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Abstract: Dedicated computing resources are expensive to develop, maintain, and administrate.

Frequently, research groups require bursts of computing power, during which progress is still

limited by available computing resources. One way to alleviate this bottleneck would be to use
additional computing resources. Today, many computing devices remain idle most of the time.

Passive volunteer computing exploits this unemployed reserve of computing power by allowing

device-owners to donate computing time on their own devices. Another complementary way to
alleviate bottlenecks in computing resources is to use more efficient algorithms. Engaging

volunteer computing employs human intuition to help solve challenging problems for which effi-

cient algorithms are difficult to develop or unavailable. Designing engaging volunteer computing
projects is challenging but can result in high-quality solutions. Here, we highlight four examples.
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interaction networks; protein-ligand docking

Introduction

Crowd sourcing, volunteer computing (VC), citizen

science—these terms refer to the use of idle comput-

ing resources to solve problems. In general, such

computing resources can be both of a biological and

silicon variety. Here, we use the VC term and differ-

entiate between two types of VC based on the role of

volunteers. If the volunteers use their human intui-

tion to actively participate in finding the solution to

a problem, this is termed engaging VC. If the volun-

teers only donate processing cycles on their com-

puter devices, this is termed passive VC. Several

passive VC projects, especially within astronomy,1,2

have been widely used over the years. The Folding@-

Home3 and Docking@Home4 projects were developed

as passive VC projects to explore protein and

protein-ligand complex structures. However, it is

more challenging to successfully develop an engag-

ing VC project. Therefore, only a select few engaging

VC projects have been developed for any discipline

and specifically for protein-related science. The tran-

sition between passive and engaging VC projects

requires engagement to be introduced at various lev-

els (Fig. 1). In fact, one key challenge of designing
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engaging VC projects is to properly focus the effort

of participants on those parts of a problem where

they can provide the greatest impact.

Below we present a review of engaging VC proj-

ects in protein science made possible through crowd

sourcing. The review is organized as follows. First, we

present BOINC, a framework enabling volunteer

computing and crowd sourcing projects to be easily

developed by researchers. We then provide four case-

studies describing examples of volunteer computing

and crowd sourcing that take advantage of human

intelligence to help solve difficult problems involving

protein-related science. The review concludes by iden-

tifying open avenues for future research to realize the

full potential of volunteer computing and crowd-

sourcing scientific problems.

Boinc

The Berkeley Open Infrastructure for Network Com-

puting (BOINC) provides a middleware software

solution for distributing compute jobs across a

network of volunteer-donated computers. Currently,

almost 200,000 volunteers provide over 1 million

computers resulting in over 16 petaFLOPS of com-

puting power. This is enough computing power to

place the BOINC VC network among the top five

super computers in the world. BOINC was designed

to be manageable for an average research group to

set-up a project within about a week. In addition,

BOINC allows separate and diverse projects to share

the same pool of resources and reward participants.

Each project is entirely setup and maintained by the

group conducting a project. BOINC provides tools to

set up the server and configure the software to han-

dle the data and schedule the flow between the pro-

ject and its participants. Participants need only to

register on a given project’s website and download

the BOINC client software.

Enabling volunteer distributed computing pre-

sented challenges that BOINC needed to overcome.

First, sending out computing jobs to unknown com-

puters could result in calculation errors or malicious

users. To overcome these challenges, BOINC sub-

mits redundant jobs to multiple, different partici-

pants. This allows the project to analyze the results

and determine which ones are correct based on

multiple samples. Also, results from malicious users

will be just one of N redundant results and therefore

can be appropriately filtered. Second, the server

infrastructure of a BOINC project is typically very

small compared to the computers provided by partic-

ipants such that the server could get overloaded if

all participants interacted with the server simulta-

neously. Therefore, BOINC has built-in checks to

limit the interaction of participants’ computers with

the project server to keep the server running

smoothly. Third, participants are highly motivated

by a reward system. BOINC developed a fair scoring

system that provides credit for donated time, which

is difficult to cheat by participants. For long comput-

ing jobs, participants still want to receive credit

without waiting until the computing job is entirely

finished. So, BOINC provides methods for the pro-

ject to provide credit as the computation proceeds.

