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Abstract: A key concept in template-based modeling (TBM) is the high correlation between sequence
and structural divergence, with the practical consequence that homologous proteins that are similar

at the sequence level will also be similar at the structural level. However, conformational diversity of

the native state will reduce the correlation between structural and sequence divergence, because
structural variation can appear without sequence diversity. In this work, we explore the impact that

conformational diversity has on the relationship between structural and sequence divergence. We

find that the extent of conformational diversity can be as high as the maximum structural divergence
among families. Also, as expected, conformational diversity impairs the well-established correlation

between sequence and structural divergence, which is nosier than previously suggested. However,

we found that this noise can be resolved using a priori information coming from the structure-function
relationship. We show that protein families with low conformational diversity show a well-correlated

relationship between sequence and structural divergence, which is severely reduced in proteins with

larger conformational diversity. This lack of correlation could impair TBM results in highly dynamical
proteins. Finally, we also find that the presence of order/disorder can provide useful beforehand

information for better TBM performance.

Keywords: protein structure; homology modeling; protein dynamics; protein sequence; conformational

diversity

Introduction

Template-based modeling (TBM) is the most reliable,

accurate, and fastest approach for protein structure

prediction.1–3 TBM includes both the threading tech-

niques and comparative modeling.4 The accumulation

of experimental structures in the Protein Data Bank

(PDB) has increased the fold-space coverage,5 which

in combination with the steady enhancement of

template-detection techniques over the last several

years,2 allows prediction of three-dimensional (3D)
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structures in at least 50% of the human proteome,

and almost 70% for some prokaryotic proteomes

using current TBM methods.6,7 TBM relies on the

fact that homologous proteins, with detectable

sequence similarity, possess similar 3D structures.

Pioneering work by Chothia and Lesk found that

structural divergence (SD) increases with evolution-

ary distance, measured as percent identity, following

a non-linear relationship.8 Very similar sequences

show modest structural differences, which suddenly

increase when sequence identity drops below 30%.

This trend was later confirmed by others;9–11 how-

ever, in recent studies a linear correlation between

sequence and SD has been found.12–14

Using the relationship between sequence iden-

tity and structural distance, the first step in TBM

involves the search for an adequate template.3 In

view of the above-mentioned studies on structure-

sequence relationships, the better template will cer-

tainly be one with the maximum sequence similarity

to the target sequence in the known structural data-

base. Evolutionary distances between target and

template, the presence of ligands, and resolution are

also useful guidelines for template selection.4 This

step is followed by alignment between the template

and target sequence to detect conserved and variable

regions. The final step of TBM is refinement

through a combination of methods to render a 3D

model of the target sequence. Using sequence iden-

tity as a measure of the distance between target and

template sequences, it was found that structural

models differ 1–2 Å C-alpha root mean squared

deviation (RMSD) from a selected native structure

for templates with more than 50% sequence identity.

In the case of templates between 30 and 50%

identity, the distance between a model and a native

structure is about 4 Å RMSD, while for templates

below 30% identity, template-free methods outper-

form TBM techniques.1

In spite of the outstanding contributions of TBM

approaches to a great variety of fields,15 it is still diffi-

cult to obtain high quality 3D models. Errors derived

from target and template alignments,16 along with

refinement of the initial model to obtain more native-

like models,4 are among the major problems to solve in

order to improve 3D model quality.3 However, there is

still a conceptual issue to face in order to improve TBM

predictions. This issue is related to the nature of the

“native state” of proteins, which are composed of differ-

ent conformers in equilibrium, a key concept for under-

standing protein function.17 In this sense, TBM

techniques should progress toward a new step in its

development to predict the “native state of proteins,”

and not simply to “predict the structure” (in terms of

the alpha carbon scaffold) of a target sequence. Several

authors have previously pointed out the impact of con-

formational diversity on TBM approaches,18 primarily

because a given template (with a determined distance

to the target sequence) can have different conformers

sampling a large conformational space.13,19 A wide

range of structural differences among conformers can

be observed by comparing structures of the same pro-

tein obtained under different crystallization conditions.

