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Abstract

In many clinical trials studying neurodegenerative diseases such as Parkinson’s disease (PD), 

multiple longitudinal outcomes are collected to fully explore the multidimensional impairment 

caused by this disease. If the outcomes deteriorate rapidly, patients may reach a level of functional 

disability sufficient to initiate levodopa therapy for ameliorating disease symptoms. An accurate 

prediction of the time to functional disability is helpful for clinicians to monitor patients’ disease 

progression and make informative medical decisions. In this article, we first propose a joint model 

that consists of a semiparametric multilevel latent trait model (MLLTM) for the multiple 

longitudinal outcomes, and a survival model for event time. The two submodels are linked 

together by an underlying latent variable. We develop a Bayesian approach for parameter 

estimation and a dynamic prediction framework for predicting target patients’ future outcome 

trajectories and risk of a survival event, based on their multivariate longitudinal measurements. 

Our proposed model is evaluated by simulation studies and is applied to the DATATOP study, a 

motivating clinical trial assessing the effect of deprenyl among patients with early PD.
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1. Introduction

Joint models of longitudinal outcomes and survival data have been an increasingly 

productive research area in the last two decades (e.g., Tsiatis and Davidian, 2004). The 

common formulation of joint models consists of a mixed effects submodel for the 

longitudinal outcomes and a semiparametric Cox submodel (Wulfsohn and Tsiatis, 1997) or 
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accelerated failure time (AFT) submodel for the event time (Tseng, Hsieh and Wang, 2005). 

Subject-specific shared random effects (Vonesh, Greene and Schluchter, 2006) or latent 

classes (Proust-Lima et al., 2014) are adopted to link these two submodels. Many extensions 

have been proposed, e.g., relaxing the normality assumption of random effects (Brown and 

Ibrahim, 2003), replacing random effects by a general latent stochastic Gaussian process (Xu 

and Zeger, 2001), incorporating multivariate longitudinal variables (Chi and Ibrahim, 2006), 

and extending single survival event to competing risks (Elashoff, Li and Li, 2007) or 

recurrent events (Sun et al., 2005; Liu and Huang, 2009).

Joint models are commonly used to provide an efficient framework to model correlated 

longitudinal and survival data and to understand their correlation. A novel use of joint 

models, which gains increasing interest in recent years, is to obtain dynamic personalized 

prediction of future longitudinal outcome trajectories and risks of survival events at any 

time, given the subject-specific outcome profiles up to the time of prediction. For example, 

Rizopoulos (2011) proposed a Monte Carlo approach to estimate risk of a target event and 

illustrated how it can be dynamically updated. Taylor et al. (2013) developed a Bayesian 

approach using a Markov chain Monte Carlo (MCMC) algorithm to dynamically predict 

both the continuous longitudinal outcome and survival event probability. Blanche et al. 

(2015) extended the survival submodel to account for competing events. Rizopoulos et al. 

(2013) compared dynamic prediction using joint models v.s. landmark analysis (van 

Houwelingen, 2007), an alternative approach for dynamically updating survival 

probabilities. A key feature of these dynamic prediction frameworks is that the predictive 

measures can be dynamically updated as additional longitudinal measurements become 

available for the target subjects, providing instantaneous risk assessment.

Most dynamic predictions via joint models developed in the literature have been restricted to 

one or two longitudinal outcomes. However, impairment caused by the neurodegenerative 

diseases such as Parkinson’s disease (PD) affects multiple domains (e.g., motor, cognitive, 

and behavioral). The heterogeneous nature of the disease makes it impossible to use a single 

outcome to reliably reflect disease severity and progression. Consequently, many clinical 

trials of PD collect multiple longitudinal outcomes of mixed types (categorical and 

continuous). To properly analyze these longitudinal data, one has to account for three 

sources of correlation, i.e., inter-source (different measures at the same visit), longitudinal 

(same measure at different visits), and cross correlation (different measures at different 

visits) (O’Brien and Fitzmaurice, 2004). Hence, a joint modeling framework for analyzing 

all longitudinal outcomes simultaneously is essential. There is a large number of joint 

modeling approaches for mixed type outcomes. Multivariate marginal models (e.g., 

likelihood-based (Molenberghs and Verbeke, 2005), copula-based (Lambert and 

Vandenhende, 2002), and GEE-based (O’Brien and Fitzmaurice, 2004)), provide direct 

inference for marginal treatment effects, but handling unbalanced data and more than two 

response variables remain open problems. Multivariate random effects models (Verbeke et 

al., 2014) have severe computational difficulties when the number of random effects is large. 

