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Abstract

Chronic fatigue syndrome (CFS) is a highly debilitating disease of unknown aetiology.

Abnormalities in bioenergetic function have been cited as one possible cause for CFS. Pre-

liminary studies were performed to investigate cellular bioenergetic abnormalities in CFS

patients. A series of assays were conducted using peripheral blood mononuclear cells

(PBMCs) from CFS patients and healthy controls. These experiments investigated cellular

patterns in oxidative phosphorylation (OXPHOS) and glycolysis. Results showed consis-

tently lower measures of OXPHOS parameters in PBMCs taken from CFS patients com-

pared with healthy controls. Seven key parameters of OXPHOS were calculated: basal

respiration, ATP production, proton leak, maximal respiration, reserve capacity, non-mito-

chondrial respiration, and coupling efficiency. While many of the parameters differed

between the CFS and control cohorts, maximal respiration was determined to be the key

parameter in mitochondrial function to differ between CFS and control PBMCs due to the

consistency of its impairment in CFS patients found throughout the study (p�0.003). The

lower maximal respiration in CFS PBMCs suggests that when the cells experience physio-

logical stress they are less able to elevate their respiration rate to compensate for the

increase in stress and are unable to fulfil cellular energy demands. The metabolic differ-

ences discovered highlight the inability of CFS patient PBMCs to fulfil cellular energetic

demands both under basal conditions and when mitochondria are stressed during periods

of high metabolic demand.

Introduction

Chronic fatigue syndrome (CFS), also commonly known as Myalgic Encephalomyelitis (ME)

and more recently Systemic Exercise Intolerance Disease (SEID), is a debilitating disease of

unknown aetiology [1]. The central symptom of CFS is persistent fatigue that lasts a minimum

of 6 months and which cannot be alleviated by rest or sleep. Other key symptoms of the disease

include, but are not limited to, post-exertional malaise, unrefreshing sleep, memory and
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concentration problems, lymph node sensitivity, and muscle and joint pain [2, 3]. CFS in

its most severe form can leave patients bed-bound for months or even years at a time. Each

individual patient experiences the disease differently with differing symptom profiles and vari-

ability in the severity of individual symptoms on a day-to-day basis within each patient. Conse-

quences of the disease include significant reductions in quality of life, social isolation, and

marked functional disability [4–6].

Prevalence of the disease is difficult to determine with any certainty. Prevalence figures of

between 0.1% [7] and 5% [8–10] have been cited. This ambiguity is in part due to the lack of

standardised diagnostic criteria. A diagnosis of CFS is made via exclusion of a myriad of other

disorders with similar symptom profiles, in the absence of known biomarkers for the disease

[11]. The lack of specific biomarkers and definitive diagnostic criteria for the diagnosis of CFS

has the potential to delay appropriate clinical intervention and inhibit progress in research

into the disease. Further, the inability to clearly define diagnostic parameters presents the ques-

tion of whether CFS is a single disease with one definitive cause, a consequence of several dis-

ease processes each with their own cause but similar symptoms, or one disease with different

courses of disease such as Multiple Sclerosis.

It has been proposed that abnormalities in bioenergetic function may be the cause of the

severe fatigue experienced by CFS patients. Factors including mitochondrial dysfunction, 5’

adenosine monophosphate-activated protein kinase (AMPK) impairment, oxidative stress and

skeletal muscle cell acidosis have all been associated with the CFS phenotype [12–14]. Abnor-

mal energy metabolism has been identified as a key area of interest in CFS research recently

with a number of studies investigating plasma and serum metabolomics showing altered

metabolites in CFS and hypothesising that CFS is a hypometabolic syndrome [15–19].

Acquired mitochondrial dysfunction (e.g. post-viral infection) has also been an area of

research interest [20–23]. Mitochondria act as the energy transduction centre of the cell and

are responsible for the production of cellular ATP via respiration. Mitochondrial respiration

can be inhibited by multiple factors ranging from cytokine changes to oxidative stress [24].

