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Abstract

Bipolar disorder (BD), also known as manic depression, is a brain disorder that affects the brain 

structure of a patient. It results in extreme mood swings, severe states of depression and over-

excitement simultaneously. It is estimated that roughly 3% of the population of the United States 

(about 5.3 million adults) suffers from BD. Recent research efforts like the Twin studies have 

demonstrated a high heritability factor for the disorder, making genomics a viable alternative for 

detecting and treating bipolar disorder, in addition to conventional lengthy and costly post-

symptom clinical diagnosis. Motivated by this study, leveraging several emerging deep learning 

algorithms, we design an end-to-end deep learning architecture (called DeepBipolar) to predict BD 

based on limited genomic data. DeepBipolar adopts the Deep Convolutional Neural Network 

(DCNN) architecture that automatically extracts features from genotype information to predict the 

bipolar phenotype. We participated in the Critical Assessment of Genome Interpretation (CAGI) 

bipolar disorder challenge and DeepBipolar was considered the most successful by the 

independent assessor. In this work, we thoroughly evaluate the performance of DeepBipolar and 

analyze the type of signals we believe could have affected the classifier in distinguishing the case 

samples from the control set.
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I. INTRODUCTION

Bipolar disorder, also known as manic-depressive illness, is a complex genetic disorder, 

resulting in hysteria or severe states of depression. Medical research reports that bipolar 

disorder affects close to 5.7 million adults in the United States aged 18 or above (Bipolar 

disorder statistics). Suicides alone kill 15% to 17% of bipolar disorder patients. Around 51% 

of the patients are estimated to go untreated due to lack of efficient and effective detection 

and treatment solutions(Bipolar disorder statistics). Twin studies of BD have yielded 

estimates of heritability up to 90% (Craddock et al. 2013), the highest among all mental 

disorders (Shih, Regina A. et al. 2004; Sullivan, Patrick F., et al. 2012). The Psychiatric 
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Genomics Consortium (PGC) (Psychiatric GWAS. 2011) identified 19 genome-wide 

significant loci for this disorder based on genome-wide association studies. This study was 

the first significant result identifying genetic BD factors. Motivated by these recent 

discoveries, Critical Assessment of Genome Interpretation announced the BD exomes 

challenge, in search of predictor methods for bipolar phenotypes from specific genotypes. 

As a part of the challenge, we proposed a deep learning based framework (called 

DeepBipolar) to predict bipolar disorder phenotypes from genotypes.

Deep learning (DL) combines lower-level representations to yield higher-level 

representations of the input datasets. Unlike conventional/shallow machine learning 

techniques that require feature engineering, deep learning models learn the features 

automatically through multiple layers (tens or hundreds of layers) of hierarchical 

representations, without handcrafted features (Yann LeCun et al. 2015). DL achieved state-

of-the-art results in several domains, such as computer vision (Krizhevsky et al. 2012), 

natural language processing (Tomas Mikolov et al. 2010) and speech recognition (Hinton, G. 

et al. 2012), with applications in fields such as genomics (Jian Zhou & Olga G. 

Troyanskaya. 2015) and astronomy (M. Huertas-company et al. 2015) as well. Some 

commonly used deep learning models include Deep Autoencoders (G. E. Hinton and R. R. 

Salakhutdinov. 2006), Convolutional Neural Networks (Yann LeCun et al. 2002) and Long 

Short-term Memory (Hochreiter, Sepp, and Jürgen Schmidhuber. 1997). DeepBipolar 

leverages the design of convolutional models and performs convolutions with trainable 

filters/kernels on the input genomic sequences. The convolving kernels move around in a 

window length across the input sequences, forming feature maps of the input sequences. 

Additionally, adding further layers of convolution causes the extraction of richer intricate 

features within the data, resulting in feature maps. Pooling is a common operation applied 

on these feature maps and is based on spatial invariance in the input dataset. The idea is that 

key features are more important than their surroundings. Two popular pooling techniques are 

max pooling and mean pooling.