To foster strong community support, BOINC

provides features for participants such as options for

creating teams, profiles, messaging, and screensaver

graphics. BOINC also allows the use of GPU acceler-

ated computing. Due to its flexibility and design

such that any research group can create a project,

BOINC is the go-to solution for developing volunteer

computing projects for protein chemistry research

such as ligand-protein docking4–8 and protein struc-

ture prediction.3,9,10 These projects are passive VC

projects as they only use the computing resources of

volunteers. BOINC can also be used for engaging

volunteer computing, as highlighted below for the

Foldit11 and ExSciTech12 projects.

C2d Ipw

Mycobacterium tuberculosis (Mtb) is the pathogen

causing tuberculosis.13 To develop new pharmaceuti-

cals against multi-drug-resistant strains, a high qual-

ity interactome was needed to identify potential new

therapeutic targets. Importantly, much protein inter-

action data existed in the literature but had not been

curated into databases from which all the compo-

nents of the biological system could be simulta-

neously considered. Therefore, the authors developed

an approach to enable the community to annotate the

Mtb genome in an accurate, complete, and detailed

way (Fig. 2). This crowd sourcing method was termed

“Connect to Decode” (C2D) and resulted in the

“interactome pathway” (IPW) for Mtb. Participants

reviewed over 10,000 papers, with an average of 3–4

papers being required to have enough information to

annotate a protein. In total, it was estimated that

300 years of manual labor were condensed into four

months.

The annotation method employed one of two dif-

ferent standard operating protocols depending on

whether literature was available relating to the pro-

tein. If no data was available regarding a protein

specifically within Mtb, information from other

Figure 1. Gradient of volunteer computing (VC). VC is a

scale with engaging projects on one side and passive

projects on the other side and a smooth transition between

them. Only a handful of projects have taken advantage of VC
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closely related organisms was used. Literature was

identified based on relevant keywords in standard

databases (e.g., PubMed). Prospective participants

underwent training and evaluation to ensure appro-

priate capability. After filtering under-performing

candidates, over 100 researchers and graduate and

undergraduate students were selected from an ini-

tial registration of over 800. For proteins where no

literature was available, information from the clos-

est available homolog was used, with this being

highlighted to distinguish homologous annotations

from direct literature data. Participants were given

a presentation so they could curate the annotation

data gathered in the IPW. The presentation con-

sisted of suggested background reading and instruc-

tions for editing, correcting, and color coding data by

status. The IPW data were contained in a shared

Google Document spreadsheet to allow users to eas-

ily edit the content.

The IPW covers 87% of the Mtb genome, which

is a 67% increase over the coverage of previous Mtb

genome annotations. The IPW also contains data

from multiple interaction databases to complement

the manually curated data. IPW annotates 71% of

the proteins thought to comprise the Mtb proteome.

IPW added 1762 interactions and 29 proteins above

those found in an entirely computationally derived

database. The authors performed network analysis

to identify potential drug targets. The analysis iden-

tified several proteins that were both previously

identified and validated as drug targets and also

novel potential drug targets.

ExSciTech

The Explore Science, Technology, and Health (ExSci-

Tech) project combines both active and passive user

engagement to advance protein-ligand docking stud-

ies.12 ExSciTech provides several games to train

users in concepts needed to understand protein-

ligand docking. ExSciTech also promotes user partic-

ipation in protein-ligand docking studies through

games to exploit human intuition such that the large

potential search space can be reduced. ExSciTech is

formulated around Docking@Home (D@H), which is

an established VC project for searching for ligands

effective against breast cancer and HIV. D@H is

solely a passive crowd-sourcing platform, with users

just donating free computer cycles. ExSciTech aug-

ments D@H by actively engaging volunteers during

the cross-docking phase of drug identification,

whereby interactions of ligands with closely related

proteins are studied to investigate possible non-

Figure 2. Overview of the workflow for C2D IPW to obtain the protein interaction map for Mtb (Figure reproduced from

Ref. 13). Without focusing on the details in the content of the figure, the reader can appreciate the amount of organization,

planning, and development that came together in order to successfully integrate all of the volunteer effort into a focused

scientific outcome. The organizers built-in multiple feedback loops in order to ensure high-quality results
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specific binding of a ligand. This has implications for

potential side-effects caused by a molecule. Users

contribute to this process by reducing the number of

ligands and protein binding pockets that need to be

explored by the docking algorithm.