Studies into CFS have shown key indicators of mitochondrial dysfunction such as lower pro-

duction of ATP [21, 22] and an impairment of the oxidative phosphorylation (OXPHOS) path-

ways [13, 25]. Additionally, crucial symptoms associated with CFS such as fatigue, exercise

intolerance and myalgia are also shared by patients with primary mitochondrial diseases

which are known to be caused by mitochondrial dysfunction resulting from either nuclear or

mitochondrial DNA (mtDNA) mutations [25, 26]. Mitochondrial dysfunction has previously

been suggested in a sub-set of the CFS population [13, 20]. However, due to a lack of definitive

evidence across the CFS population others have suggested that such an association is not sig-

nificant [23, 27, 28]. Two research groups have independently shown that clinically validated

pathogenic mtDNA mutations are likely to be very rare in CFS cohorts [29, 30]. One study did

not find any clinically validated mtDNA mutations at significant heteroplasmy levels, while

the other found only one, a LHON (Leber hereditary optic neuropathy) mutation. Addition-

ally, sub clinical levels of known mtDNA mutations are not different from those seen in the

general population [31].

This study set out to specifically examine key parameters of mitochondrial function includ-

ing the two major energy-producing pathways in the cell–glycolysis and OXPHOS. Changes in

these parameters could indicate a mitochondrial basis for CFS and elucidate pathways in the

aetiopathogenesis of the disease and identify potential targets for future study.

The aim of this case-control study was to detect and assess changes in mitochondrial func-

tioning and cellular energy profiles systemically (using peripheral blood mononuclear cells

(PBMCs)) from chronic fatigue syndrome patients and healthy controls. PBMCs can be
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relatively easily accessed via blood collections and were used to assess systemic mitochondrial

function in controls and CFS patients due to their systemic exposure.

Abnormal PBMC bioenergetics have previously been investigated in other chronic diseases

including obesity [32], type 2 diabetes mellitus (T2DM) [33], and rheumatoid arthritis[34].

Hartman et al. showed higher basal respiration and maximal respiration in T2DM patients

[33]. Like patients with CFS, patients with T2DM often experience fatigue [35, 36]. Previous

research has shown maximal respiration and reserve capacity in PBMCs to correlate with

physical function and strength [37]. Symptoms described in this study such as muscle pain,

weakness and intolerance to exercise are also common symptoms among CFS patients. Given

the similarity in symptom profiles in the two diseases, in this study we aim to investigate if

PBMC abnormalities in bioenergetic function also exist in CFS [38–40].

Methods

Blood samples were obtained from patients fulfilling the Fukuda Diagnostic criteria for CFS

after obtaining ethical approval from the National Research Ethics Committee North East–

Newcastle & North Tyneside 2 [41]. Samples from healthy controls were collected through the

Institute of Cellular Medicine (Newcastle University) blood study after obtaining ethical

approval from the National Research Ethics Committee North East–County Durham & Tees

Valley. Samples were gathered after informed written consent was obtained.

PBMC Preparation

Blood samples were processed using the Histopaque1 method. Briefly, the whole blood sam-

ple was centrifuged at 700 x g for 10 minutes and plasma removed. Blood was made up to its

original volume with sterile PBS (Sigma Aldrich D8537). Density gradients were prepared

with Histopaque1 1.077 (Sigma Aldrich 10771) and Histopaque1 1.119 (Sigma Aldrich

11191). Blood was slowly layered on top of the Histopaque1 gradient and the tube spun at

700 x g for 30 minutes with the break off. Plasma layer was aspirated off and the PBMC layer

collected. PBMCs were washed with fresh PBS and either used for experiments immediately or

frozen at -80˚C after being combined with freezing medium (40% FBS (Sigma Aldrich F0804),

10% DMSO (Sigma Aldrich D8418) and 50% RPMI-1640 (Sigma Aldrich R7388). To revive

frozen samples, vials were rapidly defrosted in a water bath at 37˚C and added to 10ml of fresh

RPMI-1640. Cells were centrifuged at 700 x g for 10 minutes, the supernatant removed and

cells resuspended in fresh RPMI-1640. Cell viability was then determined using the trypan

blue method (see below). PBMC experiments were conducted using RPMI-1640 medium sup-

plemented with 10% FBS and 1% penicillin-streptomycin (Sigma Aldrich P4333). Blood sam-

ples were processed within 4 hours of blood collection.

