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ABSTRACT This study investigated the effects of subinhibitory doses of the lipogly-
copeptide antibiotic dalbavancin on Staphylococcus aureus toxin production in vitro.
S. aureus toxin production levels were compared to those seen with the natural gly-
copeptide antibiotic vancomycin and with representative beta-lactam and oxazolidi-
none antibiotics. While neither dalbavancin nor vancomycin adversely affected toxin
production, of these glycopeptide antibiotics, only dalbavancin significantly attenu-
ated toxin production at subinhibitory concentrations. These findings support the re-
cent success of dalbavancin for treatment of staphylococcal infections.
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Invasive Staphylococcus aureus infections are mediated by potent extracellular bacte-
rial toxins, including Panton-Valentine leukocidin (PVL), toxic shock syndrome toxin 1

(TSST-1), and alpha-hemolysin (AH). Vancomycin, a glycopeptide antibiotic, is recom-
mended for treatment of severe S. aureus infections (1), but increased resistance and
poor clinical outcomes remain very serious concerns. Further, vancomycin-induced
inhibition of peptidoglycan synthesis results in slow bacterial killing (2, 3), potentially
allowing continued synthesis and accumulation of toxins. Dalbavancin, a semisynthetic
lipoglycopeptide in the same class as vancomycin, has recently been approved by the
FDA for treatment of acute bacterial skin and skin structure infections (ABSSSI) caused
by Gram-positive bacteria, including S. aureus. Compared to vancomycin, dalbavancin
has improved stability in bacterial membranes that is attributed to its extended
lipophilic side chain (4, 5). With respect to staphylococcal infection, dalbavancin
possesses several key advantages, including potent and rapid bactericidal activity, a
long half-life, and slow clearance from the body, allowing a once-per-week dosing
schedule (6–8). While dalbavancin offers superior and extended antibacterial activity, its
effects on bacterial toxin production have not been directly studied.

Our group and others have shown that subinhibitory doses of cell wall synthesis
inhibitors, mainly beta-lactams, often fail in infections caused by toxin-producing
organisms due to their intrinsic inability to suppress toxin protein synthesis and
potential to trigger an SOS response resulting in increased toxin production (9–11). In
contrast, protein synthesis inhibitors that suppress toxin production (e.g., linezolid) are
associated with better clinical outcomes (12–14). These findings have formed the basis
of current recommendations for treatment of severe soft tissue infections caused by
toxin-producing pathogens (1). Since suppression of bacterial toxin synthesis is an
important therapeutic goal in the treatment of staphylococcal infections, the current
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study investigated how subinhibitory concentrations of dalbavancin impact the pro-
duction of PVL, TSST-1, and AH from both methicillin-resistant S. aureus (MRSA) and
methicillin-sensitive S. aureus (MSSA).

To determine subinhibitory doses of antibiotics for the current study, the MIC of
dalbavancin and the MIC of vancomycin were established for each of four S. aureus
clinical isolates by a microdilution broth method per Clinical and Laboratory Standards
Institute (CLSI) guidelines (Table 1). Nafcillin, a beta-lactam antibiotic previously shown
to induce toxin expression, and linezolid, a protein synthesis inhibitor, were included as
comparator agents. In agreement with previous reports (5, 15, 16), dalbavancin was
highly potent and each S. aureus strain tested was more susceptible to dalbavancin
than to vancomycin, linezolid, or nafcillin.

Next, a comprehensive growth curve analysis was completed for each S. aureus
strain to define subinhibitory MIC doses for each agent. Mueller-Hinton II broth was
inoculated with 5 � 105 CFU/ml, and antibiotics were added at time zero to final
concentrations of 1, 1/2, 1/4, 1/8, or 1/16 the MIC. Polysorbate 80 (0.002%) served as a
vehicle control for dalbavancin. All cultures were incubated at 37°C with shaking (200
rpm), and 5-ml samples were collected at 0, 3, 6, 9, 12, and 24 h for quantitative dilution
plating and analysis of production of toxins (PVL-LukS, TSST-1, and AH). Subinhibitory
concentrations for each antibiotic were defined as any drug concentration causing no
more than a 0.5 log decrease in the total population throughout the duration (24 h) of
the experiment, relative to the starting bacterial concentration. For the glycopeptide
antibiotics, concentrations of �1/4 the MIC were subinhibitory (data not shown). In all
cases, administration of 1/4 the MIC of dalbavancin increased the length of the lag
phase; however, bacteria reached levels comparable to those seen with the vehicle
control by 12 h and 24 h. Nafcillin was subinhibitory at �1/8 the MIC for all strains, and
linezolid was subinhibitory (bacteriostatic) at �1/4 the MIC (data not shown). Only
subinhibitory antibiotic concentrations were tested for effects on S. aureus toxin
production.