These differences result from the relative movements

of large domains,20 secondary and tertiary element

rearrangements,21 and loop movements,22 which over-

all can produce a conformational diversity up to 4–5 Å

of RMSD.23–26 Even up to 15–20 Å can be observed,

depending on the structural alignment algorithm used

to calculate the RMSD.18 Taking into account this

extent of conformational diversity, performance of

TBM methods should be re-evaluated. Blind evaluation

protocols use only one conformation of the selected

templates, and the performance of the resulting model

depends highly on that selection.27

Underneath the effect of conformational diversity

in TBM techniques, the more complex problem of

solving how structural information is codified in the

protein primary structure remains unattended.14 The

so-called local model maintains that a few positions in

the protein define the global structural arrangement.

Non-linear behavior in the structure-sequence rela-

tionship supports this hypothesis due to the observa-

tion that a large amount of sequence variation is

required in order to dramatically change the structure

(mostly below 20–25% sequence identity). On the con-

trary, the global model supports the idea that several

positions spread along the protein define the struc-

tural arrangement. A linear relationship between

structural change and sequence divergence will sup-

port this model by showing proportional change

between those variables. However, considering that a

single sequence can adopt several conformations,

makes it even more complicated to predict how non-

synonymous substitutions correlate with SD.

As a key concept to be taken into account in TBM

approaches, here we explore the impact of conforma-

tional diversity on the relationship between structural

and sequence divergence. To this end, a curated data

set of 2024 proteins with experimentally known con-

formational diversity, clustered in 524 homologous

families (>30% local identity and 90% coverage).

These proteins cover the four main classes of the

CATH database28 with 17% mainly alpha structures,

25% mainly beta, 57% alpha beta, and 1% proteins

with few secondary structures. These homologous

families were analyzed to derive structural and

sequence similarities between their members. We

found that the use of a highly redundant sequence

dataset (i.e., considering the conformational diversity)

blurs the well-established relationship between

sequence and structure divergence more than shown

in previous studies. However, we also found that this

trend could be solved using a priori information from

the structure-function relationship. We show that

families containing proteins with low conformational
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diversity, which we call “rigid” proteins, show a well-

correlated behavior of sequence and SD; on the con-

trary, this correlation is severely reduced in protein

families with larger conformational diversity. This

lack of correlation could impair TBM results in highly

dynamic proteins. Finally, we found that the presence

of order/disorder regions could be useful prior infor-

mation resulting in a better TBM performance.

Results

Protein conformational diversity can be as

high as the SD in family evolution
We performed an “all against all” structural align-

ment within each family using MAMMOTH,29 against

our dataset of 524 protein families containing 2024

proteins with known conformational diversity, total-

ling 37,755 structures (at least five conformers of each

protein, with approximately 19 conformers in aver-

age) extracted from the CoDNaS database.23 For each

pair of homologous proteins within each family, the

percent sequence identity was calculated, aligning

each pair of sequences with the Needleman-Wunch

algorithm.30 Since each protein is represented by an

ensemble of conformers, the maximum RMSD derived

from an “all versus all” comparison of conformers,

belonging to the homologous proteins being compared,

is called maximum SD (hereafter MSD for simplicity).

When this procedure is repeated between the pairs of

conformers (different structures of the same protein,

see Methods section), the maximum conformational

diversity (hereafter CD for simplicity) is obtained,

measured as the maximum RMSD of a given protein

(see schematic protocol in Fig. S1, Supporting Infor-

mation). In Figure S2, the plot contains all compari-

sons between conformers for each pair of homologous

protein being studied, containing approximately 3.5 3

106 dots. Figure 1(A) shows the relationship between

the MSD (green points) versus percent sequence iden-

tity. Figure 1(A) also shows the CD values (red dots).

Green dots show the typical behavior previously found

between sequence and structure divergence8,14 with a

steep decrease of structural similarity at low identity

percent (below approximately 30%). However, our

dataset also shows high SD at very high sequence sim-

ilarities, as a consequence of proteins with conforma-

tional diversity as high as the SD of the family.

The distribution of the CD shows [Fig. 1(B)]

mostly moderated RMSD values, with an average of 1

Å. Nevertheless, it also shows high positive skewness,

toward larger RMSD values. This is in concordance

with previous work.18 The 90th percentile of the ana-

lyzed proteins show a CD below 2 Å of RMSD, and

then 10% of the proteins can exist in a conformational

space as large as the MSD, coming from comparison of

remote homologous proteins (approximately 3 Å). This

is an interesting result that indicates that a given

sequence can potentially exist in a conformational

space as big as the SD that arose from the accumula-

tion of substitutions, namely the evolutionary process.