Extracellular flux analysis

OXPHOS and glycolytic function of cells were determined using the Seahorse XFe96 extracel-

lular flux analyser according to manufacturer’s protocols [42, 43]. The XFe96 extracellular flux

analyser used in this study provided a high-throughput, 96-well, fully automated format for

the analysis of OXPHOS and glycolysis. With the XFe96, mitochondrial respiration is mea-

sured by recording the rate of decrease of the concentration in oxygen in the assay medium.

Probes form a transient micro-chamber within each well allowing changes in oxygen level and

proton concentration to be easily detected. The rate of glycolysis of the cells was measured by

recording the rate of increase in proton concentration in the assay medium, also known as the

extracellular acidification rate (ECAR). Oxygen consumption rate (OCR) was used as an
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indicator of OXPHOS while ECAR was used as an indicator of glycolytic conversion of glucose

to lactate.

Cells were seeded on a microplate (Agilent Technologies 101085–004), coated with poly-D-

lysine (Sigma Aldrich P7886) to aid attachment, at pre-determined cell densities (500,000

cells/well) and incubated overnight at 37˚C and 5% CO2 prior to experiments. Each sample

was seeded at least in quadruplicate to aid measurement reliability. Oxygen consumption rate

(OCR) and extracellular acidification rate (ECAR) were measured following the sequential

addition of test reagents. For the mitochondrial stress test these were; 1μM oligomycin (Sigma

Aldrich 75351), 3μM Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) (Sigma

Aldrich C2920) and 0.5μM rotenone (Sigma Aldrich R8875) and antimycin A (Sigma Aldrich

A8674). Basal respiration, ATP production, proton leak, maximal respiration, reserve capacity,

non-mitochondrial respiration, and coupling efficiency were calculated as described by the

manufacturer (Fig 1A) [44]. For the glycolysis stress test the compounds added were; 10mM

glucose (Sigma Aldrich G7021), 1μM oligomycin (Sigma Aldrich 75351), and 50mM 2-deoxy-

glucose (Sigma Aldrich D6134). This allowed glycolysis, glycolytic capacity, glycolytic reserve,

and non-glycolytic acidification to be calculated as described by the manufacturer (Fig 1B)

[44]. Reliability of reagents was ensured by using reagents aliquoted from a single batch. Data

were normalised for protein concentration following a bicinchoninic acid (BCA) assay (Fisher

Scientific 10741395) conducted according to manufacturer’s instructions [45]. Briefly, stan-

dards (in triplicate) and working reagent (50 parts BCA reagent A and 1 part BCA reagent B)

were prepared. Medium was removed from the microplate and 25μl of ice cold cell lysis buffer

(Sigma Aldrich 4719956001) added. Cells were scraped to ensure detachment from the plate.

200μl was added to each well, including standards, and the entire contents of the well trans-

ferred to a fresh 96 well plate. This was incubated at 37˚C in the dark for 30 minutes before

absorbance was read at 562nm. A standard curve was created using the standards and protein

concentration of the samples determined. Analysis was conducted using Wave software ver-

sion 2.2.0.276 and Microsoft Excel 2013.

Trypan blue

Trypan blue (Sigma Aldrich T8154) was used to determine cell viabilities. Equal volumes of

cell suspension and trypan blue were mixed and cells counted on a haemocytometer. Dead

cells appear blue as they are permeable and take up the dye while living cells are impermeable

Fig 1. A. Profile of the key parameters of mitochondrial respiration measured during a mitochondrial stress test. B. Key parameters

measured during a glycolysis stress test. Based on images found in the XF report generator user guide [44].

https://doi.org/10.1371/journal.pone.0186802.g001
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to the dye and appear uncoloured. Living cells were calculated as a percentage of the total

number of cells to give cell viability.

Statistics

Groups were compared using a two-way ANOVA with least significant difference (LSD) test

and post-hoc Bonferroni correction for multiple comparisons were used where stated. Two-

way ANOVAs were carried out using IBM SPSS Statistics 22. All other statistical analysis was

conducted using MiniTab 17 statistical software. The Anderson-Darling test for normality was

used to ensure normally distributed data before Student’s t-tests were carried out after assess-

ing data to confirm equal variances. Pearsons correlations were used to determine correlation

statistics. Graphs were created using Graphpad Prism 7.