In comparison, mixed effects models focused on dimensionality reduction (using latent 

variables) provide an excellent and balanced approach to modeling multivariate longitudinal 

data. To this end, He and Luo (2016) developed a joint model for multiple longitudinal 

outcomes of mixed types, subject to an outcome-dependent terminal event. Luo and Wang 
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(2014) proposed a hierarchical joint model accounting for multiple levels of correlation 

among multivariate longitudinal outcomes and survival data. Proust-Lima, Dartigues and 

Jacqmin-Gadda (2016) developed a joint model for multiple longitudinal outcomes and 

multiple time-to-events using shared latent classes.

In this article, we propose a novel joint model that consists of: (1) a semiparametric 

multilevel latent trait model (MLLTM) for the multiple longitudinal outcomes with a 

univariate latent variable representing the underlying disease severity, and (2) a survival 

submodel for the event time data. We adopt penalized splines using the truncated power 

series spline basis expansion in modeling the effects of some covariates and the baseline 

hazard function. This spline basis expansion results in tractable integration in the survival 

function, which significantly improves computational efficiency. We develop a Bayesian 

approach via Markov chain Monte Carlo (MCMC) algorithm for statistical inference and a 

dynamic prediction framework for the predictions of target patients’ future outcome 

trajectories and risks of survival event. These important predictive measures offer unique 

insight into the dynamic nature of each patient’s disease progression and they are highly 

relevant for patient targeting, management, prognosis, and treatment selection. Moreover, 

accurate prediction can advance design of future studies, experimental trials, and clinical 

care through improved prognosis and earlier intervention.

The rest of the article is organized as follows. In Section 2, we describe a motivating clinical 

trial and the data structure. In Section 3, we discuss the joint model, Bayesian inference, and 

subject-specific prediction. In Section 4, we apply the proposed method to the motivating 

clinical trial dataset. In Section 5, we conduct simulation studies to assess the prediction 

accuracy. Concluding remarks and discussions are given in Section 6.

2. A motivating clinical trial

The methodological development is motivated by the DATATOP study, a double-blind, 

placebo-controlled multicenter randomized clinical trial with 800 patients to determine if 

deprenyl and/or tocopherol administered to patients with early Parkinson’s disease (PD) will 

slow the progression of PD. We refer to as placebo group the patients who did not receive 

deprenyl and refer to as treatment group the patients who received deprenyl. The detailed 

description of the design of the DATATOP study can be found in Shoulson (1998).

In the DATATOP study, the multiple outcomes collected include Unified PD Rating Scale 

(UPDRS) total score, modified Hoehn and Yahr (HY) scale, Schwab and England activities 

of daily living (SEADL), measured at 10 visits (baseline, month 1, and every 3 months 

starting from month 3 to month 24). UPDRS is the sum of 44 questions each measured on a 

5-point scale (0–4), and it is approximated by a continuous variable with integer value from 

0 (not affected) to 176 (most severely affected). HY is a scale describing how the symptoms 

of PD progresses. It is an ordinal variable with possible values at 1, 1.5, 2, 2.5, 3, 4, and 5, 

with higher values being clinically worse outcome. However, the DATATOP study consists 

of only patients with early mild PD and the worst observed HY is 3. SEADL is a 

measurement of activities of daily living, and it is an ordinal variable with integer values 

from 0 to 100 incrementing by 5, with larger values reflecting better clinical outcomes. We 
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have recoded SEADL variable so that higher values in all outcomes correspond to worse 

clinical conditions and we have combined some categories with zero or small counts so that 

SEADL has eight categories.