In the light of the conformational diversity, it is easy

to understand that closely homologous proteins (sup-

pose above 80% sequence identity) can have either

high or low RMSD values when superposing their

structures, depending on the particular conformers

being compared. So, conformational diversity can lead

to large RMSD values between proteins over short

evolutionary time periods, instead of reaching these

RMSD values through the long process of accumula-

tion of sequence mutations. Besides RMSD, two other

measures of SD were estimated. The fraction of

unconserved secondary structure (SS) and the relative

solvent accessibility category (RSA) (see Methods sec-

tion) are shown in Figures S3 and S4, respectively. It

is possible to see that both parameters follow the

general trend observed in Figure 1(A) for the RMSD.

Figure 1. Maximum RMSD (MSD and CD) versus sequence percent identity. Points refer to the maximum RMSD obtained

from an all versus all comparison between structures from two homologous proteins (MSD), or from the same protein (CD). (A)

Green dots: comparisons between homologous protein pairs. Red dots: comparison between conformers of the same protein.

(B) Distributions of the maximum RMSD between two homologous proteins (green) and between conformers of the same

protein (red).
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Again, it is interesting to observe the high dispersion

of RSA and secondary structural variation at high

values of sequence identity.

The other important consequence of this finding

is that the correlation between sequence and SD is

weaker than stated in previous works.12–14 In other

words, due to the CD, a given sequence can adopt

different conformations, so the structural change

due to non-synonymous substitutions in a divergent

evolution process will make the relationship between

sequence and structure noisier. In fact, the distribu-

tion of the MSD [green dots in Fig. 1(A)] and sequence

identity, have a Spearman’s rank correlation rho of

20.52. The relationship between sequence and

structure will be visible in light of the conformational

diversity, as explained below.

Template selection and structural diversity
As mentioned before, TMB approaches require the

use of a protein with known structure as the tem-

plate. This identification can be performed using a

broad variety of techniques with different sensitivi-

ties.3,31,32 A key point in this step is selection of the

best template, which is based upon the commonly

used relationship between structural and sequence

divergence,8 and the one maximizing both coverage

and percent sequence identity against the target.33

However, as we can see from Figure 1, this criterion

is not as simple as previously stablished. In Figure

2, we show the MSD distribution among bins of 10%

sequence identity between pairs of homologous

proteins. It is possible to observe the great variation

in RMSD for each particular bin. More importantly,

the maximum RMSD value is almost equal for all

the considered bins of percent identity (mean 5 3.54

Å and standard deviation 5 0.23 Å). Therefore,

template selection is not as straightforward as just

selecting a structure in a given identity bin, because

it is not known how those structures belong to

the conformational ensemble of the sequence to be

modeled.27

However, the distributions per bin shown in Fig-

ure 2 could be influenced by the presence of a given

protein family with exceptionally large or small

structural diversity. For that reason, in Figure 3 we

show the average MSD per protein family in a bin of

sequence identity. The averaged RMSD values are

between 1.34 and 2.10 Å for the different bins, with

standard deviations between 0.19 and 0.29, showing

that the dispersion is not related to the sequence

identity. In Figure S5, we show that the average

MSD does not depend on how populated (amount of

homologous proteins) the corresponding family is.

Taking these results into account, the selection

of an adequate template will depend heavily on the

target protein, whether it has a high or a small con-

formational diversity. Which then will be the general

recommendations for selecting a good template? The

relationship between SD and CD will give us a clue.

How does SD correlate with conformational

diversity?
In a simple evolutionary scenario of the evolution of a

protein family, we can consider that CD is a conserved

trait among its members and that the common ances-

tor of the family shows low conformational diversity at

the backbone level. If all the conformers belonging to

this common ancestor are structurally aligned, the

resulting RMSD values would be about 0.5 Å (a value

equivalent to the crystallographic error), meaning that

the conformer population is almost identical. It is

important to say that these conformers are structurally

equivalent at the backbone level, as the RMSD is mea-

sured using the alpha carbons, but conformational dif-

ferences at the residue level cannot be discarded.34,35

Considering that this family has a selective pressure to

maintain its conformational diversity in most of their

proteins (i.e., due to functional restrictions36), most of

the SD of this family would have originated by the

accumulation of nonsynonymous substitutions. On the

Figure 2. MSD distributions over all homologous protein

pairs by bins of 10% sequence identity. Above and below

the median (horizontal line inside each box) are the first and

third quartiles, respectively. The notches display the median

absolute deviation.