Results

Age and sex of participants are shown in Table 1.

Initial experiments were carried out in order to establish optimal cell number, oligomycin and

FCCP concentrations as per the manufacturer’s instructions (S1 File) [46].

Effect of freezing on PBMC OCR

Blood sample collection from CFS patients was sporadic and unpredictable, therefore, it was

deemed necessary to freeze samples so they could be run at the same time to negate inter-plate

variation. For this reason, mitochondrial stress tests were performed on freshly isolated

PBMCs and those that had been frozen at -80˚C on the day of collection and subsequently

revived in order to determine the effect of freezing on mitochondrial function which has previ-

ously been considered with conflicting results [47, 48]. These experiments were conducted

with cells incubated in high (10mM) glucose medium. Example traces from the mitochondrial

stress test are shown in Fig 2.

The seven parameters of respiration (basal respiration, ATP production, proton leak, maxi-

mal respiration, reserve capacity, non-mitochondrial respiration, and coupling efficiency)

were calculated and are shown in Fig 3. Groups were compared using a two-way ANOVA

with LSD test and post-hoc Bonferroni correction for multiple comparisons.

In both fresh and frozen PBMCs, after Bonferroni correction, statistically significant differ-

ences between CFS and control patients were observed in the same four parameters; basal res-

piration (p�0.043), proton leak (p�0.013), maximal respiration (p�0.003), and reserve

capacity (p�0.012) (Fig 3).

When fresh and frozen PBMC samples from CFS patients were compared, basal respiration

(p = 0.006), ATP production (p = 0.003), maximal respiration (p<0.001) and reserve capacity

(p<0.001) differed significantly (Fig 3). Similarly, in healthy controls, significant differences

were seen in basal respiration (p = 0.008), ATP production (p = 0.047), maximal respiration

(p<0.001) and reserve capacity (p<0.001) between fresh and frozen samples. The consistently

Table 1. Age and gender composition of patient and control cohorts.

Control CFS

Total participants 35 52

Age (mean±SD) 36.6±12.0 42.8±13.7

Female/male ratio 27/8 44/8

https://doi.org/10.1371/journal.pone.0186802.t001
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significant decrease in basal respiration and maximal respiration in frozen samples compared

to freshly isolated PBMCs is thought to be due to stress as a result of the freezing process.

Effect of glucose concentration on PBMC OCR

Mitochondrial stress tests were also run in the presence of low (1mM) and high (10mM) glu-

cose medium with the aim of seeing if changes in cellular ATP production could be detected

between the two concentrations. It was hypothesised that PBMC incubation in low glucose

conditions would cause the cells to be directed away from energy transduction via glycolysis

and towards the OXPHOS pathway, causing an increase in mitochondrial respiration. This

hypothesis predicts higher oxygen consumption rates in low glucose conditions compared

with high glucose. Low glucose conditions were used to replicate a natural stressor (hypogly-

caemia) that PBMCs may experience in vivo which is in contrast to the stress of freezing previ-

ously investigated, which is not experienced by PBMCs in vivo. An example trace of the

mitochondrial stress test results are shown in Fig 4.

In low glucose, the CFS population had significantly lower results than the controls in six of

the seven parameters measured; basal respiration (p<0.001), ATP production (p<0.001), max-

imal respiration (p<0.001), reserve capacity (p<0.001), non-mitochondrial respiration

(p<0.001) and coupling efficiency (p<0.001) (Fig 5). When cells were incubated in high glu-

cose CFS and control PBMCs differed in five of the seven parameters measured: basal respira-

tion (p<0.001), ATP production (p<0.001), proton leak (p = 0.013), maximal respiration

(p<0.001) and reserve capacity (p<0.001) (Fig 5).

The parameters which showed significant differences when results were compared from

low and high glucose incubations were ATP production (p<0.001), proton leak (p<0.001),

maximal respiration (p = 0.025), non-mitochondrial respiration (p = 0.004) and coupling effi-

ciency (p<0.001) (Fig 5). However, these differences were only observed in the control cohort.

Glucose concentration did not have any effect on the parameters within the CFS cohort.