Among the 800 patients in the DATATOP study, 44 did not have disease duration recorded 

and one had no UPDRS measurements. We exclude them (5.6%) from our analysis and the 

data analysis is based on the remaining 755 patients. The mean age of patients is 61.0 years 

(standard deviation, 9.5 years). 375 patients are in the placebo group and 380 are in the 

treatment group. About 65.8% of patients are male and the average disease duration is 1.1 

years (standard deviation, 1.1 years). Before the end of the study, some patients (207 in 

placebo and 146 in treatment) reached a pre-defined level of functional disability, which is 

considered to be a terminal event because these patients would then initiate symptomatic 

treatment of levodopa, which can ameliorate the clinical outcomes. Figure 1 displays the 

mean UPDRS measurements over time for DATATOP patients with follow-up time less than 

6 months (96 patients, solid line), 6–12 months (215 patients, dotted line), and more than 12 

months (444 patients, dashed line). Figure 1 suggests that patients with shorter follow-up 

had higher UPDRS measurements, manifesting the strong correlation between the PD 

symptoms and terminal event. Similar patterns are observed in HY and SEADL 

measurements. Such a dependent terminal event time, if not properly accounted for, may 

lead to biased estimates (Henderson, Diggle and Dobson, 2000).

Because levodopa is associated with possible motor complications (Brooks, 2008), clinicians 

tend to provide more targeted interventions to delay their initiation of levodopa use. To this 

end, in the context of DATATOP study and similar PD studies, there is an important 

clinically relevant prediction question: for a new patient (not included in the DATATOP 

study) with one or multiple visits, what are his/her most likely future outcome trajectories 

(e.g., UPDRS, HY, and SEADL) and risk of functional disability within the next year, given 

the outcome histories and the covariate information? These important predictive measures 

are highly relevant for PD patient targeting, management, prognosis, and treatment selection. 

In this article, we propose to develop a Bayesian personalized prediction approach based on 

a joint modeling framework consisting of a semiparametric multilevel latent trait model 

(MLLTM) for multivariate longitudinal outcomes and a survival model for the event time 

data (time to functional disability).

3. Methods

3.1. Joint modeling framework

In the context of clinical trials with multiple outcomes, the data structure is often of the type 

{yik(tij), ti, δi}, where yik(tij) is the kth (k = 1, . . . ,K) outcome, which can be binary, ordinal, 

or continuous, for patient i (i = 1, . . . , I) at visit j (j = 1, . . . , Ji) recorded at time tij from the 

study onset,  is the observed event time to functional disability, as the 

minimum between the true event time  and the censoring time Ci which are assumed to be 

independent of , and δi is the censoring indicator (1 if the event is observed, and 0 

otherwise). We propose to use a semiparametric multilevel latent trait model (MLLTM) for 

the multiple longitudinal outcomes and a survival model for the event time.
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To start building the semiparametric MLLTM framework, we assume that there is a latent 

variable representing the underlying disease severity score and denote it as θi(t) for patient i 
at time t with a higher value for more severe status. We introduce the first level model for 

continuous outcomes,

(1)

where ak and bk (positive) are the outcome-specific parameters, and the random errors 

. Note that ak = E[yik(t)|θi(t) = 0] is the mean of the kth outcome if the 

disease severity score is 0 and bk is the expected increase in the kth outcome for one unit 

increase in the disease severity score. The parameter bk also plays the role of bringing up the 

disease severity score to the scale of the kth outcome. The models for outcomes that are 

binary (e.g., the presence of adverse events) and ordinal (e.g., HY and SEADL) are as 

follows (Fox, 2005):

(2)

where l = 1, 2, . . . , nk − 1 is the lth level of the kth ordinal variable with nk levels. Note that 

the negative sign for bk in the ordinal outcome model is to ensure that worse disease severity 

(higher θi(t)) is associated with a more severe outcome (higher yik(t)). Interpretation of 

parameters is similar for continuous outcomes, except that modeling is on the log-odds, not 

the native scale, of the data. We have selected logit link function in model (2), while other 

link functions (e.g., probit and complementary log-log) can be adopted. A major feature of 

models (1) and (2) is that they all incorporate θi(t) and explicitly combine longitudinal 

information from all outcomes.

