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Abstract

A critical construct related to human-robot interaction (HRI) is autonomy, which varies widely 

across robot platforms. Levels of robot autonomy (LORA), ranging from teleoperation to fully 

autonomous systems, influence the way in which humans and robots may interact with one 

another. Thus, there is a need to understand HRI by identifying variables that influence – and are 

influenced by – robot autonomy. Our overarching goal is to develop a framework for levels of 

robot autonomy in HRI. To reach this goal, the framework draws links between HRI and human-

automation interaction, a field with a long history of studying and understanding human-related 

variables. The construct of autonomy is reviewed and redefined within the context of HRI. 

Additionally, the framework proposes a process for determining a robot’s autonomy level, by 

categorizing autonomy along a 10-point taxonomy. The framework is intended to be treated as 

guidelines to determine autonomy, categorize the LORA along a qualitative taxonomy, and 

consider which HRI variables (e.g., acceptance, situation awareness, reliability) may be influenced 

by the LORA.
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Introduction

Autonomy: from Greek autos (“self,”) and nomos (“law”)

“I am putting myself to the fullest possible use…”

–HAL 9000 (2001: Space Odyssey)

Developing fully autonomous robots has been a goal of roboticists and other visionaries 

since the emergence of the field, both in product development and science fiction. However, 

a focus on robot autonomy has scientific importance, beyond the pop culture goal of creating 

a machine that demonstrates some level of artificial free will. Determining appropriate 

autonomy in a machine (robotic or otherwise) is not an exact science. An important question 

is not “what can a robot do,” but rather “what should a robot do, and to what extent.” A 
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scientific base of empirical research can guide designers in identifying appropriate trade-offs 

to determine which functions and tasks to allocate to either a human or a robot. Autonomy is 

a central factor determining the effectiveness of the human-machine system. Therefore, 

understanding robot autonomy is essential to understand human-robot interaction.

The field of human-robot interaction (HRI) largely lacks frameworks and conceptual models 

that organize empirical observations to theoretical concepts. Development of a framework 

on levels of autonomy for human-robot interaction not only holds promise to conceptualize 

and better understand the construct of autonomy, but also to account for human cognitive 

and behavioral responses (e.g., situation awareness, workload, acceptance) within the 

context of HRI.

This proposed framework focuses on service robots. Although this class of robots is broad, 

there are certain characteristics relevant to autonomy and HRI. First, service robots of 

varying degrees of autonomy have been applied to a range of applications, such as domestic 

assistance, healthcare nursing tasks, search and rescue, and education. Second, due to the 

range of service applications human-robot interaction will often be necessary, and service 

robots may be expected to interact with humans with limited or no formal training (Thrun, 

2004).

Goals and contributions

Our overarching goal was two-fold: parse the literature to better understand autonomy and to 

critique autonomy from a psychological perspective and identify variables that influence, 

and are influenced by, autonomy. Specifically, the objectives of this paper were to: 1) Refine 

the definition of autonomy; 2) Propose a process of determining levels of robot autonomy; 

3) Suggest a framework to identify potential variables related to autonomy.

Autonomy defined

Autonomy has been of both philosophical and psychological interest for over 300 years. In 

the 18th century, autonomy was most famously considered by philosopher Immanual Kant as 

a moral action determined by a person’s free will (Kant, 1967). Early psychology 

behaviorists (e.g., Skinner, 1978) claimed that humans do not act out of free will, rather their 

behavior is in response to stimuli in the environment. However in psychology, autonomy has 

been primarily discussed in relation to child development. In that literature, the term 

autonomy is discussed as a subjective construct involving self-control, governing, and free 

will. For instance, Piaget (1932) proposed that autonomy is the ability to self govern, and a 

critical component in a child’s moral development. Erikson (1997) similarly defined 

autonomy as a child’s development of a sense of self control (e.g., early childhood toilet 

training). Children who successfully develop autonomy feel secure and confident; children 

who do not develop autonomy may experience self-doubt and shame.

Autonomy as a construct representing free will only encompasses one way in which the term 

is used. The phenomenon of psychological autonomy (and the underlying variables) is 

different than the phenomenon of artificial autonomy that engineers would like to construct 

in machines and technology (Ziemke, 2008). For instance when the term autonomy is 

applied to technology, particularly automation, it is discussed in terms of autonomous 
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function (e.g., performing aspects of a task without human intervention). How is autonomy 

defined for agents and robots? Robot autonomy has been discussed in the literature as a 

psychological construct and as an engineering construct. In fact, the term is used to describe 

many different aspects of robotics, from the robot’s ability to self-govern to the level of 

human intervention. The various definitions of robot autonomy are presented in Table 1.

To clarify the term autonomy we propose the following. A weak (i.e. global) definition of 

autonomy is: the extent to which a system can carry out its own processes and operations 
without external control. This weak definition of autonomy can be used to denote 

autonomous capabilities of humans or machines. However, a stronger more specific 

definition can be given to robots, by integrating the definitions provided in Table 1. 

Autonomy, as related to robots, we define as:

The extent to which a robot can sense the environment, plan based on that 

environment, and act upon that environment, with the intent of reaching some goal 
(either given to or created by the robot) without external control.

The proposed strong definition of autonomy integrates the current definitions of autonomy, 

and highlights the prevalent characteristics of autonomy (i.e., sense, plan, act, goal, and 

control). Note that both the weak and strong definition begin with the phrase “to the extent 

to which…” This choice in wording exemplifies that autonomy is not all or nothing. 