Figure 3. MSD distributions over bins of 10% sequence

identity per family. Each dot represents the average MSD for

all homologous protein pairs per family in a given bin of

percent identity. It is possible to see a great dispersion of SD

even at low percent identity and that the different families

spread approximately 2.9 Å RMSD in average per bin.
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contrary, in the case that a family originated with a

common ancestor showing large conformational diver-

sity (i.e., a RMSD of approximately 2 Å), the process of

divergence due to the accumulation of nonsynonymous

substitutions will certainly increase the available rep-

ertory of conformations and eventually increase the

SD. We have found that the dispersion of the CD extent

is rather low, possibly indicating that the CD can be a

trait conserved within families (see Fig. S6). However,

more work needs to be done to address the question of

how the conservation of the conformational diversity

inside a protein family is.

It is our central hypothesis that the maximum

conformational diversity of a protein will correlate

with the MSD that can be reached by that family. To

probe this hypothesis, the average of the CD and the

MSD per family was calculated, and a Pearson’s

correlation coefficient of 0.75 (P value <0.01) was

observed (see Fig. 4).

As MSD could change proportionally with the

sequence divergence of each family, in Figure S7 we

show that the association is independent of the

sequence divergence found in each family.

In the light of the results shown in Figure 4, we

study the relationship between structural and sequence

divergence by splitting the dataset into homologous pro-

tein pairs with large and small conformational diversity

(�0.5 and <0.5 Å RMSD, respectively, obtained as the

average of CD between each pair of homologous pro-

teins). This threshold is near the crystallographic error

(approximately 0.5 Å37). It is interesting to note that the

Spearman’s rank correlation rho between structure

(MSD) and sequence divergence (sequence identity per-

cent) is 20.83 (with a significant P value <0.01) in the

subset of protein families with small conformational

diversity per homologous protein pair, and 20.51 (P

value <0.01) in the subset of protein families with large

conformational diversity (see Fig. 5). These results indi-

cate that the known correlation between sequence and

structure8 is strong in the subset of protein families

with low conformational diversity. In these families, the

biological function can be achieved with conformers

almost identical at the backbone level. That will make

the relationship between sequence and structure

straightforward, namely, the change in structure is pro-

portional to the observed change at the sequence level.

In the opposite cases, for the subset of families with high

conformational diversity, two scenarios are possible:

either the biological function is less tight with a single

conformation, or inversely, the function requires high

plasticity of the structure. In this sense, the subset with

conformational diversity below 0.5 Å RMSD, sequence

versus structure divergence has a linear and exponen-

tial fit with R2 values of 0.54 6 0.15 and 0.66 6 0.12,

respectively. While for the subset with conformational

diversity above 0.5 Å, RMSD has a linear and exponen-

tial fit with R2 values of 0.23 6 0.21 and 0.29 6 0.18,

respectively. These R2 values are the mean obtained for

testing datasets in a fivefold cross validation. We also

found that splitting the distribution in bins of CD, these

correlation coefficients change monotonically as the CD

increases (Table S1). RMSD seems to be more sensitive

to CD change than other parameters showed above

(unconserved relative solvent accessibility category

(RSA) and secondary structure) (Table S1).

Accordingly to these results, TBM approaches

will be much more reliable in protein families with

low conformational diversity because the expected

change in structure is proportional to the sequence

divergence. In these families, where selecting the

template as the one showing the highest sequence

similarity and coverage, will increase the reliability

of TBM. As we can see in Figure 5(A), both linear

and exponential regressions give a RMSD approxi-

mately 0.45 for 100% sequence identity. On the con-

trary, in families with a larger CD, that relationship

loses predictability due to the observed structural

variability for the same sequence (approximately 1.3

RMSD for both linear and exponential regressions

at 100% sequence identity). Differences between lin-

ear and exponential fitness for the sets below and

above 0.5 Å RMSD are meaningless because they

could be associated with different causes (such as

intrafamily variations or RMSD non-linear depen-

dence with protein length among others). However,

regression intercepts are informative about structural

similarity dispersion at high sequence identities.