DeepBipolar combines the state-of-the-art Deep Convolutional Neural Networks with 

biological indicators to predict these phenotypes. We show that our technique achieved the 

best accuracy in predicting the diseased group from the control group, while substantially 

outperforming other conventional machine learning techniques. After elaborating on the 

framework, we focus on explaining the features learnt by the model to decipher the 

biological indicators of the disease. Then, through an understanding of the features learnt by 

the model, we carry out post-analysis studies to identify the key contributors to the disorder. 

We found that the data could have issues related to sequencing. Identifying these as practices 

prevalent in the exomes sequencing community, we acknowledge and highlight the 

drawbacks of such a data preparation. Machine learning algorithms are suitable for 

identifying features that differentiate between various data points. Traditionally, experiments 

are designed to minimize any random noise in the data preparation phase to ensure the 

employed machine learning or statistical methods work on the actual biological indicators of 

the disorder and less on the artifacts. Therefore, the scope for systematic or batch artifacts is 

high in genome sequencing studies, based on such approaches that are used to sequence the 

case and control sets. Furthermore, some cost-effective measures used in genomic 

communities, say, using a control set of another sequencing study, can introduce artifacts in 
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the datasets that are picked up by the machine learning model. After introducing our 

framework, we identify the features learnt and design experiments to measure the usability 

of the exome sequencing SNP for identifying bipolar disorder phenotypes.

II. RELATED WORK

Bipolar disorder studies are based on the structure of the human brain and its activities using 

Functional Magnetic Resonance Imaging (FMRI) and Positron Emission Tomography (PET) 

instruments (Bipolar Disorder (NHS)). These studies highlight the smaller size of the 

prefrontal cortex of the brain in bipolar patients, with the brain activity in such patients 

being similar to patients suffering from other brain disorders like schizophrenia (Bipolar 

Disorder (NHS)).

Twin studies of BD show heritability as the most responsible factor causing the disorder 

(Craddock et al. 2013). This factor is close to 90% and is amongst the highest across all 

other mental disorders (Shih, Regina A. et al. 2004; Sullivan, Patrick F. et al. 2012). There 

have been previous studies analyzing the lifetime prevalence of the disorder and the 

heritability associated with it (Sullivan, Patrick F. et al. 2012), affirming the link between 

non-genetic factors and bipolar disorder (Alloy, Lauren B. et al. 2005), therefore leading to 

Genome-Wide Association Studies (GWAS). Studies conducted by the Psychiatric 

Genomics Consortium (PGC) concluded that there is less than 25% total variance in liability 

of BD that could be explained by all SNPs (C., Lee & S.H. et al. 2013). This shows that 

variants that were poorly tagged and missed by GWAS contribute to the risk of Bipolar 

Disorder (Bodmer, W. and Bonilla, C. 2008; Manolio, T.A. et al. 2009; Cirulli, E.T. and 

Goldstein, D.B. 2010). These studies prompted BD study using exome sequencing with the 

bipolar exome challenge, released by CAGI, being one among them.

Various machine learning algorithms have been employed for predicting phenotype from 

genotype but there are few works in the literature that leverage the remarkable capability of 

deep neural networks for such tasks. Deep Learning works on spatial invariance between 

input features, especially convolutional neural networks that are used extensively in 

computational biology. This model utilizes the sliding window technique to understand the 

interactions between the SNPs and their context. For various challenging problems like 

variant interpretation, deep learning algorithms have yielded state-of-the-art results with 

genome sequences data (Babak Alipanahi et al. 2015; Hui Y. Xiong et al. 2015). During 

sequencing analysis, a large number of variants poses a greater challenge and carrying out 

studies on such a large pool of the human population is tedious and expensive. This 

necessitates higher and superior dimensionality reduction algorithms for machine learning 

models to work efficiently, and the promise shown by convolutional autoencoders to extract 

and compose robust features is effective, as shown by previous research (Vincent, Pascal et 

al. 2008).
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III. DEEPBIPOLAR

This section introduces the dataset we worked on the challenge related to the prediction of 

bipolar phenotype. We also elaborate on our post-result analysis the insight we gained to 

better understand the data and through our DeepBipolar framework.