Autonomy exists on a continuum from no autonomy to full autonomy.

Autonomy in automation

To guide our investigation of autonomy in HRI, we first reviewed the human-automation 

literature. Automation researchers have a history of studying and understanding human-

related variables, and much of this literature can be informative to the HRI community. 

Automation is most often defined as “device or systems that accomplishes (partially or fully) 

a function that was previously, or conceivably could be, carried out (partially or fully) by a 

human operator” (Parasuraman, Sheridan, & Wickens, 2000, p. 287). However, capabilities 

such as mobility, environmental manipulation, and social interaction separate robots from 

automation in both function and physical form. The goal here is not to redefine robot or 

automation, rather simply to depict that robots are a technology class of their own, separate 

but related to automation.

Various taxonomies, classification systems, and models related to levels of automation 

(LOA) have been proposed. The earliest categorization scheme, which organized automation 

along both degree and scale, was proposed by Sheridan and Verplank (1978). This 10-point 

scale categorized higher levels of automation as representing increased autonomy, and lower 

levels as decreased autonomy (see Table 2). This taxonomy specified what information is 

communicated to the human (feedback) as well as allocation of function split between the 

human and automation. However, the scale used in this early taxonomy was limited to a 

specified a set of discernible points along the continuum of automation applied primarily to 

the output functions of decision and action selection. It lacked specification of input 
functions related to information acquisition (i.e., sensing) or the processing of that 

information (i.e., formulating options or strategies).
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Endsley and Kaber (1999) proposed a revised taxonomy with greater specificity on input 
functions such as how the automation acquires information and formulates options (see 

Table 3). The strength of the Ensley and Kaber model is the detail used to describe each of 

the automation levels. The taxonomy is organized according to four generic functions which 

include: (1) monitoring – scanning displays; (2) generating – formulating options or 

strategies to meet goals; (3) selecting – deciding upon an option or strategy; and (4) 

implementing – acting out chosen option.

Parasuraman, Sheridan, and Wickens (2000) proposed the most recent model for types and 

levels of automation (Figure 1). Functions can be automated to differing degrees along a 

continuum of low to high (i.e., fully manual to fully automated), and stages of automation 

represent input and output functions. The stages included: (1) information acquisition; (2) 

information analysis; (3) decision and action selection; and (4) action implementation.

Automation categorized under the information acquisition stage supports processes related 

to sensing and registering input data. This stage of automation supports human sensory and 

perceptual processes, such as assisting humans with monitoring environmental factors. 

Automation in this stage may include systems that scan and observe the environment (e.g., 

radar, infrared goggles). At higher levels of information acquisition automation may 

organize sensory information (e.g., in air traffic control an automated system that prioritizes 

aircraft for handling). The information analysis stage refers to automation that performs 

tasks similar to human cognitive function, such as working memory. Automation in this 

stage may provide predictions, integration of multiple input values, or summarization of data 

to the user. Automation in the information analysis stage is different from automation in the 

information acquisition phase, in that the information is manipulated and assessed in some 

way.

Automation included in the decision selection stage selects from decision alternatives. For 

example, automation in this stage may provide navigational routes for aircraft to avoid 

inclement weather, or recommend diagnoses for medical doctors. Finally, action 
implementation automation refers to automation that executes the chosen action. In this 

stage, automation may complete all, or subparts, of a task. For example, action automation 

may include the automatic stapler in a photocopy machine, or autopilot in an aircraft.

The bottom of the flow chart in Figure 1 depicts primary and secondary evaluative criteria. 

These evaluative criteria were meant to provide a guide for determining a system’s level of 

automation. In other words, the purpose of Parasuraman and colleagues’ model was to 

provide an objective basis for making the choice on to what extent a task should be 

automated. The authors proposed an evaluation of the consequences of both the human 

operator and the automation. Therefore, primary evaluative criteria are evaluated (e.g., 

workload, situation awareness), and then the level of automation is adjusted. Next secondary 

criteria are evaluated (e.g., automation reliability, cost of action outcomes), and again the 

level of automation is adjusted. This iterative process provides a starting point for 

determining appropriate levels of automation to be implemented in a particular system.

Beer et al. Page 4

J Hum Robot Interact. Author manuscript; available in PMC 2017 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Each model provides an organizational framework in which to categorize not only the 

purpose or function of the automation (e.g., stages), but also considers automation along a 

continuum of autonomy. These models are important to consider within the context of both 

robotics and HRI, because they can serve as a springboard for development of similar 

taxonomies and models specific to robot autonomy. In particular the Sheridan and 

Verplank’s taxonomy has been suggested as appropriate to describe how autonomous a robot 

is (Goodrich & Schultz, 2007). However, it is important to consider the differences between 

automation and robotics. Robots may serve different functions relative to traditional 

automation; for example, some robots may play a social role; social ability is not a construct 

considered in the LOA models and taxonomies. A complementary way to think about how 

these taxonomies could relate to HRI is to consider the degree to which the human and robot 

interact, and to what extent each can act autonomously. The next sections address how 

autonomy has been applied to HRI, and how autonomy’s conceptualization in HRI is similar 

or different from human-automation interaction.

Autonomy in HRI

Autonomy within an HRI context is a widely considered construct; however, the ideas 

surrounding how autonomy influences human-robot interaction are varied. There are two 

schools of thought: (1) higher robot autonomy requires lower levels or less frequent HRI; 
and (2) higher robot autonomy requires higher levels or more sophisticated forms of HRI.