How can we turn these findings into practical

advice for use in TBM methods? It is very difficult

to know the conformational diversity of the target

sequence to be modeled by TBM protocols before

starting. However, our previous work shows that

proteins with disordered regions have larger confor-

mational diversity compared with ordered proteins,

on average.38 In the section “How does protein disor-

der correlate with SD?,” we address this question:

How is protein disorder related to SD?

Figure 4. Relationship between MSD and CD. Each dot

represents the average RMSD values for the MSD and

the CD in a specific family. The data show a Pearson’s

correlation coefficient of 0.75.

Monzon et al. PROTEIN SCIENCE VOL 26:2195—2206 2199



How does protein disorder correlate with SD?
Disordered regions in proteins are known to be

involved in several important biological func-

tions.39,40 Intrinsically disordered regions (IDRs) or

proteins (IDPs) are characterized by their high flexi-

bility and mobility, displayed as missing regions in

crystallographic structures.41 It is difficult to esti-

mate the extent of flexibility in the disordered

regions, but it is possible to measure conformational

diversity in the ordered regions of these proteins

using the RMSD between different conformers, for

example.42 We found that proteins containing IDRs

have larger conformational diversity than those with

full ordered structures, when disorder-order transi-

tions take place between protein conformations.38

Furthermore, we recently found that proteins with

IDRs can be split into two groups with different

structure-function relationships, depending on how

structure-based features change among the available

conformer population for each protein.43 Therefore,

it is interesting to ask if the structure-sequence rela-

tionship could be also separated into two groups,

mainly proteins with and without IDRs, following

the above-mentioned results using CD. We find that

pairs of homologous proteins containing at least one

disordered region (in any of their available conform-

ers) show higher values of MSD than the population

of ordered homologous proteins (see Fig. 6). These

distributions were found to be statistically different

using the Wilcoxon and Kolmogorov Smirnov test

with P value <0.01.

Since homologous pairs containing disordered

regions have higher MSDs, we expect that the corre-

lation between structure and identity percent would

be worse, as shown above (Fig. 5). We found that the

Spearman’s rank correlation rho is 20.36 and 20.58

for disordered and ordered pairs of homologous

proteins, respectively. These results show that the

presence of disordered regions in the template and/

or in the target sequence could predict a large CD

and could make the relationship between sequence

and structure less predictable. Although this high

correlation value between full ordered proteins and

MSD, using both linear and exponential fits still

produces high MSD dispersions at high percent

identity (Fig. S8). However, we know that there are

few full-ordered protein families with very large

CDs. These proteins have been extensively studied

thanks to the pioneering work of Chothia and cow-

orkers20,21,44 and represent less than approximately

20% of our dataset.43 Removing these highly

dynamic proteins with non-disordered regions, we

obtain the relationship shown in Figure 7 where the

Spearman’s rank correlation rho is 20.71 for the

ordered set of pairs.

Based on these correlation coefficients, we can

say that the presence of disorder regions alone has a

moderate capacity for predicting the presence of

noise between structure and sequence variables.

Moreover, these values were obtained considering

that most ordered proteins do not have CD, or at

Figure 5. MSD versus percent of sequence identity for each homologous protein pair. The lineal (blue line) and exponential

(red line) regressions are shown for two sets. (A) Homologous protein pairs with an average conformational diversity less or

equal than 0.5 Å. The linear and exponential fitted expressions are RMSD5 2:354 2 0:019 SEQID and RMSD5

e1:06e20:017 SEQID, respectively. (B) Homologous protein pairs with an average conformational diversity greater than 0.5 Å. The

linear and exponential fitted expressions are RMSD5 2:823 2 0:015 SEQID and RMSD5 e1:121e20:010 SEQID, respectively.

Figure 6. MSD distributions in homologous protein pairs.

The disordered set (4439 homologous protein pairs) has

proteins with at least one conformer with IDRs, while the

ordered set (5034 homologous protein pairs) has no proteins

with IDRs, in any of the conformers.
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least show moderate CD, as we have previously

described.43 Taking into account these consider-

ations, and the easy and reliable prediction capacity

for disordered regions in proteins, this information

could be still used as guidance in TBM approaches.