ExSciTech uses gaming to educate and engage

users in the scientific process. This allows users to

be assessed for their capability and to improve,

thereby identifying appropriate tasks. Thus, actively

engaged users will provide more resources to the

project. ExSciTech can be divided into two stages

according to the user: a learning stage and an

engaged stage. During the learning stage, volunteers

learn about the scientific process and protein-ligand

docking. Users are assessed as Novice, Amateur, or

Professional Chemist at the end of the learning

stage. The game for the learning stage consists of

identifying and classifying properties of molecules as

they fall across the screen one-at-a-time. Hints are

provided to guide a player to the correct answer.

This can be described as a “flashcard game”. After

the learning stage, participants can apply their

knowledge to develop jobs for distribution through

the D@H VC network. The game developed for the

engaging stage was termed “Drag’n Dock”. Here,

users are given a protein and they identify the bind-

ing pocket, then use a spaceship to drag a ligand

into the binding pocket to obtain an initial docking

structure. Once satisfied with the ligand position,

the user then flies the spaceship through a portal

and the job is submitted to the D@H network. Users

are rewarded based on the quality of the results

they generate as indicated by the energy of the

protein-ligand complex. Providing computer time for

other users’ jobs is also rewarded. Because of the

modular design, additional games can easily be

added into ExSciTech. ExSciTech takes advantage of

established software such as BOINC and Visual

Molecular Dynamics (VMD). Using BOINC provides

a heavily used and well established infrastructure

for handling the master-worker relationship needed

to distribute jobs to users. VMD provides high quality

representations.

ExSciTech was tested to identify its effect on

learning in the game environment had compared to

a traditional learning approach. Twenty-four gradu-

ate or undergraduate students without training in

biochemistry were given a brief introduction to the

properties of peptides, carbohydrates, lipids, and

nucleotides. The students were then asked to clas-

sify a set of molecules. The students were split into

two groups: one group was presented with the mole-

cules on paper; the other group was presented with

the molecules through the ExSciTech game. Three

metrics were compared between the two groups:

score on the task, enjoyment of the task, and time to

complete the task. The ExSciTech group indicated a

higher level of enjoyment with smaller variance

than the traditional group. The ExSciTech group

also featured a steeper learning curve as indicated

by a reduction in score during the first eight test

molecules. The ExSciTech group further showed an

overall lower score than the traditional group. The

authors attributed the difference to several aspects

of ExSciTech. One is the speed at which the mole-

cule was presented and disappeared to the user.

Allowing the user to control the speed, or adapting

the speed to the user’s performance could result in a

higher score. Also, ExSciTech users could not go

back to reexamine their previous answers, but this

was an option for the traditional group. Further, the

3D representation provided by ExSciTech can obfus-

cate aspects of molecules that are easily identifiable

from a 2D representation, as presented to the tradi-

tional group. Finally, the representations presented

to the ExSciTech group could not render double

bonds and instead indicated double bonds as single

bonds. The authors state that they plan to improve

upon these shortcomings as ExSciTech matures.

Foldit
The protein folding problem arises from the fact that

the amino acid sequence determines the three dimen-

sional topology of a protein structure, but the number

of degrees of freedom the amino acids allow results in

a vast search space that must be traversed to locate

the lowest energy and native conformation. Further

complicating the goal of predicting structure from

sequence are the many local minima of the energy

landscape. The current state-of-the-art program in

protein structure prediction software is the Rosetta

program.14 Rosetta’s energy function can properly

identify a native conformation as having the lowest

energy.15 Rosetta uses a combination of large and

small, random and deterministic structural perturba-

tions in an attempt to sample the native conforma-

tion, but its ability to sample the native conformation

is its bottleneck.16

Foldit is a game developed to use human intuition

to facilitate the prediction of high-quality protein

structure models.11 The portion of the protein folding

problem Foldit targets for human improvement over

algorithmic methods are the large-scale, stochastic

perturbations. Foldit is based on Rosetta and exposes

Rosetta functionality through a game-friendly inter-

face (Fig. 3). Players participate in challenges that are

posted online with the goal being to achieve the high-

est score for that protein structure. Players are able to

directly manipulate the protein structure and perform

specific tasks such as perturbing helix or b-sheet con-

formations. Players are also able to perform automatic

Rosetta functions such as side-chain repacking, frag-

ment insertion, or gradient-based minimization. They

also can affect the automatic perturbations by, for

example, preventing portions of a protein from being

moved or restraining portions to move together. Foldit
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provides visual cues to the users indicating specific

protein properties such as hydrophobicity, clashes,

cavities, and energetic favorability along the backbone

as calculated by the Rosetta energy function. These

cues allow players to focus on where to improve the

protein structure. Foldit provides beginning puzzles

for users not familiar with protein chemistry to learn

about the important aspects of the visual interface

and functionality for manipulating the protein

structure.