The effects of subinhibitory antibiotics on LukS-PVL and TSST-1 production were
determined for each strain at 9, 12, and 24 h by enzyme-linked immunosorbent assay
(ELISA) (17, 18). Briefly, enzyme immunoassay/radioimmunoassay (EIA/RIA) plates were
coated with 1 �g/ml anti-PVL monoclonal antibody (MAb) 1D9 (IBT Bioservices, Gaith-
ersburg, MD) or 5 �g/ml anti-TSST-1 affinity-purified sheep antisera (Toxin Technology,
Sarasota, FL). ELISA plates were blocked, and samples were applied for 2 h at 37°C using
the following combinations: LukS-PV standard (IBT Bioservices) (0.8 to 50 ng/ml) and
culture supernatants (1:200 to 1:800) or TSST-1 standard (Toxin Technology) (0.15 to 20
ng/ml) and culture supernatants (1:2,000 to 1:8,000). Plates were washed with
phosphate-buffered saline (PBS-Tween) (0.05%) and incubated with 0.25 �g/ml rabbit
polyclonal anti-PVL (LukS) (IBT Bioservices) and horseradish peroxidase (HRP)-linked
anti-rabbit IgG (H�L) (Cell Signaling, Danvers, MA) or a 1:1,200 dilution of HRP-
conjugated anti-TSST-1 sheep antisera (Toxin Technology). Assays were developed with
1-step Ultra TMB (Life Technologies, Grand Island, NY). Recombinant LukF-PV (IBT
Bioservices) was undetectable by these methods (not shown); however, we cannot rule
out the possibility of cross-reaction with other S components. Toxin concentrations

TABLE 1 Toxin production profiles and MICs of strains used in the present study

Toxin profile
(PVL/TSST/AH) S. aureus strain

MIC (mg/liter)

Dalbavancin Vancomycin Nafcillin Linezolid

�/�/� MRSA 1560 USA400 0.06 1.0 12.5 4.0

�/�/� MRSA FPR3757 USA300 0.12 1.0 6.25 2.0

�/�/� MRSA 04-014
(CDC strain 368-04)

0.03 1.0 12.5 4.0

�/�/� MSSA 04-002 0.12 1.0 0.76 2.0
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falling below the linear range of the standard were reported as half the lowest
detectable limit so as to not overestimate or underestimate the actual value. S. aureus
protein A did not interfere with either immunoassay at concentrations of �500 ng/ml.
AH activity was assayed by a standard rabbit erythrocyte lysis assay, as described
previously (11). In brief, sterile-filtered culture supernatants were diluted in Dulbecco’s
PBS (DPBS) (1:10 to 1:80) and an equal volume of washed rabbit erythrocytes (2% in
DPBS) was added. Sterile deionized water was included as a 100% hemolysis control.
After 1 h of incubation at 37°C, supernatants were transferred to a new microtiter plate
and A550 was measured. Activity (in hemolytic units per milliliter) was defined as the
inverse of the dilution causing 50% hemolysis, multiplied by 2. For each experimental
condition, three independent samples were tested. The log of the toxin response was
modeled using analysis of variance (ANOVA) in a mixed-model framework, with sepa-
rate models for each bacterium/toxin combination. Fixed effects were dose, time, and
antibiotic, and random effects were experimental batch and day. Pairwise comparisons
were made between antibacterial and control treatments for each subinhibitory dose
and among individual S. aureus strains, with P values (�0.05) controlled for multiple
comparisons with false-discovery-rate adjustments (19).