To model the dependence of severity score θi(t) on covariates, we propose the second level 

semiparametric model

(3)

where vectors Xi(t) and Zi(t) are p and q dimensional covariates corresponding to fixed and 

random effects, respectively. They can include covariates of interest such as treatment and 

time. To allow additional flexibility and smoothness in modeling the effects of some 

covariates, we adopt a smooth time function  using the truncated 

power series spline basis expansion VR(t) = {(t − κ1)+, . . . , (t − κR)+}, where κ = {κ1, . . . , 

κR} are the knots, and (t − κr)+ = t − κr if t > κr and 0 otherwise. Following Ruppert (2002), 

we consider a large number of knots (typically 5 to 20) that can ensure the desired flexibility 

and we select the knot location to have sufficient subjects between adjacent knots. To avoid 
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overfitting, we explicitly introduce smoothing by assuming that 

(Ruppert, Wand and Carroll, 2003; Crainiceanu, Ruppert and Wand, 2005). The choice of 

knots is important to obtain a well fitted model and should be selected with caution to avoid 

overfitting. Several approaches of automatic knot selection based on stepwise model 

selection have been proposed (Friedman and Silverman, 1989; Stone et al., 1997; Denison, 

Mallick and Smith, 1998; DiMatteo, Genovese and Kass, 2001). Wand (2000) gives a good 

review and comparison of some of these approaches. Penalizing the spline coefficients to 

constrain their influence also helps to avoid overfitting (Ruppert, Wand and Carroll, 2003), 

as in our model. Moreover, in clinical studies with same scheduled follow-up visits, the 

frequency of study visits needs to be accounted for in the selection of knots. For the ease of 

illustration, we include the nonparametric smooth function for the time variable, although 

our model can be extended to accommodate more nonparametric smooth functions. The 

vector ui = (ui1, . . . , uiq)′ contains the random effects for patient i’s latent disease severity 

score and it is distributed as N(0,Σ). Equations (1), (2) and (3) consist of the semiparametric 

MLLTM model, which provides a nature framework for defining the overall effects of 

treatment and other covariates. Indeed, if 

, where xi is treatment indicator (1 

if treatment and 0 otherwise), then β1 is the main treatment effect and β3 is the time-

dependent treatment effect. In this context, the null hypothesis of no overall treatment effect 

is H0 : β1 = β3 = 0. Because the number of outcomes (K) has been reduced to one latent 

disease severity score, models are quite parsimonious in terms of number of random effects, 

which improves computational feasibility and model interpretability.

Because the semiparametric MLLTM model is over-parameterized, additional constraints are 

required to make it identifiable. Specifically, we set ak1 = 0 and bk = 1 for one ordinal 

outcome. For the ordinal outcome k with nk categories, the order constraint ak1 < . . . < akl 

< . . . < aknk−1 must be satisfied, and the probability of being in a particular category is 

p(Yik(t) = l) = p(Yik(t) ≤ l|θi(t))−p(Yik(t) ≤ l−1|θi(t)). With these assumptions, the 

conditional log-likelihood of observing the patient i data {yik(tij)} given ui and ζ is 

. For notational convenience, we let 

, with ak being numeric for binary and continuous outcomes and ak 

= (ak1, . . . , aknk−1)′ for ordinal outcomes. We let b = (b1, . . . , bK)′ and yi(t) = {yik(t), k = 

1, . . . ,K}′ be the vector of measurements for patient i at time t and let yi = {yi(tij), j = 

1, . . . , Ji} be the outcome vector across Ji visit times. The parameter vector for the 

longitudinal process is Θy = (a′, b′,β′,Σ, σεk, σζ )′.