Discussion

The study of structure-sequence relationships embra-

ces a foundational concept for several areas focused on

the study of proteins. Biological function prediction,45

protein evolution,46 structural proteomics,47 and

homology modeling3 are just a few examples of the

broad and active research areas that take advantage

of that relationship. Among all the situations that

structure-sequence could adopt, we have focused on

how the presence of conformational diversity in pro-

teins could influence the relationship between

sequence and structural change and therefore affect

TBM approaches. A central point was derived early by

Chothia and Lesk, showing that the success of 3D pre-

diction will depend on the extent of the target

sequence identity with the corresponding template.8

Basically, the behavior between RMSD and percent

identity established a relationship in which structural

similarity increased as sequence similarity increased.

Their results, and conclusions, have been verified by

numerous studies.9,10,12,13,48–50 These studies found

moderate-to-high correlation coefficients between dif-

ferent parameters that were proportional to struc-

tural and sequence similarity, that is, RMSD and

percent identity,10,50 evolutionary distance,13 and sta-

tistical significance of RMSD.14 They also found linear

and nonlinear behavior, and an invariably low struc-

tural variation, at 100% identity (approximately 0.5

Å). Departure from linear fitness has been explained

as being derived from errors in the alignments (at

high and low sequence similarity), use of redundant

datasets, or by ignoring the multiple substitutions per

site during evolution.13,14,48

In this work, we found that the extent of the

CD is related to the MSD of the family, and that the

structure-sequence relationship is more complex

than previously thought. First, we found that the

extent of the CD could be as large as the MSD (Fig.

1). Conformational diversity is a key concept to

understand many processes and mechanisms in pro-

tein function, such as enzyme catalysis,51 promiscu-

ity in protein interactions,52 protein-protein

recognition,53 signal transduction,54 mechanisms of

disease-related mutations,55 immune escape,56 the

origin of neurodegenerative diseases,57 protein evo-

lutionary rates,58 conformer-specific substitution

patterns,59 the origins of new biological functions,60

molecular motors,61 and co-evolutionary measure-

ments between residues24,62 (for a recent review

please see17). Furthermore, we have recently shown

that the distribution of CD in a large dataset of pro-

teins, with experimentally determined CD (approxi-

mately 5000 proteins), results in three main groups

of proteins with different structure-function relation-

ships.43 More recently, we found that the dynamical

behavior in a given family could change with minor

sequence variations making difficult to predict CD

by homology.63

Distributions in Figure 1 show that CD could be

as large as the MSD, but it is also evident that most

of the proteins in our dataset have modest to low

CD, meaning that they could function with very low

or absent backbone movements.43,64,65

Several studies drew attention to the impor-

tance of CD in TBM methods,18,19,27 but the consid-

eration of CD in the study of structure-sequence

relationships, as an essential ingredient in TBM

methods, was often considered a source of bias or

“noise.”13,14 On one side, avoiding the noise intro-

duced by the use of redundant data (i.e., considering

CD) would allow us to assume that structural

changes would be proportional to sequences changes.

Figure 7. MSD versus percent of sequence identity for each homologous protein pair. The lineal (blue line) and exponential

(red line) regressions are shown for two sets. (A) Homologous protein pairs containing just ordered conformers. The linear and

exponential fitted expressions are RMSD5 2:288 2 0:014 SEQID and RMSD5 e0:092e20:01 SEQID, respectively. (B) Homologous

protein pairs with at least one of the conformers containing disordered regions. The linear and exponential fitted expressions

are RMSD5 2:741 2 0:012 SEQID and RMSD5 e1:055e20:007 SEQID, respectively.
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The existence of a single sequence with multiple

conformations defines a “degeneracy” of the struc-

tural information coded in a given sequence, intro-

ducing a nonlinear behavior in the protein space. It

was also found that this nonlinearity could possibly

impair the performance of knowledge-based methods

in bioinformatics.66

However, taking into account the remarkable

importance of CD for explaining biological processes

and protein behavior, it appears impossible to

ignore. As derived from Figure 2, when expressed as

an average between all families, there is a large dis-

persion in RMSD even at high sequence identities

but interestingly, this dispersion remains at the fam-

ily level (Fig. 3). These figures show the large uncer-

tainty in template selection even at high sequence

similarities. We have also found that CD is propor-

tional to the MSD reached in a family (Fig. 4).

Indeed, CD is independent of the maximum

sequence divergence of the family (Fig. S5). It is at

this point that the total set used in this work could

be split in two sets of reduced and large CD impact.