Dalbavancin administration did not increase toxin production in any S. aureus strain
and, at 1/4 the MIC, significantly suppressed toxin production compared to control
treatment (Fig. 1). Notably, toxin suppression was not observed with 1/4 the MIC of
vancomycin but was equivalent to that seen with the no-treatment control (Fig. 2).
Cultures treated with 1/16 and 1/8 the MIC of dalbavancin (Fig. 1) or vancomycin (data
not shown) also showed no effect on toxin production. Given that the two antibiotics
are from the same antibiotic class, it is somewhat remarkable that dalbavancin dem-
onstrated toxin suppression whereas vancomycin did not; this can likely be credited to
dalbavancin’s greater stability and lower MIC (Table 1) (5, 20–22). In agreement with
previous work (11), subinhibitory levels of nafcillin significantly increased maximal toxin
production whereas linezolid exhibited clear dose-dependent suppression of toxin

FIG 1 Effects of subinhibitory dalbavancin concentrations on S. aureus extracellular toxin production. S. aureus strains
were cultured in the presence of 1/16, 1/8, or 1/4 the MIC of dalbavancin, and results were compared to those seen
with a no-treatment (NT) control. Levels of PVL and TSST-1 (in nanograms per milliliter) were determined by ELISA
(top panel). Alpha-hemolysin (AH) was quantitated by rabbit erythrocyte lysis assay (in hemolytic units [HU] per ml)
(bottom panel). Error bars represent the standard errors of results between biological replicates (n � 3). A hash mark
(#) indicates that no toxin was detected, and an asterisk (*) indicates that data are significantly different from those
determined with the NT control (P � 0.05) at each corresponding time point based on an ANOVA with false-discovery-
rate adjustments.
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production in all strains. Ultimately, the subinhibitory effects on toxin production were
most apparent in MRSA 04-014 (Fig. 3) and MSSA 04-002, where dalbavancin signifi-
cantly decreased toxin production at 1/4 the MIC throughout the time course, sug-
gesting that the relationship between antibiotic and toxin production may reflect a
strain-dependent response rather than a universal event.

Extracellular protein toxins such as PVL, AH, and TSST-1 are key virulence factors in
the pathogenesis of a variety of S. aureus infections. Although they are somewhat
controversial in their role in staphylococcal SSSIs, particularly PVL (23), several studies
have highlighted that suppression or neutralization of such toxins improves outcomes
in both animal models and human cases of severe S. aureus infection (12, 14, 24–29).
While the relationship between therapeutic effect and toxin production with respect

FIG 2 Comparison of toxin protein production levels at 24 h following exposure to 1/4 the MIC of
dalbavancin or vancomycin. S. aureus strains were cultured for 24 h in the presence of 1/4 the MIC of
dalbavancin (DAL) or vancomycin (VAN). Bars represent the percentages of toxin production relative to
the NT control, set at 100% (dashed line). Shown are PVL and TSST-1 levels (left) and AH levels (right) �
standard errors of three biological replicates. An asterisk (*) indicates that data are significantly different
from those determined with the NT control (P � 0.05) based on an ANOVA with false-discovery-rate
adjustments.

FIG 3 Effects of subinhibitory antibiotics on MRSA 04-014 TSST-1 production. MRSA 04-014 was cultured
in the presence of subinhibitory doses (1/16, 1/8, or 1/4 the MIC) of antibiotic, and results were compared
to those seen with a no-treatment (NT) control. TSST-1 production (in nanograms per milliliter) was
determined by ELISA. Error bars represent the standard errors of results of comparisons between
biological replicates (n � 3). An asterisk (*) indicates that data are significantly different from those
determined with the NT control (P � 0.05) based on an ANOVA with false-discovery-rate adjustments.
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to glycopeptide is not known, it is possible that a glycopeptide antibiotic that can
suppress toxin production at subinhibitory levels may provide treatment superior to
that provided by those that do not. Finally, given its long half-life (�14.5 days in
humans) (22), low MIC (Table 1) (5), and ability to suppress key toxins in vitro (Fig. 1),
dalbavancin may offer physicians a treatment for staphylococcal SSSI that is more
effective than that seen with other cell wall-active antibiotics.
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