To model the survival process, we use the proportional hazard model

(4)

where γ is the coefficient for time-independent covariates Wi and h0(·) is the baseline hazard 

function. Some covariates in Wi can overlap with vector Xi(t) in model (3). Ibrahim, Chu and 
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Chen (2010) gave an excellent explanation of the coefficients for those overlapped 

covariates. In the current context, if we denote βo and γo as the coefficients for the 

overlapped covariates in vectors Xi(t) and Wi, respectively, we have: (1) βo is the covariate 

effect on the longitudinal latent variable; (2) γo is the direct covariate effect on the time to 

event; (3) νβo+γo is the overall covariate effect on the time to event. The association 

parameter ν quantifies the strength of correlation between the latent variable θi(t) and the 

hazard for a terminal event at the same time point (refer to as ‘Model 1: shared latent 

variable model’). Specifically, a value of ν = 0 indicates that there is no association between 

the latent variable and the event time while a positive association parameter ν implies that 

patients with worse disease severity tend to have a terminal event earlier, e.g., a value of ν = 

0.5 indicates that the hazard rate of having the terminal event increases by 65% (i.e., 

exp(0.5) −1) for every unit increase in the latent variable. For prediction of subject-specific 

survival probabilities, a specified and smooth baseline hazard function is desired. To this 

end, we again adopt a truncated power series spline basis expansion 

 and assume  to 

introduce smoothing. The knot locations can be the same or different from those in equation 

(3).

In equation (4), different formulations can be used to postulate how the risk for a terminal 

event depends on the unobserved disease severity score at time t. For example, one can add 

to equation (4) a time-dependent slope , so that the risk depends on both the current 

severity score and the slope of the severity trajectory at time t (refer to as ‘Model 2: time-

dependent slope model’):

(5)

Alternatively, one can consider the standard formulations of joint models that include only 

the random effects in the Cox model (refer to as ‘Model 3: shared random effects model’):

(6)

A good summary of these various formulations in the joint modeling framework can be 

found in Rizopoulos et al. (2014) and Yang, Yu and Gao (2016).

The log-likelihood of observing event outcome ti and δi for patient i is ls(Θs; ti, δi,ui, ζ, ξ) = 

log{hi(ti)δiSi(ti)}, where the survival function  and the parameter 

vector for the survival process is Θs = (γ′, ν, η0, η1, σξ)′. Note that the truncated power 

series spline basis expansion in modeling the smooth time function in equation (3) and in 

modeling the baseline hazard function is linear function of time, which results in tractable 

integration in the survival function Si(ti), and consequently, significant gain in computing 

efficiency. Conditional on the random effect vector ui, yi is assumed to be independent of ti. 
The penalized log-likelihood of the joint model for patient i given random effects ui and 

smoothing parameters σζ, σξ is
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(7)

where the unknown parameter vector .

3.2. Bayesian inference

To infer the unknown parameter vector Θ, we use Bayesian inference based on Markov 

chain Monte Carlo (MCMC) posterior simulations. The fully Bayesian inference has many 

advantages. First, MCMC algorithms can be used to estimate exact posterior distributions of 

the parameters, while likelihood-based estimation only produces a point estimate of the 

parameters, with asymptotic standard errors (Dunson, 2007). Second, Bayesian inference 

provides better performance in small samples compared to likelihood-based estimation (Lee 

and Song, 2004). In addition, it is more straightforward to deal with more complicated 

models using Bayesian inference via MCMC. We use vague priors on all elements in Θ. 

Specifically, the prior distributions of parameters ν, η0, η1, and all elements in vectors β and 

γ are N(0, 100). We use the prior distribution bk ~ Uniform(0, 10), k = 2, . . . ,K, to ensure 

positivity. The prior distribution for the difficulty parameter ak of the continuous outcomes is 

ak ~ N(0, 100). To obtain the prior distributions for the threshold parameters of ordinal 

outcome k, we let ak1 ~ N(0, 100), and akl = ak,l−1 +Δl for l = 2, . . . , nk − 1, with Δl ~ N(0, 

100)I(0, ), i.e., normal distribution left truncated at 0. We use the prior distribution 

Uniform[−1, 1] for all the correlation coefficients ρ in the covariance matrix Σ, and Inverse-

Gamma(0.01, 0.01) for all variance parameters. We have investigated other selections of 

vague prior distributions with various hyper-parameters and obtained very similar results.