Age of participants were correlated with maximal respiration (high glucose) using Pearson’s

correlation. The results eliminate age (p = 0.217) as a confounding factor for mitochondrial

function (Figure A S2 File). Student’s t-tests were conducted to see if sex of participants had an

effect on maximal respiration (high glucose) (Figure B S2 File). There were no significant dif-

ferences between female and male participants and maximal respiration in either the control

(p = 0.630) or CFS (p = 0.862) cohorts, therefore sex can be eliminated as a confounding factor.

Fig 2. Example extracellular flux traces of a mitochondrial stress test performed on fresh and frozen

PBMCs isolated from CFS patients and controls.

https://doi.org/10.1371/journal.pone.0186802.g002
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Pearson’s correlation was used to investigate the relationship between the length of time

PBMCs were frozen and cell viability as well as maximal respiration. Length of time of freezing

did not correlate with cell viability (p = 0.100) or maximal respiration (p = 0.722) and can

therefore be eliminated as a confounding factor (Figures C & D S2 File). The lack of correla-

tion between length of time of freezing and maximal respiration shows that even short term

Fig 3. Results from a mitochondrial stress test conducted using fresh and frozen CFS and control

PBMCs. A. Basal respiration. B. ATP production. C. Proton leak. D. Maximal respiration. E. Reserve

capacity. F. Non-mitochondrial respiration. G. Coupling efficiency. Control fresh n = 3; CFS fresh n = 25;

Control frozen n = 12; CFS frozen n = 38. * denotes p� 0.05; *** denotes p� 0.005. Groups were compared

using a two-way ANOVA with LSD test and post-hoc Bonferroni correction for multiple comparisons.

https://doi.org/10.1371/journal.pone.0186802.g003
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freezing causes changes in OXPHOS function which proves that it is the freezing and reviving

process that causes these changes as opposed to the length of time of freezing.

Results between plates for both the fresh/frozen and low/high glucose experiments were

very consistent within each cohort due to the normalisation of data for protein concentration

immediately after each assay.

Glycolytic activity

Results from a glycolysis stress test performed using PBMCs showed no differences in glycoly-

sis between the patient and control cohorts (Fig 6). None of the five parameters calculated

from the assay differed significantly between CFS and control samples (p�0.075).

Cell viabilities of fresh and frozen samples were determined using Trypan Blue. The viabili-

ties of fresh and frozen samples did not differ significantly and nor was there a significant dif-

ference between the viabilities of CFS and control samples, either fresh or frozen (p�0.346),

demonstrating the consistency of the cell viability between the two cohorts.

Discussion

Despite large numbers of the population being affected, the causes of CFS remain unexplained.

This is the first study to use case-control cohorts to investigate mitochondrial function in

PBMCs in CFS. PBMCs were used for this preliminary study as it allows interrogation of

potential abnormalities at a systemic level.

Significantly altered mitochondrial stress test parameters in the CFS group compared with

the healthy control group (Fig 3 & Fig 5) suggests that CFS patients may have systemic abnor-

malities in energy transduction, particularly when isolated PBMCs are put under mitochon-

drial stress. Lower reserve capacity observed in CFS patients are indicative of the cells of

patients performing closer to their capacity in normal conditions without stress than healthy

controls. Lowered maximal respiration suggests that the PBMCs of CFS patients are not capa-

ble of the same levels of respiration as healthy controls. Results showed that CFS patients can

only increase their respiratory capacity 47% (±37%) from baseline when maximally stimulated

by FCCP, which is significantly (p<0.001) lower than the 98% (±32%) increase in respiratory

capacity achieved by control PBMCs. The consistently lower maximal respiration in the CFS

cohort shows the inability of CFS patients to respire to the same extent as the control cohort

when cellular stress is applied. The lower reserve capacity suggests that when CFS PBMCs

Fig 4. Example trace of a mitochondrial stress test performed in control and CFS PBMCs incubated

for 24 hours in high (10mM) glucose.

https://doi.org/10.1371/journal.pone.0186802.g004
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come under stress they are less able to increase their respiration rate to compensate for the

increase in stress leaving patients unable to fulfil cellular energy demands. Similar abnormali-

ties in reserve capacity are thought to contribute to a range of other disease pathologies such as

heart disease [49], neurodegenerative diseases in aging [50], and smooth muscle cell death

[51].