The first viewpoint, that higher autonomy requires less HRI, was proposed by Huang and 

colleagues (Huang, Messina, Wade, English, Novak, & Albus, 2004; Huang, Pavek, Albus, 

& Messina, 2005; Huang, Pavek, Novak, Albus & Messina, 2005; Huang, Pavek, Ragon, 

Jones, Messina, & Albus, 2007). Their goal was to develop a framework for autonomy and 

metrics used to measure robot autonomy. Although this framework is used primarily within 

military applications, the general framework has been cited as a basis for HRI autonomy 

classes more generally (Yanco & Drury, 2004).

The Huang framework stated that the relationship between the level of human-robot 

interaction and the autonomy level of the robot “…is fairly linear for simple systems” 

(Huang et al., 2004, p. 5). They proposed a negative linear correlation between autonomy 

and HRI so that as the level of robot autonomy increases the HRI decreases (see Figure 2). 

Their model included constructs such as human intervention (number of unplanned 

interactions), operator workload (as measured by NASA TLX), operator skill level, and the 

operator-robot ratio.

Other researchers have also proposed that higher robot autonomy requires less interaction 

(Yanco & Drury, 2004). Autonomy has been described as the amount that a person can 

neglect the robot; neglect time refers to the measure of how the robot’s task effectiveness 

(performance) declines over time when the robot is neglected by the user (Goodrich & 

Olsen, 2003). Robots with higher autonomy can be neglected for a longer time period.

“There is a continuum of robot control ranging from teleoperation to full 

autonomy: the level of human-robot interaction measured by the amount of 

intervention required varies along this continuum. Constant interaction is required 
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at the teleoperation level, where a person is remotely controlling the robot. Less 
interaction is required as the robot has greater autonomy” [emphasis added] 

(Yanco & Drury, 2004, p. 2845).

The idea that higher autonomy reduces the frequency of human-robot interaction is a stark 

contrast to the way in which other HRI researchers consider autonomy; they have proposed 

that more robot autonomy requires more human-robot interaction (e.g., Thrun, 2004; Feil-

Seifer, Skinner, & Mataric, 2007; Goodrich & Schultz, 2007). Thrun’s (2004) framework of 

HRI defined categories of robots, and each category required a different level of autonomy 

as dictated by the robot’s operational environment. Professional service robots (e.g., 

museum tour guides, search and rescue robots) and personal service robots (e.g., robotic 

walkers) mandated higher degrees of autonomy because they operate in a variable 

environment and interact in close proximity to people. Thrun declared that “human-robot 

interaction cannot be studied without consideration of a robot’s degree of autonomy, because 

it is a determining factor with regards to the tasks a robot can perform, and the level at which 

the interaction takes place” (2004, p. 14).

Furthermore, autonomy has been proposed as a benchmark for developing social interaction 
in socially assistive robotics (Feil-Seifer, Skinner, & Mataric, 2007). They proposed that 

autonomy serves two functions: to perform well in a desired task, and to be proactively 

social. However, they warned that the robot’s autonomy should allow for social interaction 

only when appropriate (i.e., only when social interaction enhances performance). However, 

developing autonomous robots that engage in peer-to-peer collaboration with humans may 

be harder to achieve than high levels of autonomy with no social interaction (e.g., iRobot 

Roomba; Goodrich & Schultz, 2007).

The seemingly dichotomous HRI viewpoints may be due in part to inconsistent use of 

terminology. There is ambiguity concerning the precise meaning of the “I” in HRI; 

intervention and interaction have been used synonymously. The ambiguous use of these 

terms makes unclear how autonomy should be measured. Conceivably intervention could be 

interpreted as a specific type of interaction (as suggested in Huang et al., 2004). The goal of 

some researchers for a robot to act autonomously with no HRI mirrors the human out of the 
loop phenomenon in automation, which is known to cause performance problems (e.g., 

Endsley, 2006; Endsley & Kiris, 1995).

A framework of autonomy and HRI is needed. As this literature review revealed, autonomy 

is an important construct related to HRI, and a multi-disciplinary approach to developing a 

framework is essential. Now that a definition of autonomy has been established, and 

inconsistencies in the literature identified, we move toward developing the building blocks 

for a framework of robot autonomy.

Toward a Framework of Levels of Robot Autonomy and HRI—We provide a 

framework for examining levels of robot autonomy and its effect on human-robot 

interaction. This framework can be used as an organizing flow chart, consisting of several 

stages (Figure 3). Stages 1–3 serve as a guideline to determine robot autonomy. Stage 4 

categorizes robot autonomy via a 10-point taxonomy. Finally, Stage 5 broadly suggests the 
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implications of the robot autonomy on HRI (i.e., human variables, robot variables, and 

interaction variables), and a conceptual model of the framework is presented.

Determining Robot Autonomy (Stages 1–3)

Stages 1–3 are meant to provide guidelines for determining and measuring robot autonomy. 

Specifically, the proposed guidelines in this section focus on human-robot interaction, with 

an emphasis on function allocation between a robot and a human. Consideration of the task 

and environment is particularly important for robotics, because robots are embodied, that is 

they are situated within an environment and usually expected to perform tasks by physically 

manipulating that environment. A robot’s capability to sense, plan, and act within its 

environment is what determines autonomy. Therefore, in this framework, the first 

determining question to ask is:

“What task is the robot to perform?”