The posterior samples are obtained from the full conditional of each unknown parameter 

using Hamiltonian Monte Carlo (HMC) (Duane et al., 1987) and No-U-Turn Sampler 

(NUTS, a variant of HMC) (Hoffman and Gelman, 2014). Compared with the Metropolis-

Hastings algorithm, HMC and NUTS reduce the correlation between successive sampled 

states by using a Hamiltonian evolution between states and by targeting states with a higher 

acceptance criteria than the observed probability distribution, leading to faster convergence 

to the target distribution. Both HMC and NUTS samplers are implemented in Stan, which is 

a probabilistic programming language implementing statistical inference. The model fitting 

is performed in Stan (version 2.14.0) (Stan Development Team, 2016) by specifying the full 

likelihood function and the prior distributions of all unknown parameters. For large datasets, 

Stan may be more efficient than BUGS language (Lunn et al., 2000) in achieving faster 

convergence and requiring smaller number of samples (Hoffman and Gelman, 2014). To 

monitor Markov chain convergence, we use the history plots and view the absence of 

apparent trends in the plot as evidence of convergence. In addition, we use the Gelman-

Rubin diagnostic to ensure the scale reduction R̂ of all parameters are smaller than 1.1 as 

well as a suite of convergence diagnosis criteria to ensure convergence (Gelman et al., 

2013). After fitting the model to the training dataset (the dataset used to build the model) 

using Bayesian approaches via MCMC, we obtain M (e.g., M = 2, 000 after burn-in) 

samples for the parameter vector Θ0 = (Θ′, ζ′, ξ′)′. To facilitate easy reading and 
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implementation of the proposed joint model, a Stan code has been posted in the Web 

Supplement. Note that Stan requires variable types to be declared prior to modeling. The 

declaration of matrix Σ as a covariance matrix ensures it to be positive-definite by rejecting 

the samples that cannot produce positive-definite matrix Σ. Please refer to the Stan code in 

the Web Supplement for details.

3.3. Dynamic prediction framework

We illustrate how to make prediction for a new subject N, based on the available outcome 

histories  and the covariate historry 

 up to time t, and δN = 0 (no event). We want 

to obtain two personalized predictive measures: the longitudinal trajectories yNk(t′), for k = 

1, . . . ,K, at a future time point t′ > t (e.g., t′ = t + Δt), and the probability of functional 

disability before time t′, denoted by . To do this, the 

key step is to obtain samples for patient N’s random effects vector uN from its posterior 

distribution . Specifically, conditional on the mth posterior sample 

, we draw the mth sample of the random effects vector uN from its posterior distribution

where the first equality is from Bayes theorem.

For each of , m = 1, . . .,M, we use adaptive rejection Metropolis sampling (Gilks, Best 

and Tan, 1995) to draw 50 samples of random effects vector uN and retain the final sample. 

This process is repeated for the M saved values of Θ0. Suppose that patient N does not 

develop functional disability by time t′, then the outcome histories are updated to . We 

can dynamically update the posterior distribution to , draw new 

samples, and obtain the updated predictions.

With the M samples for patient N’s random effects vector uN, predictions can be obtained by 

simply plugging in realizations of the parameter vector and random effects vector 

{ , m = 1, . . .,M}. For example, the mth sample of continuous outcome yNk(t′) is 

obtained from equations (1) and (3):

where the random errors , and each parameter is replaced by the 

corresponding element in the mth sample { }.
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Similarly, the mth sample of ordinal outcome yNk(t′) = l with l = 1, 2, . . . , nk is

The probability of being in category l is . 

