance on understanding how collagen IV

smart scaffolds are assembled.

Structurally, collagen IV scaffolds are composed

of networked heterotrimeric collagen IV protomers

[Fig. 1(A)], containing a C-terminal trimer of NC1

domains, triple helix, and N-terminal 7S domain. Key

protomer junctions include head-to-head and tail-to-

tail interactions between collagen IV NC1 domains

Figure 1. The NC1 and 7S domains are the primary junction points in collagen IV network assembly in BMs. BMs interact

directly with most eukaryotic cell types enabling tissue functions. (A) Heterotrimeric collagen IV protomers are composed of

three a chain monomers. (B) In network assembly, four collagen IV protomers associate at their 7S domains (C) where as two

protomers self-associate at their NC1 domains. (D).
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and 7S domains, respectively [Fig. 1(B–D)]. Recent

discoveries have painted an elaborate picture of key

molecular mechanisms driving intracellular protomer

assembly; these include intracellular protomer assem-

bly, protomer secretion from cells, extracellular net-

work assembly, and novel covalent crosslinking. We

herein review major steps in building functional colla-

gen IV smart scaffolds.

Overview of Scaffold Assembly
Collagen IV scaffolds are synthesized through a path-

way of intracellular and extracellular mechanisms

where the intracellular steps include assembly of het-

erotrimeric protomers while further protomer assem-

bly into a three-dimensional (3D) scaffold occurs

extracellularly. Scaffold assembly involves multiple

enzymes collectively underscoring the resources

invested by the cell in the formation of collagen IV

scaffolds. Protomers form through the self-assembly

of three collagen IV a-chains. NC1 domains nucleate

protomer assembly9 through a mechanism that regu-

lates chain selection and triggers winding of the triple

helix toward the N-termini20 (Fig. 2). Protomer

assembly is also assisted by post-translational modifi-

cations and chaperone functions through the activities

of prolyl 3-hydroxylase 2 (P3H2) and heat shock pro-

tein 47 (HSP47), respectively.21–23 Upon secretion

assembled protomers adjoin through their NC1

domains and 7S domains, providing key junctions at

the protomer termini, while triple helices interact

through lateral interactions that form supercoils.24

Oligomerization at the NC1 domain is driven through

ionic Cl2 driven activation of a molecular switch

within individual protomers enabling binding of a

neighboring protomer (Fig. 2).20 The 7S domains

assemble into dodecameric structures (e.g., heterotri-

meric 7S domains from a complex of four independent

protomers). As a result of this NC1- and 7S-directed

oligomerization, newly secreted protomers are incor-

porated into nascent BMs.

Networks of collagen IV protomers are reinforced

with covalent crosslinks in the NC1 and 7S regions in

order to function as a scaffold. NC1 hexamers are

reinforced with sulfilimine crosslinks (-S5N-)

between Met93 and Hyl211 on opposing NC1 domains

[Fig. 1(D)],25 being formed by a heme peroxidase

embedded within BMs called peroxidasin

(PXDN).26,27 In parallel, 7S dodecamers are cross-

linked by lysyl oxidase-like 2 (LOXL2) within BMs.28

Loss of either sulfilimine crosslinks or the LOX2

crosslinks can disrupt collagen IV scaffolds, the

encompassing BMs, and nearby tissues.26,28,29 In

summary, scaffold assembly is a highly regulated

process involving specific molecular mechanisms. Key

stages of this assembly at the atomic and molecular

levels are presented below.

Stages of Scaffold Assembly

NC1 trimerization

NC1 trimerization is a seminal event in protomer

assembly that governs chain selection, registration,

and stoichiometry.9,20 Although there are six collagen

IV chains (a1–6) allowing for numerous potential

Figure 2. The NC1- and 7S-mediated assembly drive collagen IV scaffold assembly. Collagen IV monomers are transcribed

and assemble into protomers intracellularly. The NC1 and 7S domains facility assembly of protomers into higher order scaffold

structures extracellularly. The higher Cl2 concentration of the ECM is required for NC1-directed oligomerization.
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trimeric protomers, the chain composition of assem-

bled protomers is restricted to only three combina-

tions: a112, a345, and a556. NC1 trimers nucleate

assembly of N-terminal triple helices (Fig. 3), which

involves aligning the three a-chains to establish the

correct downstream binding sites in the protomer.30,31

This is achieved through specific recognition motifs

within NC1 domains that enable the self-selection of

the appropriate binding partner.