The robot designer should not ask “is this robot autonomous”; rather the important 

consideration is “can this robot complete the given task at some level of autonomy”. For 

instance, the iRobot Roomba is capable of navigating and vacuuming floors autonomously. 

However, if the task of vacuuming is broadened to consider other subtasks (i.e., picking up 

objects from floor, cleaning filters, emptying dirt bin/bag) then the Roomba may be 

considered semi-autonomous because it only completes a portion of those subtasks. 

Likewise, if the environment is changed (e.g., vacuuming stairs opposed to flat surfaces), the 

Roomba’s autonomy could be categorized differently, as it is currently incapable of 

vacuuming stairs. Therefore, specifying the context of the task and environment is critical 

for determining the task-specific level of robot autonomy.

Secondly, specifying demands, such as task criticality, accountability, and environmental 

complexity, should guide a designer in demining autonomy. Task characteristics and 

consequences of error have been shown to be influenced by automation level (Carlson, 

Murphy, & Nelson, 2004). For example, in many cases failures or errors at early stages of 

automation are not as critical as errors at later stages of automation. One rational is that it 

may be risky to program a machine to have high autonomy in a task that requires decision 

support, particularly if the decision outcome involves lethality or human safety 

(Parasuraman, Sheridan, & Wickens, 2000; Parasuraman & Wickens, 2008). For example, 

unreliability in a robot that autonomously navigates may results in either false alarms or 

misses of obstacles. In this example, the criticality of errors is substantially less than errors 

conducted by a robot that autonomously determines what medication a patient should take. 

In this example, robot failure may result in critical, if not lethal, consequences. 

Responsibility for the success of task completion (i.e., accountability) is of consideration, 

particularly as robots and humans work as teams. As robots become more autonomous and 

are perceived as peers or teammates, it is possible that the distribution of accountability may 

be perceived to be split between the robot and human. Robot autonomy has been shown to 

play a role in participants’ accountability of tasks errors. When a robot is perceived as more 

autonomous, participants reported less self-blame (accountability) for task errors (Kim & 

Hinds, 2006); thus, responsibility of consequences may be misplaced and the human 

operator may feel less accountable for errors. In fact, healthcare professionals have reported 
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concern for who (the professional or a medical robot) may be accountable for medical errors 

(Tiwari, Warren, Day, & MacDonald, 2009). Therefore, care should be taken in determining 

which tasks a robot shall perform, as well as in designing the system so human supervisors 

are held accountable and can easily diagnose and alleviate consequences of error.

Furthermore, environmental complexity is also a critical demand to consider when defining 

autonomy. Service robot designed for assistive functions (e.g., home or healthcare 

applications), surveillance, or first responders (e.g., search and rescue) will be required to 

operate in unknown, unstructured, and dynamic environments. Functioning in such difficult 

environments will certainly influence the functional requirements of the robot. The robot’s 

capability to operate in a dynamic environment is highly dependent on environmental factors 

(e.g., lighting, reflectivity of surfaces, glare) that influence the robot sensors to perceive the 

world around it. Higher levels of robot autonomy may be required for a service robot to 

function in unstructured ever-changing environments (Thrun, 2004). That is, the robot must 

have the autonomy to make changes in goals and actions based on the sensor data of the 

dynamic environment. However, not all aspects of the environment can be anticipated; thus, 

for many complex tasks the presence of a human supervisor may be required (Desai, Stubbs, 

Steinfeld, & Yanco, 2009).

Once the task and environmental demands are determined, the next determining question is:

“What aspects of the task should the robot perform?”

Each task, no matter how simple or complex can be divided into primitives: SENSE, PLAN, 

and ACT (Murphy, 2000). Consider robots equipped with assisted teleoperation features 

(e.g., Takayama et al., 2011): a teleoperated robot demonstrates low levels of autonomy by 

assisting the human operator in obstacle avoidance. Usually, this feature is programmed into 

the robot architecture using behavior-based SENSE-ACT couplings (e.g., behavior based 

robotics; Arkin, 1998), where the robot is assisting with the aspects of the task by detecting 

obstacles (SENSE), then adjusting its behavior to avoid collision (ACT). The human 

remains, in large part, in charge of path planning and navigational goals (PLAN). However, 

a robot that navigates semi-autonomously (e.g., Few et al., 2008) may require a human to 

specify the high level goal of navigating to a specified location. Once the high level goal is 

given, the robot can then autonomously navigate to that location. Here, the robot 

demonstrates a high level of autonomy in sensing the environment (SENSE), relatively high 

level autonomy in PLAN (except the human provided the high level goal), and a high level 

of autonomy in physically implementing the plan (ACT).

As these examples suggest, autonomy can vary along any of the SENSE, PLAN, and ACT 

primitives, which relates to the next determining question:

“To what extent can the robot perform those aspects of the task?”

Each of the sense, plan, and act primitives could be allocated to either the human or the 

robot (or both). Similar to the Parasuraman, Sheridan, and Wickens (2000) stages of 

automation, a robot can vary in autonomy level (from low to high) along the three primitives 

(see Figure 4).
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As depicted in Figure 4 the level of autonomy may vary from low to high for each of the 

robot primitives. Determining the robot autonomy prompts a clarification of how to measure 
the extent or degree to which a robot can perform each of those aspects (SENSE, PLAN, 

ACT) of the task. In the automation literature, level of autonomy is most often indentified by 

function allocation. Consider the Endsley and Kaber (1999) model, the level of automation 

is specified in their taxonomy based on the allocation of function to either the human or 

automation. For instance, in their automation level Automated Decision Making: the 

automation selects and carries out an option; the human can have input in the alternatives 

generated by the automation.