Ten proteins were used to test players’ abilities

to find correct protein structures. None of the protein

structures were available during the duration of the

challenges. Players were given starting structures

derived from initial Rosetta protein structure predic-

tion results and asked to improve the structures.

The authors found players outperformed Rosetta in

scenarios where a cascade of changes is required in

order to reach a preferred conformation. Under such

conditions, the stochastic search process of Rosetta is

unlikely to sample a series of steps which may

require energetically unfavorable intermediate states.

Additionally, given the choice of multiple initial con-

formations, players were able to select the conforma-

tion which would allow them to most easily reach the

native conformation.11

Players used a wide variety of exploration strate-

gies to drive the proteins into native conformations.

As a result, Foldit was extended to allow users to cod-

ify their strategies as “recipes”. These could then be

shared and distributed throughout the Foldit commu-

nity for other players to use and build upon. Over

5000 recipes were created, with twenty-six being run

more than 1000 times. Different recipes are used at

different stages of the model building process. Interest-

ingly, all of the recipes rely upon player input. There-

fore, the recipes did not replace human involvement

but complemented it. The Foldit community indepen-

dently discovered a fine-tuning optimization routine

that outperformed previously published Rosetta meth-

ods in terms of speed and model improvement. Fur-

ther, this routine also could more quickly reach a

superior energy compared to an unpublished routine

the researchers had developed.17

Foldit was applied to several structural and

crystallographic problems. In particular, the Mason

Pfizer monkey virus (M-PMV) is a target for pre-

venting simian AIDS. Crystals of M-PMV were

available, but the structure was not solved for over

ten years. Foldit players were tasked with develop-

ing a model suitable for molecular replacement

based on NMR data. These players were able to

improve the NMR models such that, within just

days after conclusion of the puzzle, a final refined

structure was made available through the use of

standard molecular replacement tools.18

Foldit was extended to allow players to build

models directly into electron density maps. The

extension included visualization of the electron den-

sity as an iso-surface whose representation the play-

ers could control to remove extraneous electron

density. The Foldit score was updated to include an

electron density agreement score to incentivize play-

ers to consider the electron density. Their ability to

Figure 3. Screenshot of Foldit during one of the learning tutorials. Foldit uses color cues and structural simplification to provide

important information to players without overwhelming them. The tutorials provide text-box clues with information about the

game in order to familiarize players with the mechanics. In Foldit, players are tasked with achieving the highest score, which

corresponds to the most favorable three-dimensional conformation of a protein
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correctly determine a structure from electron den-

sity was tested via a competition between Foldit

players, automated methods, trained crystallogra-

phers, and undergraduate students taking an intro-

ductory crystallography course. The best structure

produced in the competition was a structure from

Foldit, which showed improved side-chain conforma-

tions compared to the best structure produced by

the trained crystallographers. The result of this con-

test allowed the protein to be identified as a member

of the histidine triad protein family.19

Foldit was also used for protein design. Players

were asked to improve the activity of a computation-

ally designed enzyme that catalyzes the Diels-Alder

reaction. The task was broken down into three puz-

zles that allowed an iterative cycle between the Fol-

dit players and the scientists. The Foldit players

were able to achieve more than an 18-fold improve-

ment in enzyme activity compared to the starting

protein. Further, the Foldit players could predict the

structure of their designed protein with high

accuracy.20

SSNIc
The Species Specific Network Inference challenge

(SSNIc) was created to develop a protein interaction

network specific to humans and rats.21 Participants

were given phosphoprotein, gene expression, and

cytokine data, and an initial reference network from

which they could remove or add edges between

nodes (Fig. 4). The goal of the challenge was to

improve the transferability of drugs developed in

rats such that they would also be safe and effective

when tested in humans. New technologies allow the

activity of thousands of genes to be simultaneously

measured, but no computational method has arisen

to meet the data influx, with different methods

having various strengths and weaknesses. SSNIc

was set-up to take advantage of the massive reason-

ing skills available through crowd-sourcing.