A. Datasets

The dataset was provided by The Regents of the University of California under the challenge 

“Bipolar Exomes” in the Critical Assessment of Genomic Interpretation 4 experiment. The 

dataset consists of 1000 samples, whose exome sequences are available, and 500 samples of 

the dataset are labeled to indicate whether the sample belongs to the diseased or the control 

group. Within the labeled dataset, there is a 50–50 split between the test and the control 

group. These data samples were randomly sampled from the pool of 1000 samples. The 

challenge is to predict the labels of the next 500 samples to indicate whether they belong to 

the diseased or the control group. For target capture and sampling, 60 genes of bipolar 

disorder were used. Intronic information of 1,422 synaptic genes and NimbleGen SeqCap 

EZ v2.0 Exome arrays were also utilized (CAGI -4). Additionally, variants with more than 

10% missing data or a Hardy-Weinberg disequilibrium value of p less than10−6 with the 

genotype of read depth less than 10, or genotype quality less than 20 were excluded (CAGI 

-4).

B. Data Visualization

Histograms and box plots are plotted to visualize the distribution of our datasets. It is easier 

to plot the distribution as all the genotypes in our dataset are unphased and we encode them 

with the numerical value, as explained in the data preprocessing section. As the number of 

variants for all the chromosomes is greater than 5e5, we use feature selection to reduce 

feature dimension. This is achieved through L1-based feature selection with regularization 

penalty parameter, C = 0.85. This reduces to less than 1% of the total features and we use 

the top 12 variants for visualization purposes. Figure 1 and Figure 2, are the histogram and 

box plot respectively for our bipolar datasets. Similarly, Figure 3, summarizes the mapping 

quality, quality depth and genotype quality for our data sets, without employing any 

threshold on low-quality variants.

C. Data Preprocessing

The data has the genotype information along with allele depth, read depth and genotype 

quality. To make the data consumable for deep learning models, we extract the genotype 

information for each variant that has a genotype quality greater than 50. As convolution 

works on spatial invariance and there is no ordering between variants across chromosomes, 

we use convolution within variants belonging to the same chromosome. For all the variants, 

we had their unphased genotype information, for example, “reference allele” / “alternate 

allele” 1, “reference allele”/ “alternate allele” 2 etc. To ensure the deep learning models are 

unbiased and do not favor one genotype over the other, we create one-hot-encoded vectors 

for all the types of genotypes available. 0/0 is made as 001, 0/1 is made as 010 and so on. 

This encoding ensures that all the categories are equidistant from each other.
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We also separate out variants from each chromosome separately because deep learning 

networks work on spatial invariance. There is an inherent ordering of variants among each 

chromosome but there is no such ordering between chromosomes. For this reason, 

convolution could not be applied over all the chromosomes, and is hence separated. Next, for 

each of the samples, we feed to our deep learning model all its variants across each 

chromosome and the target label of 1 or 0, with 1 being the diseased group. For validation 

purposes, we randomly sample 400 from both the case and the control groups for training 

and remaining 100 with labels for validation, and later predict the remaining 500 unlabeled 

test sets using this trained model. In typical optimization algorithms, it is important for the 

loss function to be computed on both the classes because in an unbalanced dataset, machine 

learning models tend to favor the bigger class as it reduces the loss. Here, we ensure that it is 

less likely for our models to learn one-class features better as we have evenly split the 

training dataset.

D. DeepBipolar Architecture

Inspired by state-of-the-art convolutional architectures, the architecture of DeepBipolar takes 

in a 23-channel input, with each input being the variants of a chromosome starting from 1 to 

22 and chromosome X.

