Skip to main content
. 2017 Aug 30;2(3):167–175. doi: 10.1016/j.synbio.2017.08.001

Table 1.

Production of isoprenoids by engineered microorganisms.

Isoprenoids produced Host Approach Culture conditions Yield/Titer References
Lycopene E. coli Systematic (model-based) methods; Combinatorial (transposition-based) methods; Gene knockout. Shake-flask fermentation 18 mg/g DCW [11]
Lycopene E. coli Central metabolic genes knockout; Amplification of MEP pathway genes Shake-flask fermentation 7.55 mg/g DCW [12]
Lycopene E. coli Overexpression of native dxs; Other optimization methods (promoters, vectors, strains) Shake-flask fermentation 16.8 mg/L [13]
Lycopene E. coli Introduction of a heterologous MVA pathway; Overexpressing Bacillus licheniformis idi Shake-flask fermentation 198 mg/g DCW [15]
Lycopene E. coli Optimization of MVA pathway; Promoter engineering Fed-batch fermentation 20.25 mg/g DCW [16]
Lycopene E. coli Increase ATP and NADPH; Engineering TCA modules; Overexpression of dxsidicrtE Fed-batch fermentation 50.602 mg/g DCW [17]
Lycopene E. coli Application of the targeted engineering strategy Fed-batch fermentation 34.3 mg/g DCW [18]
Lycopene E. coli Co-expression of the DXP and MVA pathway Fed-batch fermentation 32 mg/g DCW [19]
Lycopene E. coli Application of CIChE Shake-flask fermentation 33.43 mg/g DCW [21]
Lycopene E. coli Optimization of the lycopene biosynthetic genes; Overexpressing the MEP pathway (dxs-idi-ispDF) Shake-flask fermentation 448 mg/g DCW [22]
Lycopene S. cerevisiae Combination of directed evolution and metabolic engineering strategy Fed-batch fermentation 24.41 mg/g DCW [23]
Lycopene S. cerevisiae Combination of host engineering and pathway engineering Fed-batch fermentation 55.56 mg/g DCW [25]
Lycopene Y. lipolytica Deletion of POX1 and GUT2 Shake-flask fermentation 16 mg/g DCW [26]
Lycopene S. avermitilis Activation of the silent lycopene synthetic gene cluster Shake-flask fermentation 82 mg/g DCW [27]
β-cartoene E. coli Plasmid-expressing the lower MVA pathway and idi from S. cerevisiae, Plasmid-expressing the upper MVA pathway from Enterococcus faecalis, Bacillus subtilis dxs and fni, and GPPS2 from Abies grandis; Plasmid-expressing the β-cartoene synthetic pathway. Fed-batch fermentation 60 mg/g DCW [28]
β-cartoene E. coli Combined engineering of the MEP, the β-carotene synthetic, the TCA and the pentose phosphate (PP) modules by artificial modulation parts Fed-batch fermentation 3.2 g/L [29]
β-cartoene E. coli Optimizing the biosynthetic pathway Fed-batch fermentation 2.0 g/L [30]
β-cartoene S. cerevisiae Decentralized assemble strategy Shake-flask fermentation 7.41 mg/g DCW [31]
β-cartoene S. cerevisiae Using the inducer/inhibiter-free sequential control strategy to sequentially control the expression of the carotenoid pathway, the MVA pathway and the competitive squalene pathway by glucose in the culture broth, Fed-batch fermentation 20.79 mg/g DCW, 1156 mg/L [32]
Zeaxanthin E. coli Optimization of the zeaxanthin biosynthetic pathway Shake-flask fermentation 11.95 mg/g DCW [38]
Zeaxanthin E. coli Introduction of a dynamically controlled TIGR-mediated MVA pathway Fed-batch fermentation 23.16 mg/g DCW [39]
Astaxanthin E. coli Chromosomal expressing the optimized synthetic pathway Shake-flask fermentation 7.50 mg/g DCW [41]
Astaxanthin E. coli RBS-modulated expression of the astaxanthin biosynthetic genes Shake-flask fermentation 5.8 mg/g DCW [42]
Astaxanthin E. coli Plasmid-overexpression of Pantoea ananatis crtEIB, Pantoea agglomerans crtYZ, Brevundimonas sp. SD212 crtW and E. coli idi 8.64 mg/g DCW [43]
Astaxanthin S. cerevisiae Introduction of codon-optimized Haematococcuspluvialis crtZ and bkt Shake-flask fermentation 4.7 mg/g DCW [44]