One challenge was devising a method for evalu-

ating the participant-generated networks. The

authors decided to use a method that combined mul-

tiple predictions from orthogonal methods to rank

and evaluate the networks. One scoring method con-

sisted of an automatically generated network, used

as what was termed the “silver standard”. A second

scoring method involved a blind assessment by three

independent judges. The judgment was based on the

description provided by the participants as to the

method they used to generate their network. Several

criteria were used including, for example, rigor, orig-

inality, and ability to implement the methodology

computationally. Judges provided scores between

one and five, with five being the best, that then

were averaged.

The final consensus network was derived from

all the participants’ results. This was accomplished

by considering the number of times an edge was

indicated to be an edge by participants and deriving

the probability the indicated connection was in-fact

correct. The initial reference network had 220 nodes

and 501 edges. Participants could only add or

remove edges, not nodes, from the reference net-

work. In the end, for the human and rat networks

the median number of edges were 406 and 429,

respectively. The lower number of edges in the par-

ticipant networks compared to the reference network

indicates that the reference network over estimated

the activity of pathways leading to false positives.

Evaluation scores showed little variation between

the reviewers. The final score for each participant

was simply the average of the results from each

scoring method (agreement with the “silver network”

Figure 4. Schematic description of the Species-Specific Network Inference challenge (SSNIc). The figure is reproduced from

Ref. 21. Participants were tasked with updating a reference network to differentiate between human and rat interactions by

removing or adding edges to the graph based on available experimental data
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and evaluation by reviewers). The best teams

according to the consensus network were also the

best determined by the total scoring system. The

authors calculated that about eight votes by teams

were needed to affirm the existence of an edge.

Comparing the consensus networks for human

and rat, the authors found differences in pathways

at strictly local and isolated locations, but at higher

levels of organization the networks were similar, as

would be expected. Because participants who per-

formed well based on multiple evaluation criteria

also performed well when compared to the consen-

sus, simply using the consensus as a scoring crite-

rion could be one possibility in the future. This

would have the advantage that the bias of the

“silver standard” due to reliance on a particular

algorithm would be removed. Consensus scoring

relies upon having little correlation between predic-

tions in the ensemble. The number of participants

could have been larger and would have enabled the

identification of additional edges, so in this instance,

the number of participants was a limiting factor in

the results obtained. Overall the consensus networks

highlight a few differences in interactions between

human and rat pathways that could be taken into

account during drug testing and development. Partic-

ipants used a broad array of methods to develop their

networks ranging from network to statistical to heu-

ristic methods. Even when using the same method,

sharp disparities in performance can result from the

many choices needed to set up a given method. This

further supports the utility of crowd-sourcing to

enable the investigation of not only a breadth of

different methods but also variations within methods.

Discussion

In order for a crowd-sourced project to succeed, sev-

eral pieces must come together from the partici-

pants’ perspective.22 First, project organizers must

make sure the goal is clearly articulated to partici-

pants. Second, participants must be provided feed-

back to facilitate their development of successful

strategies and properly focus their efforts. Third, the

interface provided should ideally incorporate an iter-

ative feedback loop between the participants and the

project creators to continuously improve how partici-

pants interact with the task.23 Finally, the project

must be advertised to attract the attention of the

VC community.

Project organizers must carefully consider the

design of the project. If the task cannot be parallel-

ized across many participants, passive or engaging

VC may not be the best solution. Project developers

must design the computational task for participants

to maximize the speed-up achieved by distributing

it over many computers.3 Developing a project for

engaging VC introduces significant challenges beyond

a passive VC project, because designers need to frame

the task in a manner that attracts participants’ inter-

est and participation. Simultaneously, the project

must also be designed to address a scientific problem.

Typically, passive VC projects are designed so that

the calculations do not interfere with the partici-

pants’ usage of their computing device. With engag-

ing VC, both the participants and their computing

devices can be engaged in the project.

With the growing ubiquity of personal computing

devices featuring increased computational power and

efficiency, the potential for VC continues to expand.

Although designing a popular VC project may be chal-

lenging, examples reported here demonstrate that the

initial effort can be well rewarded by the efforts volun-

teers donate to solve difficult scientific problems in

protein chemistry. Continued improvements in mid-

dleware such as BOINC and programming tools to

develop user interfaces will further reduce the effort

needed to set-up a VC project. As the amount of exper-

imental data expands with the development of new

techniques, VC provides an avenue for analyzing the

data at low cost and in ways not conventionally acces-

sible by standard algorithms.
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