The mechanism of NC1 self-assembly involves

domain-swapping interactions where each domain

extends a b-hairpin motif into a complementary

docking site located within a groove on the adjoining

domain (Fig. 3).32,33 Among the six a-chains, three

variable regions are found within the NC1 domain.

Of these, variable region 3 (VR3) is located near the

b-hairpin motif of the adjoining NC1 domain and

appears to strongly influence side-to-side NC1 inter-

actions and chain selection.33 Extensive noncovalent

interactions are found among the VR3, b-hairpin

motif, and the rest of the NC1–NC1 interface. Spe-

cifically, the initial monomer–monomer association

of the protomer assembly is governed predominantly

by nonpolar interactions; chain specificity is con-

trolled by the b-hairpin motif and its docking part-

ner, the VR3 region (Fig. 3).32–34 For the a112 NC1

trimer, kinetic studies indicate that trimerization is

initiated by side-to-side binding between the a2 and

a1 NC1 domains. The a2 NC1 domain b-hairpin

loop binds to the a1 VR3 region forming a stronger

interaction compared to analogous interactions in

the trimer, that is a1 b-hairpin to a2 VR3 or a1

b-hairpin to a1 VR3. Thus, the a2 VR3 appears to

initiate formation of the a112 NC1 trimer.33

Sequence comparisons suggest the a4 and a6 chains

may nucleate trimerization of the a345 and a556

NC1 trimers, respectively.32

NC1-directed oligomerization
Collagen IV NC1 domains not only govern protomer

assembly within the cell, they also prevent aberrant

intracellular scaffold assembly, and direct oligomeriza-

tion in the extracellular space. Upon secretion from cells,

protomers are exposed to higher Cl2 concentrations (ca.

Figure 3. NC1 domains direct protomer assembly. Each collagen IV protomer is formed from three individual monomers. The

NC1 domain controls protomer stoichiometry, initiates triple helix formation, and mediates triple helical chain register. Within

each NC1 trimer, the monomers recognize one another through a domain-swapping mechanism in which b-hairpin motif of one

monomer is strand-swapped into a docking site formed by VR3 of its binding partner. Cartoon representation of the trimeriza-

tion domain viewed down the threefold rotation axis and rotated by 908 about the horizontal axis.
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12 mM inside muscle cells vs. 100 mM in serum)35 that

trigger NC1-directed oligomerization as an initial step of

network assembly. Cl2 is required for NC1 oligomeriza-

tion in vitro as well as the production of collagen IV net-

works in cell culture. The precise molecular “switch”

controlling NC1 oligomerization has been recently

described with atomic detail.20

Within the cell where free Cl2 levels are rela-

tively low, the side-chain charge of residue Arg76 is

balanced by forming an intramolecular salt-bridge

with residue Asp78 and to a lesser extent Glu40 [Fig.

4(A)]. The strong bias of sequentially proximal side

chains to form salt-bridges is well known36,37 in turn

decreasing conformational entropy by loop closure.38

The Arg76-Asp78 salt-bridge functionally blocks pro-

tomer oligomerization. Therefore, disruption of the

Arg76–Asp78 association is a requisite step preceding

protomer oligomerization. The stability of the intra-

molecular Arg76–Asp78 is modulated by the nonspe-

cific electrostatic screening properties of Cl2. Once a

protomer is excreted from the cell and exposed to the

extracellular Cl2 levels, the occupancy of the Arg76–

Asp78 salt-bridge is greatly reduced [Fig. 4(B)]. The

molecular switch allowing protomer oligomerization

at the NC1 domain is effectively turned on when a

chloride ion binds a nest motif (residues 75–79) within

each monomer NC1.34,39 Bound Cl2 functions in part

as a structural wedge blocking Arg76–Asp78 reassoci-

ation by coordinating their amide backbones, limiting

side chain conformations [Fig. 4(C)].