The richer and finer interactions between the variants of each chromosome are captured by 

the 1D convolution and are applied across each channel of input. Figure 4, illustrates our 

DeepBipolar framework. Specific details of the number of layers of convolution with respect 

to each channel is obtained from Table I. We have a block of two convolutional layers, 

followed by a max-pooling layer resulting in sparser feature maps containing only the most 

important features. In each block, the max-pooling layer is followed by a batch 

normalization layer that helps in keeping the activation of the neurons in non-saturation 

regions. This further avoids overfitting the data by regularizing the activations of each max-

pooling layer. Next, we combine the feature maps from all the input channels by using a 

fully connected layer. This fully connected layer is then connected to one other fully 

connected layer with the final layer being the sigmoidal layer. This sigmoidal layer produces 

probabilities of output from 0 to 1, with control set belonging to class 0 and diseased group 

belonging to class 1.

Each neuron consists of ReLU activation to introduce non-linearity in the network. This 

helps the model get deeper by eliminating the vanishing gradient problem observed with 

tanh or sigmoid nonlinear activations of neurons. The deep neural network is then trained 

using gradient descent by standard backpropagation algorithm (Yann LeCun et al. 2015). We 

use a much quicker version of gradient descent i.e. stochastic gradient descent with a batch 

size of 32, i.e., the gradient descent happens for all the 32 samples together. This makes the 

order of input data important and, hence, for this reason, we reshuffle the input training 

dataset after every epoch. At the end of one epoch over all the batches, we obtained two sets 

of vectors. The first set of vectors is the value of the predicted classes for all the training 

samples, and the second set of vectors is the true class of the samples in the training set. 

Taking these two vector, we calculate the Bernoulli distance by computing the KL 

divergence. This step provides us with the loss function, representing a distance measure 
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between the predicted and true labels. We then run the next epoch, initializing weights to 

reduce the loss function obtained in epoch 1. Each epoch runs until the model converges 

with a patience of 5 epochs, i.e., the training was stopped when the validation accuracy did 

not improve for more than 5 epochs, usually implying model overfitting (on the training 

data). Empirically, it takes around 100 epochs to converge with a learning rate of 10−4 using 

the Adam optimizer. Training the model end-to-end takes close to 6 hours on Nvidia Tesla 

M40 servers. In Figure 5, the whole process of training is illustrated by taking Chromosome 

1 as an example. The sample process went into all the chromosome channels.

E. Comparison with Conventional Machine Learning Techniques

Apart from convolutional neural networks, we also employ decision trees and random 

forests techniques for obtaining the classification results. We train 400 samples for training 

and 100 for validation with the rest of the 500 samples for testing. Accuracy of 0.536 in the 

case of decision trees and 0.548 for random forests with 10 estimators (default) is recorded. 

Classification score summary for both the approaches is given in Table II. AUC scores 

recorded were 0.53 and 0.55 respectively.

ROC curve for the decision trees and random forests is shown in Figure 6. We applied a 

threshold of 0.5. Both of these classifiers are able to classify the Bipolar Disorder patient 

almost equally well as shown in Figure 6. Compared to traditional machine learning 

techniques, the winning performance results were obtained by using a deep convolutional 

neural network architecture. The accuracy of the deep convolutional neural network model 

in predicting both the classes is about 65%. The typically hard nature of the problem might 

explain such a modest accuracy metric winning the prediction challenge. Table II and Figure 

6, illustrate the performance metrics of the convolutional design. Tables II–III describe the 

accuracy with precision, recall parameters and Figure 6, is the ROC curve for this approach. 

We applied Scikit-learn (v0.181) and Keras(v1.2.2) Python software packages for these 

analyses.

F. Performance of Other Competitors

There were 29 submissions overall for the challenge and the Area Under the curve for these 

submissions is shown in Figure 7 (Alexander Morgan. 2016). The prediction methods had a 

AUC range from 0.40 to 0.65 with most predictions ranging between 0.5 and 0.55. Our 

method is in the far right of the AUC curve, having a winning AUC score of 0.65; it 

achieved the best prediction metric amongst the fellow competitors. This demonstrates the 

ability of deep convolution based neural networks to understand genomic datasets without 

handcrafted features. Having introduced the framework and proving its superiority over 

conventional machine learning model, we proceed to understand the features learnt and the 

usability of the data in the coming sections.