Astaxanthin S. cerevisiae combinatorial metabolic engineering and protein engineering Shake-flask fermentation 8.10 mg/g DCW [45]
Astaxanthin C. glutamicum Balanced expression of crtW and crtZ Shake-flask fermentation 0.4 mg/L/h [46]
Isoprene E. coli Introduction of MVA pathway, codon and RBS optimization, deleted nine relevant genes to express ispS Shake-flask fermentation 1832 mg/L [48]
Isoprene E. coli Chromosomal expressing the MVA lower pathway; Plasmid-expression of the MVA upper pathway; Plasmid-expression of mvk from Methanosarcina mazei and isoprene synthase gene from Populus alba 14 L fed-batch fermentation 60 g/L [49]
Isoprene E. coli Overexpression of MEP and MVA pathway; Plasmid-expressing mvk from Methanosarcina mazei and isoprene synthase gene from Populus alba Fed-batch fermentation 24 g/L [50]
Isoprene S. cerevisiae Dual metabolic engineering of cytoplasmic and mitochondrial acetyl-CoA utilization Fed-batch fermentation 2527 mg/L [51]
Isoprene S. cerevisiae Combining the two-level expression system and directed evolution of ISPS Fed-batch fermentation 3.7 g/L [52]
Isopentenol E. coli Introduction of MVA pathway; Expressing BsNudF gene Shake-flask fermentation 1.3 g/L [54]
Isopentenol E. coli Constructing the MVA IPP-bypass pathway Shake-flask fermentation 705 mg/L [56]
Isopentenol E. coli RBS engineering of nudB; Expressing the Idi-NudB fusion protein Shake-flask fermentation 2.23 g/L [57]
Myrcene E. coli Co-overexpression of MVA pathway, AgGPPS and ms from Quercus ilex L. Shake-flask fermentation 58.19 mg/L [58]
Myrcene E. coli Introducing the MVA lower pathway; Expressing the MVA upper pathway in combination with AgGPPS and SabS1 Fed-batch fermentation 2.65 g/L [59]
Pinene E. coli Introduction of MVA pathway; Expressing AgGPPS-Pt30 fusion protein Fed-batch fermentation 0.97 g/L [60]
Pinene E. coli Introduction of MVA pathway; Expressing AgPS-AgGPPS fusion protein Shake-flask fermentation 32.4 mg/L [61]
Pinene E. coli Introduction of MVA pathway; Expressing PSmut-AgGPPS fusion protein Shake-flask fermentation 150 mg/L [62]
Limonene E. coli Introduction of MVA pathway, Expressing the AgGPPS–LS fusion protein Shake-flask fermentation 435 mg/L [63]
Farnesene E. coli Introduction of MVA pathway; Expressing the codon-optimized FS-IspA fusion protein Shake-flask fermentation 380 mg/L [67]
Farnesene E. coli Application of In vitro reconstitution and targeted proteomics; Overexpression of Idi with IspA and AFS in E. coli expressing synthetic MVA pathway Shake-flask fermentation 1.1 g/L [68]
Farnesene S. cerevisiae Introduction of the artificial acetyl coenzyme biosynthetic pathway (contained Dickeya zeae aldehyde dehydrogenase (acylating), Leuconostoc mesenteroides xylulose-5-phosphate specific phosphoketolase and Clostridium kluyveri phosphotransacetylase) with the NADH-consuming HMG-CoA reductase from Silicibacter pomeroyi 200,000 L bioreactor fed-batch fermentation 130 g/L [69]
Bisabolene E. coli Co-expressing the codon-optimized AgBIS and the optimized MVA pathway Shake-flask fermentation 912 mg/L [70]
Bisabolene S. cerevisiae Co-expressing the codon-optimized AgBIS and the optimized MVA pathway Shake-flask fermentation 994 mg/L [70]
Bisabolene S. cerevisiae Screening the yeast knockout libraries; Co-expressing the MVA pathway and BIS gene Fed-batch fermentation 5.2 g/L [72]
Farnesol E. coli Co-expressing ispA and the MVA pathway Shake-flask fermentation 135.5 mg/L [73]
Farnesol E. coli Overexpressing ispA, pgpB and the MVA pathway Shake-flask fermentation 526.1 mg/L [74]
Farnesol S. cerevisiae Overexpressing the truncated HMG-CoA reductase 5L fed-batch fermentation 145 mg/L [75]