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ABSTRACT As the null hypothesis of genome evolution, population genetic theory
suggests that selection strength controls genome size. Through the process of ge-
netic drift, this theory predicts that compact genomes are maintained by strong pu-
rifying selection while complex genomes are enabled by weak purifying selection. It
offers a unifying framework that explains why prokaryotic genomes are much
smaller than their eukaryotic counterparts. However, recent findings suggest that
bigger prokaryotic genomes appear to experience stronger purifying selection, indi-
cating that purifying selection may not dominate prokaryotic genome evolution.
Since archaeal genomes were underrepresented in those studies, generalization of
the conclusions to both archaeal and bacterial genomes may not be warranted. In
this study, we revisited this matter by focusing on archaeal and bacterial genomes
separately. We found that bigger bacterial genomes indeed experienced stronger
purifying selection, but the opposite was observed in archaeal genomes. This new
finding would predict an enrichment of noncoding sequences in large archaeal ge-
nomes, which was confirmed by an analysis of coding density. In contrast, coding
density remained stable regardless of bacterial genome size. In conclusion, this
study suggests that purifying selection may play a more important role in archaeal
genome evolution than previously hypothesized, indicating that there could be a
major difference between the evolutionary regimes of Archaea and Bacteria.

IMPORTANCE The evolution of genome complexity is a fundamental question in bi-
ology. A hallmark of eukaryotic genome complexity is that larger genomes tend to
have more noncoding sequences, which are believed to be minimal in archaeal and
bacterial genomes. However, we found that archaeal genomes also possessed this
eukaryotic feature while bacterial genomes did not. This could be predicted from
our analysis on genetic drift, which showed a relaxation of purifying selection in
larger archaeal genomes, also a eukaryotic feature. In contrast, the opposite was evi-
dent in bacterial genomes.
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ukaryotic genomes vary in size by orders of magnitude more than prokaryotic

genomes. The genome size range is about 10° to 10"" bp in eukaryotes, which are
rich in noncoding sequences, and 10> to 107 bp in prokaryotes, which are streamlined
and have minimal noncoding sequences (1, 2). This genome size gap is believed to be
shaped primarily by nonadaptive processes based on the population genetic theory (3).
That theory suggests that prokaryotes often undergo strong purifying selection owing
to a generally large effective population size to maintain compact genomes (2). In
contrast, eukaryotes typically have a much smaller effective population size and are
subject to weak purifying selection, which enables large genomes (4). This is because
all excess DNA is mutationally hazardous, and the efficiency of selection determines
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whether the excess DNA is removed from or fixed in the genome through the process
of genetic drift (5).

The efficiency of selection can be approximately measured by the genome-wide
dN/dS ratio (ratio of nonsynonymous to synonymous substitution rates) for orthologous
genes shared by closely related lineages, and the stronger the purifying selection
becomes, the lower the dN/dS ratio is (6). The population genetic theory predicts that
bigger genomes experience weaker purifying selection or higher dN/dS ratios (2-4).
However, recent findings regarding prokaryotic genomes suggest otherwise, showing
that genome size is negatively correlated with the dN/dS ratio (7, 8). This only seems
possible when gene gains could be slightly beneficial and that the benefits would be
diluted out because of genome expansion and deletion bias (i.e., DNA loss outpaces
gain), based on mathematical models (8). The benefits of gene gains thus make
genome expansion possible under strong purifying selection, but the expansion stops
once the benefits diminish, thus restraining the overall genome size. Indeed, deletion
bias appears to be universal across the full range of cellular life forms, and its strength
tends to decline when the genome expands, indicating a dynamic balance between
DNA loss and DNA gain (1, 9, 10).

While bacterial species were extensively sampled in these studies, archaeal species
were underrepresented (7, 8). Therefore, generalization of the mechanisms identified
therein may not be warranted in Archaea. In this study, we concentrated on archaeal
genomes to revisit previous hypotheses of genome size evolution. Bacterial genomes
were also sampled and examined for comparison when necessary. We observed that
the strength of purifying selection and the amount of noncoding genes were nega-
tively and positively associated with archaeal genome size, respectively, as predicted by
population genetic theory. In contrast, the opposite trend was evident in bacterial
genomes.

Expansion of archaeal genomes associated with relaxed purifying selection. In
eukaryotes, relaxed purifying selection is associated with genome expansion, which is
consistent with the accumulation of introns and mobile elements that are often
deleterious (3).

While our bacterial data set reproduced the previous observations showing that
strong purifying selection was associated with genome expansion (7, 8), our archaeal
data set revealed a eukaryote-like pattern based on a genome-wide dN/dS ratio analysis
(Fig. 1A and B; see Tables S1 and S2 in the supplemental material). This finding predicts
an enrichment of noncoding sequences in larger archaeal genomes, as also observed
in eukaryotic genomes (see below for coding density analysis).

At least a couple of observations indicated that our archaeal and bacterial data sets
were comparable and likely representative. First, both archaeal and bacterial mean
dN/dS ratios were between 0.05 and 0.20 (Fig. 1A and B) and a similar range has also
been observed in eukaryotic lineages (11, 12). Second, most archaeal and bacterial
genome pairs had an average nucleotide identity (ANI) of 75 to 95% (Fig. 2), an
empirical range that delineated closely related prokaryotic species belonging to the
same genus (13). This minimized the potential bias of dN/dS ratio computations caused
by uneven variation in evolutionary distances between genomes (7). Nevertheless,
while the bacterial samplings both here and in previous studies seem to have captured
substantial taxonomic diversities of bacterial genomes, the archaeal samplings need
further improvements. Sampling of archaeal genomes across more phyla will be
necessary to begin to address their full genome size range. This is because the archaeal
genome size narrowly ranges from 0.5 to 6 Mb compared to the 0.6- to 9-Mb range of
bacterial genomes (Tables S3 and S4). Of the 29 prokaryotic phyla taxonomically
established, only 2 belong to Archaea, where most complete archaeal genomes cur-
rently come from, and an estimated ~300 archaeal phyla still wait to be sampled (14).