In HRI the allocation of function has been commonly measured by amount of human 

intervention (Yanco & Drury, 2004). Specifically, human intervention is measured by the 

percentage of time a task is completed on its own, and intervention is measured by the 

percentage of time the human must control the robot. The two measures, autonomy and 

intervention, must sum to 100%. For example, a teleoperated robot has autonomy=0%, and 

intervention=100%. A fully autonomous robot has autonomy=100%, and intervention=0%. 

Between these two anchor points lies a continuum of shared control. For example, a 

medication management robot may select a medication, and handoff the medication to a 

human, but the human might be responsible for high level directional (navigation) 

commands. Here, autonomy=75% and intervention=25%. Similarly, autonomy has been 

measured as human neglect time (Olsen & Goodrich, 2003). In this metric, autonomy is 

measured by the amount of time that the robot makes progress toward a goal before 

dropping below effective reliability threshold or requiring user instruction.

Although this idea of measuring the time of intervention and neglect is useful, it has 

limitations. Amount of time between human interventions may vary as a result of other 

factors, such as inappropriate levels of trust (i.e., misuse and disuse), social interaction, task 

complexity, robot capability (e.g., robot speed of movement), usability of the interface/

control method, and response time of the user. Therefore, if interaction time is used as a 

quantitative measure, care should be taken when generalizing those findings to other robot 

systems or tasks. We propose a supplemental metric be used, such as a qualitative measure 

of intervention level (i.e., subjective rating of the human intervention), or a general 

quantitative measure focused on subtask completion, rather than time (i.e., number of 

subtasks completed by robot divided by the number of total subtasks required to meet a 

goal). Each metric has tradeoffs but could provide some general indication of the robot’s 

degree of autonomy.

Intervention is defined as the human performing some aspect of the task. As we have 

discussed earlier, intervention and interaction are not necessarily interchangeable terms. 

Intervention is a type of interaction specific to task sharing. Interaction may include other 

factors not necessarily specific to the intervention of task completion, such as verbal 

communication, gestures, or emotion expression. Some autonomous service robots could 

work in isolation, requiring little interaction of any kind (e.g., an autonomous pool cleaning 

robot); whereas, other robots working autonomously in a social setting may require a high 

level of interaction (e.g., an autonomous robot serving drinks at a social event). Finally, the 

measure of autonomy is specifically applicable to service robots, which perform tasks. 
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Neglect time may not be an appropriate measure of autonomy for robots designed for 

entertainment, for example. Other types or classes of robots may require different evaluative 

criteria for determining autonomy, which will require extensions of the present framework.

Categorizing Levels of Robot Autonomy (LORA) for HRI: A Taxonomy (Stage 4)

Once guidelines for determining robot autonomy have been followed, the next stage is to 

categorize the robot’s autonomy along a continuum. Specification of intermediate autonomy 

levels is a limitation in previous HRI frameworks (e.g., Yanco & Drury, 2004; Huang, Pavek, 

Albus, & Messina, 2005). In Table 4 we propose a taxonomy in which the robot autonomy 

can be categorized into “levels of robot autonomy” (LORA).

The taxonomy has a basis in HRI by specifying each LORA from the perspective of the 

interaction between the human and robot, and the roles each play. That is, for each proposed 

LORA, we suggest the (1) function allocation between robot and human for each of the 

SENSE, PLAN, ACT primitives; (2) provide a proposed description of each LORA; and (3) 

illustrate with examples of service robots from the HRI literature. Table 4 includes a mix of 

empirical studies involving robots and simulations, as well as published robot autonomy 

architectures. Autonomy is a continuum with blurred borders between the proposed levels. 

The levels should not be treated as exact descriptors of a robot’s autonomy but rather treated 

as an approximation of a robot’s autonomy level along the continuum.

The Influence of Autonomy on HRI (Stage 5)

The last stage of the framework is to evaluate the influence of the robot’s autonomy on HRI. 

Research on automation and HRI provides insights for identifying variables influenced by 

robot autonomy. The framework includes variables related to the human, the robot, and the 

interaction between the two (see Beer, Fisk, and Rogers (2012) for a more complete 

literature review of the variables listed). This listing is not exhaustive. Many other variables 

(e.g., safety, control methods, robot appearance, perceived usefulness) might also influence, 

and be influenced by, robot autonomy and need further investigation. Evaluation of the 

interaction between autonomy and HRI related variables can be used as evaluative criteria to 

determine if the autonomy level of the robot is appropriate. Thus, the framework can be a 

tool for guiding appropriate autonomy levels that support optimal human-robot interaction.

Robot-related variables—The robot’s intelligence and learning capabilities are 

important to consider along the autonomy continuum because both of these variables 

influence what and how the robot performs. Not all robots are intelligent, but robots that 

demonstrate higher levels of autonomy for complex tasks may require higher intelligence. 