With the Arg76–Asp78 salt bridge broken, the

electrostatically rich protomer interface is free to

bind another protomer where residue Arg76 forms

the crux of six essential intermolecular salt-bridges

with Glu175 and Asn187. Residue Arg76 bridges the

protomer interface forming a bidentate side-on inter-

protomer interaction with Glu175. In addition Arg76

“networks” with Asn187 by hydrogen bonding in an

“end-on” configuration [Fig. 4(D)] forming what is

termed a “bridging-networked” salt-bridge.40 These

salt-bridges are rare in composition while novel in

application within NC1 domains. To date, this salt-

bridge motif is found only in three other structures:

Acyl-CoA oxidase (1IS2),41 a-L-arabinofuranosidase

(1WD3),42 and malate dehydrogenase43 (1BMD). In

contrast with in all three structures, the Glu-Arg

salt-bridge was “networked” by hydrogen-bonding an

intradomain Asn side-chain, whereas the “bridging”

functionality is exclusive to the collagen IV NC1

domain. In addition to the salt-bridge, the Cl2 ion

can form 6 additional intermolecular electrostatic

interactions directly with Arg179 to further stabilize

the protomer–protomer interface [Fig. 4(E)]. In total

six salt-bridges and six electrostatic interactions are

dependent on Cl2 binding.

Sulfilimine crosslinking by PXDN

NC1 hexamers are critical junctures within collagen

IV scaffolds and sulfilimine crosslinks are key to

their structural integrity. Following NC1-directed

Figure 4. Cl2 triggers a molecular switch enabling NC1-directed oligomerization. In the absence of Cl2, Arg76 forms intramolecular

salt-bridge with Asp78 and/or Glu40 (A). Extracellular Cl2 disrupts Arg76-Asp78 salt bridge by electrostatic screening (B). Cl2 binds

each monomer by coordination with the Arg76 backbone amide, thus orienting the side toward an opposing NC1 timer (C).

Reorientation of the Arg76 side chain allows for two protomers to bind one another through a Arg76-Glu175:Asn187 salt-bridge (D).

Each bound Cl2 ion can also coordinate Arg179 of the opposing protomer for a total up to 12 Cl2 mediated interactions per hexamer (E).
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oligomerization, NC1 domains are covalently bound

across the protomer interface at Met93 and Hyl211

with novel sulfilimine crosslinks (-S5N-) (Fig. 5).25

To date, this is the only known occurrence of sulfili-

mine bonds within native biomolecules. Sulfilimine

crosslinks add critical structural rigidity to the colla-

gen IV scaffold, enabling the network to withstand

physiologic tensile forces within BMs. In contrast,

loss of sulfilimine crosslinks display altered BM and

tissue morphology, aberrant embryogenesis, and

lethality in Drosophila.26,29

Sulfilimine formation requires the concerted

activity of collagen IV, Br2, PXDN, and oxidant mak-

ing each component necessary for BM assembly and

tissue development. PXDN is an animal heme perox-

idase embedded within BMs near its collagen IV

substrate, which locally generates hypohalous acids

(Fig. 5) similar to other heme peroxidases, for exam-

ple eosinophil peroxidase. PXDN uses hydrogen per-

oxidase to catalyze the conversion of Br2 into

hypobromous acid (HOBr), in turn serving as the

oxidative intermediate of sulfilimine crosslink-

ing.26,29 The requirement for Br2 during sulfilimine

formation derives from the selectivity of the bromo-

sulfonium reaction intermediate. The chemical char-

acter of bromine uniquely creates an energetically

favorable reaction between the S-Br intermediate

and Hyl211. The S-Br molecular orbital structure

facilitates selective reactivity with an amine nucleo-

phile to form the crosslink. PXDN harnesses this

HOBr-based selectivity during crosslinking while

apparently avoiding oxidative damage to the BM.29

7S crosslinking by LOX-L2

Elegant rotary shadowing-electron microscopy stud-

ies on the supramolecular organization of collagen

IV established that four adjoining triple-helical pro-

tomers associate in a parallel and anti-parallel

fashion through their amino-termini forming a

110 nm overlap known as the 7S dodecamer (Fig.