In proteins evolving under selective pressure to

maintain a reduced CD, we find that the correlation

between sequence and structure variation is high

(Spearman’s rank correlation rho 5 20.83). We have

previously characterized this group of proteins.43

Briefly, rigid proteins have low CD (approximately

0.8 Å RMSD in average), they are mainly proteins

without disordered regions and have important tun-

nels and cavities. When conformers of rigid proteins

are compared, for example, in their bound and

unbound states, we find that they mainly differ in

backbone positions associated with their tunnels and

cavities. This indicates that the minimum move-

ments for rigid proteins are associated with the

movement of functional structures to allow the tran-

sit of substrates and/or products between the inside

and the surface of the protein.67–69 It is for this

group of proteins that sequence-structure relation-

ships show a high correlation between variables,

and for whom it would be possible to reliably predict

3D models using TMB techniques [see Fig. 5(A)].

According to our results, proteins with higher

CD also have larger SDs (Fig. 4), and a larger vari-

ability of accessible structures, even at high percen-

tages of sequence identity [Fig. 5(B)]. We found that

correlations and proportionalities between variables

in this group of proteins are low, blurring the com-

mon idea in TBM approaches that similar sequences

show similar structures. For example, the expected

value at 100% identity using the linear regression

gives approximately 1.3 Å.

Our results indicate that the relative success of

the 3D model using TBM approaches will be

strongly associated with the CD of the corresponding

target protein. Because it is difficult to predict the

extent of CD in a given protein, we used the

presence of disordered regions as an indicator of

higher values of CD, based upon previous results.38

We found that the presence of highly ordered pro-

teins (without any disordered regions in any con-

former) in pairs of homologous proteins have a

Spearman’s correlation rho of 20.58 for RMSD and

a sequence identity relationship. In this way, we

found that presence of disorder/order is not a strong

indicator of a well-correlated sequence and struc-

tural change (Fig. 7), compared with the knowledge

of the extent of CD (Spearman’s correlation rho of

20.83, Fig. 5). Removing ordered and highly

dynamic proteins, we found a better Spearman’s cor-

relation rho of 20.71. This increment in reliability

again confirms the higher correlation between

sequence and SD for rigid proteins with low CD.

Based on the many and reliable predictor methods

for detecting disordered regions in proteins,70 and

the above mentioned considerations, order/disorder

could be an easy way for evaluating the expected

dispersion of RMSD for a given sequence similarity

between template and target sequences. Alterna-

tively, since the CD of some proteins is well corre-

lated with the MSD of the family (Fig. 4), comparing

all the known structures of the family can predict

the expected flexibility of our target. However,

further studies and experimental data are required

in order to address the question of how well CD is

conserved through evolution.

In summary, sequence and structure divergence

is a more complex process than previously thought.

Protein conformational diversity challenges the

ordered and well-accepted relationship between

sequence and structural similarity, a cornerstone of

TBM techniques, as well as our understanding of

the nature of the protein folding code. Further work

is needed to deepen our current knowledge in such a

basic topic for many areas associated with the study

of proteins, as well as to encourage a reappraisal of

current methods for obtaining and evaluating 3D

protein models.

Materials and Methods

Protein families with conformational

diversity selection

The CoDNaS database,23 containing a redundant col-

lection of three dimensional structures for the same

protein (at least 95% of sequence identity among

structures to include putative sequence variations),

was used to recruit proteins exhibiting conformational

diversity. All structures belonging to this dataset were

obtained by x-ray diffraction at a resolution equal or

less than 2.5 Å. The CD is the maximum C-alpha

RMSD derived from all conformer pairwise compari-

sons. With the aim to obtain a reliable and comparable

estimation of conformational diversity of each protein,

our dataset only contains proteins with a minimum of
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five conformers (average approximately 19 conform-

ers per protein) as was previously suggested.71

In order to identify homologous proteins, we ran

BLASTClust72 to obtain all available clusters at

least 30% of local sequence identity with a minimum

coverage of 90% between all sequences in the clus-

ter. The PDB SEQRES records were used to extract

the sequences and to perform the clustering. We

only considered those clusters with at least two dif-

ferent proteins using the UniProt ID for identifying

each protein. The sequences in our dataset are close

homologous proteins (at least 30% local sequence

identity and 90% coverage). Considering these

restrictions in the dataset building we do not expect

to have a large influence by unaligned loop regions

or gaps (the average coverage of structurally aligned

residues is 89% with 14% standard deviation).