The mth sample of the hazard of patient i at time t′ is

Thus, the conditional probability of functional disability before time t′ is

where the integration with respect to uN in the first equality is approximated using Monte 

Carlo method. Note that the truncated power series spline basis expansion in modeling the 

smooth time function in equation (3) and in modeling the baseline hazard function results in 

tractable integration not only in the survival function SN(tN), but also in the integration of 

hazard function in the last equality. All prediction results can then be obtained by calculating 

simple summaries (e.g., mean, variance, quantiles) of the posterior distributions of M 

samples { , m = 1, . . .,M}. Note that although it may take a few hours to obtain 

enough posterior samples for the parameter vector Θ0, it only takes a few seconds to obtain 

the prediction results for a new subject. Hence, the dynamic prediction framework and the 

web-based calculator (detailed in Section 4) can provide instantaneous supplemental 

information for PD clinicians to monitor disease progression.

3.4. Assessing predictive performance

It is essential to assess the performance of the proposed predictive measures. Here, we focus 

on the probability π(t′|t). Specifically, we assess the discrimination (how well the models 

discriminate between patients who had the event from patients who did not) using the 

receiver operating characteristic (ROC) curve and the area under the ROC curves (AUC) and 

assess the validation (how well the models predict the observed data) using the expected 

Brier score (BS).

3.4.1. Area under the ROC curves—Following the notation in Section 3.3, for any 

given cut point c ∈ (0, 1), the time-dependent sensitivity and specificity are defined as 
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 and 

, respectively, where 

, indicating whether there is an event (case) or no event (control) 

observed for subject i during the time interval (t, t′]. In the absence of censoring, sensitivity 

and specificity can be simply estimated from the empirical distribution of the predicted risk 

among either cases or controls. To handle censored event times, Li, Greene and Hu (2016) 

proposed an estimator for the sensitivity and specificity based on the predictive distribution 

of the censored survival time:

(8)

where Ŵi(t, t′) is the weight to account for censoring and it is defined as

Note that the subjects who have the survival event before time t (i.e., ti < t) have their 

estimated weight Ŵi(t, t′) = 0 and thus they play no role in equation (8). The conditional 

survival distribution , where t̃ can be either t′ or ti, can be estimated 

using kernel weighted Kaplan-Meier method with a bandwidth d, which can be easily 

implemented in standard survival analysis software accommodating weighted data:

where Ω is the set of distinct ti’s with δi = 1 and Kd is the kernel function, e.g., uniform and 

Gaussian kernels. Specifically, we use uniform kernel in this article.

With the estimation of sensitivity and specificity, the time-dependent ROC curve can be 

constructed for all possible cut points c ∈ (0, 1) and the corresponding time-dependent 

AUC(t, t′) can be estimated using standard numerical integration methods such as 

Simpson’s rule.

3.4.2. Dynamic Brier score—The Brier score (BS) developed in survival models can be 

extended to joint models for prediction validation (Sène et al., 2016; Proust-Lima et al., 

2014). The dynamic expected BS is defined as E[(D(t′|t) − π(t′|t))2], where the observed 

failure status D(t′|t) equals to 1 if the subject experiences the terminal event within the time 

interval (t, t′] and 0 if the subject is event free until t′. An estimator of BS is
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where Nt is the number of subjects at risk at time t, and the weight 

 is to account for censoring with Ŝ0 denoting the Kaplan-

Meier estimate (Sène et al., 2016).

AUC and BS complement each other by assessing different aspects of the prediction. AUC 

has a simple interpretation as a concordance index, while BS accounts for the bias between 

the predicted and true risks. In general, AUC = 1 indicates perfect discrimination and AUC = 

0.5 means no better than random guess, while BS = 0 indicates perfect prediction and BS = 

0.25 means no better than random guess. Blanche et al. (2015) provides excellent illustration 

of AUC and BS.

4. Application to the DATATOP study

In this section, we apply the proposed joint model and prediction process to the motivating 

DATATOP study. For all results in this section, we run two parallel MCMC chains with 

overdispersed initial values and run each chain for 2, 000 iterations. The first 1, 000 

iterations are discarded as burn-in and the inference is based on the remaining 1, 000 

iterations from each chain. Good mixing properties of the MCMC chains for all model 

parameters are observed in the trace plots. The scale reduction R̂ of all parameters are 

smaller than 1.1.