6).44 The assembly process is described as a sponta-

neous process in which the 7S domains self-associate

noncovalently into dodecamers. This event is fol-

lowed by the formation of disulfide and nondisulfide

crosslinks that stabilize the interaction between the

four molecules conferring the 7S dodecamer its

unusual resistance to proteolytic enzymes such as

collagenase, which greatly facilitates its purification from

different tissues and biochemical characterization.45

As each protomer is a heterotrimeric molecule

composed of two a1-like chains and one a2 chain, the

7S dodecamer, a tetramer of trimers, is composed of

eight a1-like and 4 a2-like protomers. Protein

sequencing studies revealed that human 7S domains

of a1(IV) and a2(IV) are comprised of 145 and 158

amino acids, respectively.46–48 The sequence is pre-

dominantly collagenous in nature and shares many

features of the triple helical domain including a large

number of post-translationally modified amino acid

residues such as hydroxylated proline and lysine resi-

dues as well as O-glycosylated hydroxylysine resi-

dues.49 The sequence of the 7S domain begins with a

noncollagenous domain comprised of about 15 resi-

dues containing four conserved cysteine residues,

which are thought to spontaneously form intra- and

interprotomer disulfide crosslinks upon 7S dodecamer

assembly.47,48 Furthermore, antiparallel protomers

may form interprotomer disulfides between one of the

four N-terminal cysteine residues (likely Cys14) with

an unusual cysteine residue located at position 98

(Cys98) in an interruption of the triple helical sequence

on the opposite interacting protomer.47 Cys98 is pre-

sent in all six a-chains of collagen IV and neighbors a

conserved asparagine residue (Asn99) that serves as

an attachment site for a N-linked carbohydrate moiety

that appears to play a role in 7S alignment.50

Figure 5. Proposed chemical mechanism of sulfilimine formation by HOBr. BM-embedded PXDN catalyzes the conversion of

Br2 and oxidant into HOBr within the local environment of collagen IV NC1 hexamers. Formation of sulfilimine crosslinks is

proposed to proceed through the initial formation of a bromosulfonium ion (Br-S1) at Met93, which reacts with the E-NH2 on

Hyl211. This triggers debromination of Met93 and deprotonation of Hyl211 to yield the sulfilimine crosslink.
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Within the 7S dodecamer nondisulfide crosslinks

are formed by condensation of lysyl residues oxi-

dized by LOXL2.28 LOXL2 is a copper-dependent

amine oxidase enzyme that catalyzes the oxidative

deamination of lysine and/or hydroxylysine residues

in collagens and elastin. Although it belongs to a

family of lysyl oxidases composed by five members

(LOX, LOXL1–4), LOXL2 is the only one associated

with collagen IV crosslinking and BM structures in

different tissues.51 Emphasizing the importance of

LOXL2-catalyzed crosslinking in the function and

maintenance of collagen IV scaffolds, knockdown of

LOXL2 perturbed collagen IV network assembly and

decreased endothelial cell tube formation in an in

vitro model system of tubulogenesis.52 Notably,

LOXL2 crosslinking activity is restricted to the anti-

parallel molecules in the N-terminus, whereas the

NC1 domains sulfilimine bonds are catalyzed by

PXDN.26 Thus, LOXL2 is now considered a member

of the molecular machinery required for collagen IV

scaffold biosynthesis.