According to Bekey (2005), robot intelligence may manifest as sensor processing, reflex 

behavior, special purpose programs, or cognitive functions. Generally speaking, the more 

autonomous a robot is, the more sophisticated these components may be. In the future, it is 

expected that most autonomous robots will be equipped with some ability to learn. This will 

be especially true as robots are moved from the laboratory to an operational environment, 

where the robot will have to react and adjust to unpredictable and dynamic environmental 

factors (Bekey, 2005; Russel & Norvig, 2003; Thrun, 2003).
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As robots move from the laboratory to more dynamic environments (e.g., the home, hospital 

setting, the workplace), reliability is generally expected to be less than perfect because of 

constraints in designing algorithms to account for every possible scenario (Parasuraman & 

Riley, 1997). Reliability should be measured against a threshold of acceptable error; but how 

best to determine the appropriate threshold? Addressing this question proves to be a 

balancing act between designing with the assumption the machine will sometimes fail and 

consideration for how such failures will consequence human performance. In automation, 

degraded reliability at higher levels of autonomy resulted in an “out of the loop” operator 

(Endsley, 2006), where the operator may be unable to diagnose the problem and intervene in 

a timely manner (i.e., extended time to recovery; Endsley & Kaber, 1999; Endsley & Kiris, 

1995). To reduce “out of the loop” issues and contribute to the user’s recognition of the 

robot’s autonomy level, developers should design the robot to allow the user to observe the 

system and understand what it is doing. Automated tasks where an operator can form a 

mental model are referred to as transparent. A robot that provides adequate feedback about 

its operation may achieve transparency. However, much consideration is needed in 

determining how much, when, and what type of feedback is most beneficial for a given task 

and robot autonomy level.

Human-related variables—Situation awareness (SA) and mental workload have a long 

history in the automation literature. These concepts that are intricately intertwined (see, 

Tsang & Vidulich, 2006) and empirical evidence suggests that both influence human 

performance changes as a function of LOA. SA is “the perception of the elements in the 

environment within a volume of time and space, the comprehension of their meaning, and 

the projection of their status in the near future” (Endsley, 1995, p. 36). Mental workload is 

“the relation between the function relating the mental resources demanded by a task and 

those resources available to be supplied by the human operator” (Parasuraman, Sheridan, & 

Wickens, 2008, pp. 145–146). An imbalance between SA and workload can lead to 

performance errors. The relationship between workload, SA, and level of automation (LOA) 

is complex but generally negative: as LOA increases workload decreases and vice versa. 

However, low workload during high LOA may lead to boredom (Endsley & Kiris, 1995), 

particularly in monitoring tasks (e.g., air traffic control). On the other end of the spectrum, 

high workload during low LOA generally leads to low operator SA and decreased 

performance (Endsley & Kaber, 1999; Endsley & Kiris, 1995).

The rich empirical background of SA and workload in the automation literature can inform 

robotics. Although the automated systems evaluated have been primarily studied in the 

context of air traffic control and aviation, similar human-machine interactions may be 

expected in HRI. In fact, much of the work involving SA and robotics has been conducted in 

similarly dynamic service environments and tasks (e.g., Kaber, Onal, & Endsley, 2000; 

Kaber, Wright, & Sheik-Nainar, 2006; Riley & Endsley, 2004; Scholtz, Antonishek, & 

Young, 2004; Sellner, Heger, Hiatt, Simmons, & Singh, 2006). SA at low levels of autonomy 

may primarily focus on where the robot is located, what obstacles lay ahead, or deciphering 

the sensor data the robot produces. As a robot approaches higher autonomy levels it may be 

perceived as a teammate or peer (Goodrich & Schultz, 2007; Milgram, Rastogi, & Grodski, 

1995). SA associated with a robot peer may more closely resemble that of shared SA, where 
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the human must know the robot’s status and likewise the robot must know the human’s 

status to the degree that they impact their own tasks and goals. Design principles for 

supporting SA in team operations (Endsley, Bolte, & Jones, 2003; Gorman, Cook, & 

Winner, 2006) may be applied to human-robot teams, and need to be empirically tested.

Other human-related variables such as trust and acceptance have been increasingly studied 

within the context of HRI, however, studies that directly investigate the effect of autonomy 

on trust have not been conducted. Nonetheless, a number of models and theories related to 

trust in automation (Cohen, Parasuraman, & Freeman, 1998; Dzindolet et al., 2003; Lee & 

See, 2004; Madhavan & Wiegmann, 2007), and preliminary frameworks of trust in HRI have 

been proposed (Desai, Stubbs, Steinfeld, & Yanco, 2009; Hancock, Billings, & Schaefer, 

2011). These models suggest that trust, in conjunction with many other factors, can predict 

robot use.

Although the frameworks of trust in HRI have borrowed from the automation literature, 

there are some important differences to consider that are in need of empirical evaluation. 

First, automation generally lacks physical embodiment (i.e., many automated systems are 

primarily software based). Many robots are physically mobile, look or behave like humans 

or animals, and physically interact with the world. Physical robot characteristics (e.g., size, 

weight, speed of motion) and their effects on trust need to be empirically evaluated. Second, 

unlike most automated systems, some service robots are designed to be perceived as 

teammates or peers with social capabilities, rather than tools (e.g., Breazeal, 2005; Groom & 

Nass, 2007). Understanding how to develop trust in robots is an avenue of research critical 

for designing robots meant to be perceived as social partners.

As robots become increasingly advanced and perform complex tasks, the robot’s autonomy 

will be required to adjust or adapt between levels (i.e., “adjustable autonomy”). In general, 

robotic and automated systems that operate under changing levels of autonomy (e.g., 

switching between intermediate levels) are not addressed in the trust literature. Many 

avenues of research need to be pursued to better understand the role of trust in HRI, how 

trust in robots is developed, and how misuse and disuse of robots can be mitigated.