G. Post Result Analysis

As a post-result analysis, we want to analyze the features learnt by the DeepBipolar 

framework and analyze the suitability of the exome sequencing SNPs for prediction of 

bipolar disorder. The fact that such expensive studies of BD yielded biologists with few 

credible biological indicators responsible for the disorder made us question whether the 
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features present in the dataset made the machine learning effective. The key question was: 

“Are there some artifacts that were unknowingly introduced into the dataset during the data 

preparation process?”. An example of an artifact could be sequencing of the disease group 

together and using the control set that was sequenced for another study. As mentioned 

below, we ran two experiments where we restricted the information available to the model 

by reducing the variants and observed how it classified the samples. By changing the 

variants as seen by the model, we expected a drop in the classification performance and the 

experiments below were designed to study it.

1) Experiment-1 Controlling Variants in Each Chromosome—The hypothesis we 

are trying to answer is, “If we reduce the number of variants in each chromosome channel, 

does the performance of the machine learning models drop and do these models fail to 

accurately classify the two classes of sample set?” Essentially, if no changes in the 

classification ability of the machine learning models are observed, then the machine learning 

models are most likely picking up some artifacts that differentiate between these classes.

i. We pick only the first 1000 variants of each chromosome.

ii. We picked at random 1000 variants of each chromosome.

iii. We pick only the last 1000 variants of each chromosome.

ROC curve for all three cases, along with that of experiment 2 is shown in Figure 8. 

Prediction score for our 3 experiments are shown in Table IV, where 1st, 2nd and 3rd values 

correspond to first 1000, random 1000 and last 1000 variant of each chromosome, each 

separated by ‘/’. The results of all the three techniques of data preprocessing with our 

machine learning model are identical. The ROC curves indicate the model’s predictions 

being significantly affected by the absence of the variants across these chromosomes. 

Therefore, the model needs all the variants to replicate the winning performance at the CAGI 

challenge. Had there been artifacts present in the dataset, the models might have performed 

without a drop in the performance and that would have been a consistent signal of case and 

control sets across the variants and chromosomes.

2) Experiment-2 Training with Chromosome 1 and 2 / Testing with 
Chromosome 5,6,7 & 8—In this experiment, we train the deep learning models with 

variants only from the chromosomes 1 & 2. During the testing time, we show the variants 

only from chromosomes 5,6,7 and 8. Given that an artifact signal would be consistent, even 

without showing the model all the chromosomes, the model should be able to replicate the 

winning performance, i.e. a model that trains with all variants. As we see, there is a huge 

drop in performance. Any differences that might arise due to sequencing should be uniform 

across chromosomes and the models would have expected to work similarly well in training 

on one set of chromosomes and testing on another set. Given the significant drop in 

performances, the likelihood of the presence of such signals being picked up by the neural 

network models for classification is quite remote as the performance takes a considerable hit 

on these experiments.
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IV. OBSERVATIONS

We initially suspected the neural networks of picking up signals arising out of different 

sequencing technologies, but the experimental results suggest otherwise. The experiments 

were designed to show the presence of signal in the datasets to distinguish the case from the 

control case. The results from the experiment sufficiently prove the existence of such a 

signal and have shown that the neural networks are picking up signals that are not 

differences in sequencing technologies. Given the lack of interpretability with neural 

networks, we had to rely on the input signal and the changes it effects on the output 

performance. Given that convolutional neural networks excel at picking interlinked features, 

the models might be picking up complex patterns across the samples to classify the diseases 

and rely less on noise. Recently there have been significant advances in interpreting neural 

networks and, hence, as a future work, we plan to analyze and score each of the variants 

with respect to its impact on classifying the variants as benign or pathogenic.