LOXL2-catalyzed crosslinking of the 7S dodeca-

mer likely occurs on the outside of cells once proto-

mers are assembled and deposited as supramolecular

scaffolds. LOXL2 catalyzes the formation of reactive

aldehyde lysine (allysine), which forms crosslinks by

condensing with other allysine (aldol condensation) or

with the E-amino group of lysine/hydroxylysine resi-

dues through the formation of a Schiff base (Fig. 6).53

Experiments using 2,4-dinitrophenylhydrazine

showed the presence of carbonyl-containing hydroxy-

lysine-derived divalent crosslinks such as dihydroxy-

lysinonorleucine (DHLNL) in 7S dodecamers

incubated with recombinant LOXL2.28 In fibrillar col-

lagens these divalent crosslinks are the precursors to

more mature complex crosslinks such as pyrroles and

pyridinolines.54 However, these structures have not

been identified in hydrolysates of BMs using standard

crosslink analysis.55 Experiments using tritiated

sodium borohydride to monitor levels of reducible

crosslinks in BMs established that DHLNL crosslinks

reach a high level in tissues of young animals, but as

Figure 6. LOXL2 mediated crosslinking of 7S dodecamer. The assembly of four triple helical protomers occurs in the extracellular

space. 7S domains contain intrinsic sequences that drive their assembly into a tetramer of trimers that is dodecameric. (A) The 7S

dodecamer is stabilized by intramolecular (not shown) and intermolecular (black bracket) disulfide crosslinks. (B) As collagen IV

networks are deposited into the BM, proteolytically activated LOXL268 promotes the formation of lysyl-derived crosslinks in the 7S

dodecamer (C) by catalysis of the oxidative deamination of the E-amino group of lysyl residues (red sticks), generating allysine (*).

Allysines spontaneously form crosslinks (red brackets) with neighboring lysyl or hydroxylysyl residues. (D) As hydroxylysine is abun-

dant in collagen IV, hydroxylysyl-derived crosslinks such as hydroxylysinoketonorleucine is likely to be formed in 7S dodecamer.

The occurrence of intra- and intermolecular crosslinks in the 7S dodecamer, including disulfides and LOXL2-mediated hydroxylysi-

noketonorleucine, provides collagen IV scaffolds with the required strength to stabilize BMs.
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tissues age they decline progressively to undetectable

levels.55 Furthermore, as the amount of divalent

crosslinks alone is too low to explain the number of

crosslinked 7S subunits, it is believed that multiva-

lent lysyl-derived crosslinks of unknown chemical

structures, different to pyrroles and pyridinolines

found in fibrillar collagens, are formed in BM collagen

IV. Thus, even though LOXL2 mediates the initial for-

mation of divalent hydroxylysine-derived crosslinks

in the 7S dodecamer in BMs, these seem to follow a

different maturation pathway.

The supramolecular organization of protomers

and registration of 7S sequences likely determines

the location of lysyl-derived crosslinks. The available

3D models of the 7S dodecamer based on rotary

shadowing-electron microscopy and alignment of

amino acidic sequences suggested the most likely

location of disulfide and lysyl derived crosslinks.

Protomers interacting in a parallel manner have

multiple possibilities to form lysyl-lysine crosslinks.

For an anti-parallel interaction between the 7S

domains of two a1(IV) chains, Glanville proposed

the formation of intermolecular lysyl-lysine crosslink

between Lys11 and Lys102 pairs.47

Identification of the location of disulfide and

lysyl-derived crosslink sites may be instrumental for

the construction of an accurate 3D model of the 7S

dodecamer. X-ray crystallography and mass spectrom-

etry played an important role in the identification of

sulfilimine crosslinks reinforcing the trimer–trimer

interface in NC1 hexamers. Unlike NC1 domain

sequences, however, 7S polypeptides are highly post-

translationally modified and heterogeneous, making

determination of the 3D crystal structure and mass

spectrometry analyses challenging. As amino acid

sequence information alone is not enough for the iden-

tification of lysyl-derived crosslinks by mass spec-

trometry, extensive mass spectrometry analyses,

including different types of gas-phase fragmentation

to overcome the anomalous behavior of hydroxylated

and glycosylated collagenous peptides, were required

to generate post translational modification (PTM)

maps of the 7S domains. Completion of these PTM

maps will facilitate mass spectrometry identification

and localization of lysyl-derived crosslinks, which will

allow the generation of a more accurate 3D molecular

model to use as a tool for the study of the mechanism

of assembly of the 7S dodecamer.