Acceptance is also an important human-related variable to consider with regard to predicting 

technology use (Davis, 1989), as well as HRI (Broadbent, Stafford, & MacDonald, 2009; 

Young, Hawkins, Sharlin, & Igarashi, 2009). Designers should be mindful that radical 

technologies such as personal robots are not as readily accepted as incremental innovations 

(Dewar & Dutton, 1996; Green, Gavin, & Aiman-Smith, 1995). Despite the research 

community’s acknowledgement that acceptance is an important construct, further research is 

needed to understand and model the variables that influence robot acceptance, how such 

variables interact, and finally how predictive value varies over the autonomy continuum.

Interaction-related variables—Understanding social interaction in HRI and its relation 

to autonomy has been a topic of science fiction, media, and film for decades. In fact, robots 

are one of the few technologies in which design has been modeled in part by science fiction 

portrayals of autonomous systems (Brooks, 2002). Even though most individuals of the 

general population have never interacted with a robot directly, most people have ideas or 
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definitions of what a robot should be like (Ezer, Fisk, &Rogers, 2009; Khan, 1998). If users 

have preconceived notions of how robots should behave, then it becomes all the more 

important to understand how match user expectations with the robot’s actual autonomy. 

According to Breazeal (2003), when designing robots, the emphasis should not be whether 

people will develop a social model to understand robots. Rather, it is more important that the 

robot adhere to the social models the humans expect. What social models do people hold for 

robots? And do those social models change as a function of robot autonomy?

It is accepted in the research community that people treat technologies as social actors 

(Nass, Fogg, & Moon, 1996; Nass & Moon, 2000; Nass, Moon, Fogg, Reeves, 1995; Nass, 

Steuer, Henriksen, & Dryer, 1994), particularly robots (Breazeal, 2005). Social capability 

has been categorized into classes of social robots (Breazeal, 2003; Fong, Nourbakhsh, & 

Dautenhahn, 2003): socially evocative, social interface, socially receptive, sociable, socially 

situated, socially embedded, and socially intelligent. These classes can be considered a 

continuum (from socially evocative where the robot relies on human tendency to 

anthropomorphize, to socially intelligent where the robot shows aspects of human style 

social intelligence, based on models of human cognition and social competence). Social 

classes higher on this continuum require greater amounts of autonomy to support the 

complexity and effectiveness of the human-robot interaction.

It is difficult to determine the most appropriate metric for measuring social effectiveness. A 

variety of metrics have been proposed (Steinfeld et al., 2006) and applied to via interaction 

characteristics (e.g., interaction style, or social context), persuasiveness (i.e., robot is used to 

change the behavior, feelings, or attitudes of humans), trust, engagement (sometimes 

measured as duration), and compliance. Appropriate measures of social effectiveness may 

vary along the autonomy continuum. For instance, when a robot is teleoperated, social 

interaction may not exist between the robot and human, per se. Rather, the robot may be 

designed to facilitate social communication between people (i.e., the operator and a remotely 

located individual). In this case, “successful social interaction” may be assessed by the 

quality of remote presence (the feeling of the operator actually being present in the robot’s 

remote location). Proper measures of “social effectiveness” may be dictated by the quality of 

the system’s video and audio input/output, as well as communication capabilities, such as 

lag time/delay, jitter, or bandwidth (Steinfeld et al., 2006). Social interaction with 

intermediate or fully autonomous robots may be more appropriately assessed by the social 

characteristics of the robot itself (e.g., appearance, emotion, personality; Breazeal, 2003; 

Steinfeld et al., 2006).

A Framework of Robot Autonomy

The framework of robot autonomy (stages 1–5) is depicted in Figure 5. From top to bottom, 

the model depicts the guideline stages. By no means should this model be treated as a 

method. Rather the framework and taxonomy should be treated as guidelines to determine 

autonomy, categorize the LORA along a qualitative scale, and consider which HRI variables 

may be influenced by the LORA.
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Conclusion

Levels of autonomy, ranging from teleoperation to fully autonomous systems, influence the 

nature of HRI. Our goal was to investigate robot autonomy within the context of HRI. We 

accomplished this by redefining the term autonomy considering how the construct has been 

conceptualized within automation and HRI research. Our analysis led to the development of 

a framework for categorizing LORA and evaluating the effects of robot autonomy on HRI.

The framework provides a guide for appropriate selection of robot autonomy. The 

implementation of a service robot supplements a task, but also changes human activity by 

imposing new demands on the human. Thus, the framework has scientific importance, 

beyond the use as a tool for guiding function allocation. As such, the framework 

conceptualizes autonomy along a continuum, and identifies HRI variables that need to be 

evaluated as a function of robot autonomy. These variables include acceptance, SA, trust, 

robot intelligence, reliability, transparency, methods of control, and social interaction.

Many of the variables included in the framework require further research to better 

understand autonomy’s complex role in HRI. HRI is a young field with substantial, albeit 

exciting, gaps in our understanding. Therefore, the proposed framework does not index 

causal relationships between variables and concepts. As the field of HRI develops, empirical 

research can be causally mapped to theoretical concepts and theories.