Fig 5. Results from a mitochondrial stress test conducted using CFS and control PBMCs incubated

for 24 hours in low (1mM) and high (10mM) glucose. A. Basal respiration. B. ATP production. C. Proton

leak. D. Maximal respiration. E. Reserve capacity. F. Non-mitochondrial respiration. G. Coupling efficiency.

Control low glucose n = 12; CFS low glucose n = 39; Control high glucose n = 12; CFS high glucose n = 38. *
denotes p� 0.05; *** denotes p� 0.005. Groups were compared using a two-way ANOVA with LSD test and

post-hoc Bonferroni correction for multiple comparisons.

https://doi.org/10.1371/journal.pone.0186802.g005
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The freezing process had a significant impact on the cellular bioenergetics of PBMCs in

both the control and CFS cohorts (Fig 3). Four of the parameters investigated showed signifi-

cant differences between the fresh and frozen samples in both cohorts; basal respiration, ATP

production, maximal respiration, and reserve capacity. Results showed that the freezing pro-

cess affected both cohorts similarly, causing decreases in each of the aforementioned parame-

ters. Freezing of PBMCs can cause numerous cellular changes which could account for the

decrease in OCR recorded in these experiments. Potential changes caused by freezing include

oxidative damage, a loss of membrane integrity due to the formation of ice crystals and

changes in ion homeostasis [52].

Although freezing was shown to impact certain parameters, the same parameters were seen

to be significantly different between the control and CFS cohorts in both fresh and frozen sam-

ples. This demonstrates that even though the absolute values of some of the parameters are

affected by the freezing process, the pattern can be seen in both cohorts and therefore either

fresh or frozen samples can be used to detect differences between control and CFS cohorts.

For future studies wishing to look at absolute OCR values then fresh samples should be used,

however, for other experiments, frozen samples are adequate to show the differences between

the cohorts sufficiently. Frozen samples were used for the high and low glucose experiments

Fig 6. Assessment of cellular glycolytic function in CFS and control PBMCs. A. Results from a glycolysis stress test in

PBMCs. B. Glycolysis, C. glycolytic capacity, and D. glycolytic reserve calculated from glycolysis stress test results. Control n = 16;

CFS n = 19.

https://doi.org/10.1371/journal.pone.0186802.g006
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due to sporadic sample collection over a relatively long time period, but this finding validates

the use of frozen samples in these experiments and suggests that the freezing of samples does

not affect the ability to compare cohorts. It should be noted that during early analysis with

sample sizes�12, differences between the two cohorts were difficult to detect in frozen sam-

ples, therefore for smaller samples sizes the use of fresh samples would be advised to detect dif-

ferences between cohorts.

It was hypothesised that PBMC incubation in low glucose conditions would cause the cells

to be directed away from energy transduction via glycolysis and towards the OXPHOS path-

way, causing an increase in mitochondrial respiration. This hypothesis predicts a higher basal

respiration and maximal respiration in low glucose conditions. A higher maximal respiration

in low glucose conditions was only observed in the control cohort but not the CFS cohort,

while basal respiration did not increase significantly in either cohort in the low glucose condi-

tions. Additionally, the control cohort increased ATP production, non-mitochondrial respira-

tion and coupling efficiency, and decreased proton leak, in low glucose conditions. The CFS

cohort showed no differences between low and high glucose conditions in any of the parame-

ters. This may be due to the control cells being more adaptable to their environment and pos-

sessing an ability to increase their ATP production via mitochondrial respiration when

required–something the CFS cells may not be able to do.

Four of the parameters were shown to differ between the control and CFS cohorts in both

the low and high glucose concentrations; basal respiration, ATP production, maximal respira-

tion, and reserve capacity. This demonstrates that the differences in these parameters between

the two cohorts observed in Fig 3 could be reproduced in different glucose conditions and con-

firms the inability of the CFS PBMCs to increase their respiratory capacity to the extent that

control PBMCs do both at baseline and when maximally stimulated by FCCP, even in low glu-

cose conditions when the cells are pushed towards ATP production via mitochondrial respira-

tion and away from glycolysis as an energy source. Non-mitochondrial respiration and

coupling efficiency only differed between the control and CFS cohorts in low glucose condi-

tions, while proton leak only differed between the two cohorts in high glucose conditions.