The final dataset contains 2024 different protein

chains with a total of approximately 38,000 conform-

ers (which represents about 25% of the total proteins

included in the version used of the CoDNaS database).

These proteins are grouped in 524 families with an

average of approximately 4 proteins per family (with a

minimum of 2 and a maximum of 61) and according to

the classification of the CATH database represent 250

different folds. The average length of the proteins are

283 residues with a standard deviation of 141, and the

extension of percent identity ranges from 20 to 98%

with a median of approximately 47%.

Sequence and structure comparisons

To estimate the SD for each homologous protein pairs

in a cluster, we calculated the C-alpha RMSD using

MAMMOTH29 for all possible pairs of conformers

belonging to the proteins being compared. MAMMOTH

is a sequence-independent structural alignment pro-

gram, which not only has a very good accuracy aligning

proteins with different folds, but also provided the sta-

tistical reliability of the resulted structural alignment.

Also, the RMSD values calculated by MAMMOTH nei-

ther show dependence with protein size nor length.

The MSD for a pair of homologous proteins is

the pair with maximum RMSD value among all ver-

sus all conformers comparisons between them. Addi-

tionally, we calculated the percent sequence identity

for each homologous protein pairs using a global

sequence alignment obtained with the Needleman-

Wunch algorithm.30 Furthermore, we defined disor-

dered regions for each conformer when it has five or

more consecutive missing residues that were not in

the amino or carboxyl terminal of the protein

sequence (the first or least twenty residues). If a res-

idue has missing electron density coordinates in a

structure obtained with x-ray crystallography, it

assumed to be disordered.73 If a protein has at least

one conformer with disordered regions we classified

it as disordered.

The total comparisons among all versus all con-

formers for each homologous protein pairs and struc-

tures of the same protein give an amount of

approximately 3.5 3 106 of pairs.

In addition, we calculated the fraction of second-

ary structure variation between each homologous

protein pairs of MSD and conformer pairs of CD. We

assigned the secondary structure elements to each

structure using DSSP.74 The eight states in DSSP

were grouped into three states: alpha-helices (H and

G), strand (E) and loops (T, S, B, I, 0 0) as in previous

works.75 We compared the secondary structure of

the corresponding aligned positions in the pair of

structures and calculated the fractional identity of

secondary states as:13

IdentitySS5
HH1SS1LLð Þ

HH1SS1LL1 SH1HS1LH1HL1LS1SLð Þ ;

where HH, SS, and LL are the number of aligned

residues in both structures with helix (H), strand

(S), and loop (L) states, respectively. HS and SH are

residues in helix aligned with residues in strand,

the same is for the other SS combinations. In order

to estimate the local differences between the struc-

tures of the pair, we calculated the fraction of uncon-

served aligned secondary structure elements as

follows: dif fSS512IdentitySS. Additionally, we used

Naccess 2.1.176 with a probe size of 1.4 Å to obtain

the relative solvent accessible area (RSA) for each

pair of aligned residues in the pairs of MSD and

DC. According to RSA values we classified each resi-

due into two categories: buried (B) for RSA �25%

and exposed (E). Using the same methodology

explained before, we compared the RSA classifica-

tion of the corresponding aligned positions in the

pair of structures and calculated the fractional iden-

tity of RSA. Then, we used the difference to obtain

the fraction of residues that changed between buried

and exposed.

Statistical analysis

The correlations coefficients showed in this work

were obtained using the function cor.test of R pack-

age,77 with the corresponding two-way test (null

hypothesis is that the correlation coefficient is

equal to 0). We used Spearman rank correlations

coefficients since it does not assume linearity

of the data, only searches for a monotonic

relationship.

Cross-validated function fitting were performed

using the Julia language libraries LsqFit and

MLBase. All the regressions were weighted, and

each point (MSD vs. sequence identity percent) has

a weight of 1 over the number of protein pairs in the

protein family. It was done in order to avoid that

populated families predominate the results.
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However, the R2 informed was calculated as the

mean of the R2 in each testing subset from a fivefold

cross-validation without using weights. In that way,

we use the amount of unweighted variation explained

by the model as a measure of goodness of fit.
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