V. CONCLUSION

We propose a deep learning based framework called DeepBipolar and analyse the genotype 

information to predict the bipolar phenotype using convolutional neural networks. The 

technique described in this paper achieved the winning results in the CAGI-4 bipolar 

prediction challenge. Given the lack of need for hand-engineering the feature set for 

classifying the disease samples, such a technique might be a useful tool in computational 

biology.
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Figure 1. Histogram Plot of Bipolar Datasets
Figure 1 Shows the histogram plot of our datasets. Histogram are generated using top 

important feature/variant selection applying L1-based feature selection methods.
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Figure 2. Box Plot of Bipolar Datasets
Figure 2 Shows the box plot of our datasets. Box plot are generated using top important 

feature/variant selection applying L1-based feature selection methods.
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Figure 3. Mapping Quality, Quality Depth and Genotype Quality of Bipolar Datasets
Figure 3 Shows the data statistics of our bipolar datasets. It summarizes the mapping 

quality, quality depth and genotype quality of our datasets.
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Figure 4. DeepBipolar Architecure
Figure 4 shows the overall layout diagram of the DeepBipolar architecture. Each 

chromosome has its own input channel and the features extracted by convolution are later 

combined in a fully connected layer.
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Figure 5. Model Training Workflow of DeepBipolar
Figure 5 illustrates the working of the DeepBipolar model for input chromosome 1. It 

consists of generation of feature maps through series of convolution and back propagating 

the error between the predicted labels and true labels to optimize the loss.
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Figure 6. ROC Curve of DeepBipolar vs Shallow Machine Learning
Figure 6 shows the ROC curve for the performance of classifiers based on Logistic 

regression and Random forest techniques and DeepBipolar convolutional neural network 

classifier.
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Figure 7. Performance of DeepBipolar against other Competitors
Figure 7 plot the performance of all other competitors in the challenges vs DeepBipolar. 

The result achieved by DeepBipolar classifier is highlighted in green.
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Figure 8. ROC Curves for Experiment I & II
Figure 8 plots three ROC curves for the experiments that we performed i.e. giving the 

DeepBipolar classifier only the first 1000 variants/random 1000 variants and the last 1000 

variants across each chromosome as three separate experiments.

Laksshman et al. Page 18

Hum Mutat. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Laksshman et al. Page 19

TABLE I
Bipolar CNN Architecture

Table I provides the individual layer configuration details for the DeepBipolar convolutional neural network 

architecture.

Chromosome Layer Number of Kernel Kernel Size Pool Size

Chromosome 1-Chromosome X Convolution 1 64 60 -

Convolution 2 64 60 -

Max Pool 1 - - 2

Convolution 4 128 30 -

Convolution 5 128 30 -

Max Pool 2 - - 2

Fully Connected 1 64 - -

Combined Layers Combined Fully Connected 1(Merge Mode: Sum) 128 - -

Combined Fully Connected 2 64 - -

Output Layer Sigmoid 2 - -
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Table II
Classification Score Summary for Decision Tree/Random Forest/Convolutional Neural 
Network

Table II provides the accuracy metrics of precision, recall and the F1 score for Decision tree/Random forest 

and DeepBipolar convolutional neural network classifier. Each of the value for each classifier are separated by 

“/“.

Precision Recall F1-Score Support

Unaffected-0 0.53/0.53/0.63 0.53/0.73/0.68 0.53/0.62/0.65 249

Bipolar Disorder-1 0.54/0.58/0.66 0.54/0.37/0.61 0.54/0.45/0.63 251

Avg/Total 0.54/0.56/0.64 0.54/0.55/0.64 0.54/0.53/0.64 500
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TABLE III
Prediction Score for Deepbipolar

Table III is the confusion matrix for the DeepBipolar architecture.

Class Predict-Unaffected Predict-Bipolar
Disorder

Unaffected-0 169 80

Bipolar Disorder-1 99 152
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TABLE IV
Prediction Score for Experiment-I

Table IV provides the confusion matrix for DeepBipolar convolutional neural network classifier when the 

number of variants across each chromose is restricted to first 1000 – random 1000 and last 1000. The “/

“ indicate the first value is the metric for the first 1000 variants, the value between two “/“ is the metric for the 

random 1000 variants and the last value is the metric for the last 1000 variants.

Class Predict-Unaffected Predict-Bipolar
Disorder

Unaffected-0 137/131/130 112/118/119

Bipolar Disorder-1 114/106/98 137/145/153
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