Coding density in Archaea shows a trend similar to that seen in eukaryotes.
Coding density or gene density, as measured by the proportion of a genome sequence
that is composed of coding or gene sequence, has been shown to correlate negatively
and neutrally with eukaryotic and bacterial genome sizes, respectively (7, 15, 16). This
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FIG 1 Association between genome size and the dN/dS ratio for archaeal (A; n = 21) and bacterial (B; n =
28) genome pairs and association between coding density and genome size in Archaea (C; n = 49) and
Bacteria (D; n = 78). Note that the stronger the purifying selection becomes, the lower the dN/dS ratio is.
Spearman rank correlation coefficients (Rs) and two-sided significance (P) values are indicated in each
panel. Genome sizes are shown in megabase pairs (Mb) in panels C and D but are in protein coding
sequences (CDS) in panels A and B, as only protein coding sequences were used for dN/dS ratio analysis.
Regardless, the same trends were reproduced when genome size measured in base pairs instead of protein
coding sequences was used.

observation made in eukaryotes is consistent with a genomic structure showing that
noncoding sequences, primarily spliceosomal introns and mobile genetic elements, are
overrepresented in larger eukaryotic genomes (3). The observation regarding Bacteria
is also consistent with the dynamic balance between DNA loss and DNA gain (1, 8, 9).
While our bacterial data set confirmed previous observations, our archaeal data set
again revealed a eukaryote-like pattern (Fig. 1C and D and Tables S3 and S4). That is to
say, a strong negative correlation was observed between coding density and archaeal
genome size, indicating that an insertion bias enriching noncoding sequences was also
evident during the expansion of archaeal genomes. It remains elusive what category of
noncoding sequences is overrepresented in larger archaeal genomes, as the nature of
most archaeal noncoding sequences is poorly characterized (17). Regardless of the
category, it would probably be different from that observed in eukaryotes, as spliceo-
somal introns have never been found in Archaea and the distribution of known mobile
elements in archaeal genomes is similar to that in their bacterial counterparts (18).
However, the presence of novel mobile elements in Archaea could not be ruled out.
Compared to eukaryotes, one common feature is still shared by Archaea and Bacteria,
both of which had a similar and narrow range of coding density, i.e., about 70 to 95%
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FIG 2 Association between the dN/dS ratio and genomic distance as measured by percent ANI. Closed
circles represent bacterial pairs (n = 28), and open triangles represent archaeal pairs (n = 21).
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in our data set. In contrast, the eukaryotic coding density roughly ranged from 1 to 80%
(15). Therefore, there could be an unknown force(s) that prevents noncoding regions in
archaeal genomes from enriching to the extremely high levels observed in eukaryotes.

This study presents the first evidence that the evolutionary regimen of the com-
plexity of archaeal genomes could be significantly different from that of their bacterial
counterparts. Instead, certain key eukaryote-like evolutionary features seem to be
already embedded in archaeal genomes. On the one hand, those observations seem
striking, as the architecture of archaeal genomes is very similar to that of bacterial
genomes (2). On the other hand, they may simply reflect the close evolutionary
connections between Archaea and eukaryotes, since eukaryotes likely evolved within
the Archaea (19). Although the archaeal samplings here are still limited and the
similarities drawn between Archaea and eukaryotes here are preliminary, we believe
our study serves as a sufficient reminder that it is probably no longer a safe practice to
group archaeal and bacterial genomes into one category when testing evolutionary
hypotheses. Rather, comparisons should be made among Archaea, Bacteria, and eu-
karyotes.

Data collection and coding density calculation. Genomic data from closely
related species that belong to the same genus were downloaded from NCBI (http://
www.ncbi.nlm.nih.gov/). Genera or species that were not well established, i.e., those
whose taxonomic names were not formally proposed or alternative names were
available, were removed before further analysis. The coding density of each genome
was calculated as follows: % coding density = (DNA length of all coding sequences/
total DNA length of complete genome) X 100%.

dN/dS ratios and ANI analyses. For each pair of genomes, pairs of orthologs were
identified by a hybrid procedure combining Bidirectional Best Hit and BLASTclust (20).
The orthologous pairs identified were aligned by ClustalW2, and dN/dS ratios were
calculated by using YNOO in the PAML package (21, 22). Synonymous sites and ratios of
synonymous to nonsynonymous sites considered to be saturated or unreliable (that is,
a dS of <0.1, a dS of >1.6, or a dN/dS ratio of >99) were discarded before the mean
dN/dS ratio and standard error of the mean of each genome pair were both calculated
and reported in Tables S1 and S2. Although data filtration is a common practice to
ensure better estimation of selective pressure, it also substantially reduces the number
of pairwise orthologs available for downstream analyses (7, 11). This would make the
data set less representative for inferring genome-wide patterns. Therefore, only ge-
nome pairs retaining pairwise orthologs accounting for no less than 5% of the pairs’
average coding capacity after all filtrations were kept for ultimate analyses. This cutoff
is the starting point to represent most of the essential genes determined in prokaryotic
genomes (23). ANI values were retrieved from IMG (24).

Correlation analysis. Spearman rank correlation (v1.0.3) was employed to obtain
correlation coefficients (Rs) and two-sided P values (25).

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/
mSystems.00112-17.

TABLE S1, DOCKX file, 0.05 MB.

TABLE S2, DOCX file, 0.03 MB.

TABLE S3, DOCKX file, 0.04 MB.

TABLE S4, DOCX file, 0.04 MB.
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