Coupling efficiency showed that ATP production only became more efficient in the control

cohort when put under the stress of low glucose conditions, and not in the CFS cohort. Differ-

ences in coupling efficiency were seen between the control and CFS cohorts under low glucose

conditions which suggests that the CFS cells are already performing at their maximum rate of

efficiency for producing ATP which control cells are able to increase the efficiency at which

they produce ATP when required e.g. under low glucose conditions.

Throughout the analysis process statistical analysis was conservative, using Bonferroni cor-

rection to correct for multiple comparisons introduced by looking at multiple parameters of

respiration, as such multiple comparisons increase the risk of type I error. The statistically sig-

nificant results shown in Fig 3 and Fig 5 indicate strong data, robust to statistical correction,

despite the relatively small sample sizes used.

These experiments have helped to identify the direction future research into cellular bioen-

ergetics in CFS should take by detecting differences in some, but not all, parameters of mito-

chondrial function. Differences in mitochondrial parameters shows the inability of CFS

PBMCs to utilise the OXPHOS pathway to produce energy to the same extent as control

PBMCs both in baseline conditions and when forced to maximally respire. The consistently

significant differences between the two cohorts in basal respiration and maximal respiration

demonstrates their importance as potential markers for CFS, a finding which could be utilised

in directing future research into mitochondrial dysfunction in CFS.

Contrary to previous literature [15, 28] which suggested that abnormalities in PBMC ATP

levels may be caused by glycolysis, results from the glycolysis stress test showed that glycolysis
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in CFS patients does not differ significantly from that of the non-disease cohort. This may be

due to the relatively small sample sizes used in this study. The combination of the detection of

significant differences in OXPHOS alongside the lack of detectable differences in glycolysis

has potentially uncovered a previously unknown phenotype of CFS PBMCs, although larger

samples sizes will be required in order for this to be confirmed. While the primary limitation

of this study was sample size which resulted in underpowered analysis, particularly for the

freshly isolated control cohort, it should be noted that the data presented here shows only pre-

liminary findings. Higher sample sizes and longitudinal sample collection will be sought in the

future to further validate the results obtained here, and potentially the power required to detect

differences in other parameters. Another limitation of this study is the lack of characteristics of

the CFS cohort. Demographic, anthropometric and symptom data would be useful to look for

links with the mitochondrial abnormalities observed in this study. It would be interesting to

analyse whether CFS symptoms, fatigue level in particular, correlated with any of the mito-

chondrial parameters measured. Additional experiments and techniques could be used to

assess mitochondrial content and morphology, mitochondrial function in permeabilised cells

and isolated mitochondria, and measures of mitochondrial membrane potential to further val-

idate these results. Stratification of PBMCs using fluorescence activated cell sorting (FACS) is

a technique that could be utilised to further sub-divide cell types that fall within of the category

of PBMCs to identify which specific cell populations are responsible for the observed differ-

ences in OXPHOS. It is currently unknown whether factors such as recent activity and diet

before blood collection has an effect on PBMC bioenergetics and this is an area that needs

investigating. The use of sedentary controls and activity monitors in future studies would

prove beneficial to show the effect of activity levels on PBMC bioenergetics. This study used

PBMCs as a predictor for systemic mitochondrial function but other cell types could be inves-

tigated in future to investigate if the differences observed in this study can be seen in other tis-

sue types in CFS patients.

The results of this study reflect the results from Hartman et al. in T2DM patients, showing

a link between a different disease with fatigue as a core symptom and three OXPHOS parame-

ters; basal respiration and maximal respiration [33]. This indicates that the PBMC bioenergetic

abnormalities show a consistent link with fatigue, but whether the abnormalities occur as a

result of the fatigue or are the cause of disease remains unknown.

This preliminary research has clearly shown statistically significant differences in the bioe-

nergetic profile of PBMC’s derived from CFS patients when compared to non-diseased control

cells. Importantly, these results do not establish whether differences in PBMC energy pathways

are a cause or a consequence of CFS, however, this data clearly implies that these cells may

play a role in the disease pathway. Further, the use of PBMCs may present a new and valuable

model for the subsequent design of novel therapeutic approaches to the treatment of CFS.
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