In summary, we have proposed a framework for levels of robot autonomy in human-robot 

interaction. Autonomy is conceptualized as a continuum from teleoperation to full 

autonomy. A 10-point taxonomy was proposed, not as exact descriptors of a robot’s 

autonomy, but rather to provide approximations of a robot’s autonomy along the continuum. 

Additionally, a conceptual model was developed to guide researchers in identifying the 

appropriate level of robot autonomy for any given task and potential influences on human-

robot interaction. This framework is not meant to be used as a method; but as guidance for 

determining robot autonomy. A theme present in much of this investigation is that the role of 

autonomy in HRI is complex. Assigning a robot with an appropriate level of autonomy is 

important because a service robot changes human behavior. Implementing service robots has 

the potential to improve the quality of life for many people. But robot design will only be 

successful with consideration of how the robot’s autonomy will impact the human-robot 

interaction.
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Figure 1. 
Flow chart showing application of the model of types and levels of automation (Parasurman, 

Sheridan, & Wickens, 2000).
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Figure 2. 
Autonomy Levels For Unmanned Systems (ALFUS) model of autonomy, depicting level of 

HRI along autonomy continuum (Huang, Pavek, Albus, & Messina, 2005).
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Figure 3. 
Organizing flow chart to determine robot autonomy and effects on HRI.
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Figure 4. 
Levels of autonomy across the robot primitives sense, plan, and act. Two examples are 

given: assisted teleoperation (dotted line) and semi-autonomous navigation (solid line). 

Model modified from Parasuraman, Sheridan, and Wickens, 2000.
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Figure 5. 
A framework of levels of robot autonomy for HRI. This framework can serve as a flow chart 

suggesting task and environmental influences on robot autonomy, guidelines for 

determining/measuring autonomy, a taxonomy for categorizing autonomy, and finally HRI 

variables that may be influenced by robot autonomy.
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Table 1

Definitions of Autonomy Found in Robotics Literature

Definitions of Agent and Robot Autonomy

“The robot should be able to carry out its actions and to refine or modify the task and its own behavior 
according to the current goal and execution context of its task.”

Alami et al., 1998, p. 316

“Autonomy refers to systems capable of operating in the real-world environment without any form of 
external control for extended periods of time.”

Bekey, 2005, p.1

“An autonomous agent is a system situated within and a part of an environment that sense that environment 
and acts on it, over time, in pursuit of its own agenda and so as to effect what it senses in the future;” 
“Exercises control over its own actions.”

Franklin & Graesser, 1997, p. 
25.

“An Unmanned System’s own ability of sensing, perceiving, analyzing, communicating, planning, decision 
making, and acting, to achieve goals as assigned by its human operator(s) through designed HRI;” “The 
condition or quality of being self-governing.”

Huang, 2004, p. 9

“ “Function autonomously” indicates that the robot can operate, self-contained, under all reasonable 
conditions without requiring recourse to a human operator. Autonomy means that a robot can adapt to 
change in its environment (the lights get turned off) or itself (a part breaks) and continue to reach a goal.”

Murphy, 2000, p. 4

“A rational agent should be autonomous – it should learn what it can to compensate for partial or incorrect 
prior knowledge.”

Russell & Norvig, 2003, p.37

“Autonomy refers to a robot’s ability to accommodate variations in its environment. Different robots 
exhibit different degrees of autonomy; the degree of autonomy is often measured by relating the degree at 
which the environment can be varied to the mean time between failures, and other factors indicative of robot 
performance.”

Thrun, 2004, p.14

“Autonomy: agents operate without the direct intervention of humans or others, and have some kind of 
control over their actions and internal states.”

Wooldridge & Jennings, 
1995, p.116

Note: Emphasis (bold) added.
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Table 2

Sheridan and Verplank (1978) Levels of Decision Making Automation

Level of Automation Allocation of Function

1. The computer offers no assistance; the human must take all decisions and actions.

2. The computer offers no assistance; the human must take all decisions and actions.

3. The computer offers a complete set of decision/action alternatives, or

4. Narrows the selection down to a few, or

5. Suggests one alternative

6. Executes that suggestion if the human operator approves, or

7. Allows the human a restricted time to veto before automatic execution, or

8. Executes automatically, then necessarily informs the human, and

9. Informs the human only if asked, or

10. Informs the human only if it, the computer, decides to
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Table 3

Endsley and Kaber (1999) Levels of Automation

Level of Automation Description

1. Manual Control: The human monitors, generates options, selects options (makes decisions) and physically carries out options.

2. Action Support: The automation assists human with execution of selected action. The human does perform some control 
actions.

3. Batch Processing: The human generates and selects options then they are turned over to automation to be carried out (e.g., 
cruise control in automobiles).

4. Shared Control: Both the human and the automation generate possible decision options. The human has control of selecting 
which options to implement; however, carrying out the options is a shared task.

5. Decision Support: The automation generates decision options that the human can select. Once an option is selected the 
automation implements it.

6. Blended Decision Making: The automation generates an option, selects it and executes it if they human consents. The human may 
approve of the option selected by the automation, select another or generate another option.

7. Rigid System: The automation provides a set of options and the human has to select one of them. Once selected the 
automation carries out the function.

8. Automated Decision 
Making:

The automation selects and carries out an option. The human can have input in the alternatives generated by 
the automation.

9. Supervisory Control: The automation generates options, selects and carries out a desired option. The human monitors the system 
and intervenes if needed (in which case the level of automation becomes Decision Support).

10. Full Automation: The system carries out all actions.
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