Figure 7. Collagen IV functions as a smart scaffold. Binding motifs are embedded along the length of the triple helix for binding

integrins, and various macromolecules. This protein complex influences cell adhesion, migration, development, tissue regeneration,

wound healing, and plays a role in molecular sieving.
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Collagen IV Scaffolds
As a core structural backbone of BMs, collagen IV

scaffolds provide structural support and molecular

organization to the matrix. Collagen IV protomers

possess multiple binding sites, including sites for

laminin networks, bone morphogenic protein (BMP),

nidogen, heparin sulfate, and laminins.31 Within

BMs, this results in the “decoration” of collagen IV

scaffolds with a diverse spectrum of functional

molecules (Fig. 7). As shown with BMP signaling

in Drosophila, collagen IV scaffolds are key for

immobilizing growth factors and maintaining growth

factor gradients.56–58

Scaffold assembly is critical to the functionality

of collagen IV. Disruption of the assembly process,

either intracellularly or extracellularly, can alter the

function of these scaffolds with potentially severe

biologic effects. For example, embryonic lethality is

reported following genetic loss of collagen IV in multi-

ple species59–61 or even inhibition of sulfilimine cross-

linking through PXDN mutation or Br-deficiency in

Drosophila.1,26,29 Further, collagen IV scaffolds act as

ligands for cellular receptors, by binding integrins

(a1b1 and a2b1) and discoidin domain receptor 1

(DDR1).7,30,62,63 Interestingly, both types of receptors

interact with triple-helical collagen IV protomers but

not with the isolated a-chains, demonstrating the

importance of the triple helix as a ligand.30,64

At the tissue level, collagen IV scaffolds are key

players in tissue sculpting such as its role as a

“molecular corset” during Drosophila egg chamber

elongation.65,66 Moreover, removal of collagen IV

networks through enzymatic digestion results in

severe loss of tissue architecture in Drosophila

wing.67 Thus, maintaining the structural integrity of

smart scaffolds is critical tissue functionality.

Conclusion

In summary, the assembly of collagen IV scaffolds has

emerged as an intricately controlled pathway occur-

ring in both the intracellular and the extracellular

environments. Investigations into the scaffold assem-

bly process have unveiled remarkable molecular and

enzymatic mechanisms. The intracellular assembly

of collagen IV protomers, their secretion into the

extracellular space, and subsequent assembly into

networks are dependent on chloride cofactors, bro-

mide, LOXL2, and PXDN enzymes. The assembled

networks harbor multiple binding sites that spatially

and temporally organization extracellular molecules.

We refer to these networks as “smart” scaffolds, which

as a component of the BM enable the development and

function of multicellular tissues in all animal phyla.
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pated in the beaming of science kits through Skype,

and with undergraduates and research fellows part-

nering with classroom teachers. One hundred and

ten high school students (the Aspirnauts) from dis-

advantaged backgrounds in 13 states across America

have participated in a 6-week discovery science

experience as summer research interns at Vanderbilt

University Medical Center. Ninety undergraduate

students, from disadvantaged backgrounds and from

19 colleges and universities across America, have

participated in an 8-week summer discovery science

experience. These students contributed to the advance-

ment of collagen IV biology and chemistry, in parallel

their research experience has provided guidance for

their career development.

Finally, we express our deep appreciation to Linda

Langley and Doug Strickland for their contributions

and inspiration in our pursuit to understand the

molecular basis of Goodpasture’s syndrome and

Alport syndrome.
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