In order to validate the prediction and compare the performance of candidate models, we 

conduct a 5-fold cross-validation, where 4 partitions of the data are used to train the model 

and the left-out partition is used for validation and model selection. Then we fit the final 

selected model to the whole dataset, except that 2 patients are set aside for subject-specific 

prediction purpose. The covariates of interest included in equation (3) are baseline disease 

duration, baseline age, treatment (active deprenyl only), time, and the interaction term of 

treatment and time. We allow a flexible and smooth disease progression along time by using 

penalized truncated power series splines with 7 knots at the location κ = (1.2, 3, 6, 9, 12, 15, 

18) in months, to ensure sufficient patients within each interval. Specifically, euqation (3) is

where the random effects (ui0, ui1)′ ~ N2(0,Σ) with  and 

 to avoid overfitting.

For the survival part, three different formulations are considered as discussed in Section 3.1. 

For instance, the shared latent variable model (Model 1) is hi(t) = h0(t) exp(γ1durationi + 
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γ2agei + γ3trti + νθi(t)). The proposed time-dependent slope model (Model 2) and shared 

random effects model (Model 3) can be obtained by replacing νθi(t) with 

and ν′ui, respectively. The baseline hazard h0(t) is similarly approximated by penalized 

splines  and . In addition, we compared 

the proposed model with two standard predictive models for time to event data, (1) a widely 

used univariate joint model (refer to as Model JM), where the continuous UPDRS is used as 

the longitudinal outcome regressing on same covariates of interest and the survival part is 

constructed in the same structure, and (2) a naive Cox model adjusted for time-independent 

covariates including all baseline characteristics as well as UPDRS, HY and SEADL scores.

We compare the performance of all candidate models in terms of discrimination and 

validation using 5-fold cross-validation and present AUC and BS score in Table 1 and Web 

Table 1. All of the three formulations of the proposed MLLTM joint model outperform the 

univariate Model JM (except AUC(t = 3, t′ = 9)) and naive Cox model with larger AUC and 

smaller BS in most of the scenarios, suggesting that the MLLTM model accounting for 

multivariate longitudinal outcomes are preferable in terms of prediction. The three 

formulations have very similar performance with close AUC and BS. Model 1 is selected as 

our final model, because it leads to a straightforward interpretation of the overall covariate 

effect described in Section 3.1 and it is more intuitive to use the trajectory of latent variable 

θi(t) to predict the time to event as in Model 1, instead of using time-dependent slope  or 

random effects ui as in Models 2 and 3. The results also suggest that AUC increases by using 

more follow up measurements, e.g., in Model 1, conditional on the the measurement history 

up to month 3 (i.e., t = 3), when t′ = 15, AUC(t = 3, t′ = 15) = 0.744, while AUC increase 

to AUC(t = 12, t′ = 15) = 0.766, indicating that conditional on the measurement history up 

to month 12, our model has 0.766 probabilities to correctly assign higher probability of 

functional disability by month 15 to more severe patients (who had functional disability 

earlier) than less severe patients (who had functional disability later). Meanwhile, BS 

decreases from BS(3, 15) = 0.216 to BS(12, 15) = 0.108, i.e., the mean square error of 

prediction decreases from 0.216 to 0.108, suggesting better prediction in terms of validation.

Parameter estimates based on Model 1 are presented in Table 2 and Web Table 2 (outcome-

specific parameters only). To illustrate the subject-specific predictions, we set aside two 

patients from the DATATOP study and predict their longitudinal trajectories as well as the 

probability of functional disability at a clinically relevant future time point, conditional on 

their available measurements. A more severe Patient 169 with clinically worse longitudinal 

measures and earlier development of functional disability as well as a less severe Patient 718 

are selected. Patient 169 had 8 visits with mean UPDRS 42.6 (SD 7.7), median HY 2, 

median SEADL 80, and developed functional disability at month 16. In contrast, Patient 718 

had 9 visits with mean UPDRS 15.6 (SD 3.1), median HY 1, median SEADL 95, and was 

censored at month 21. Figure 2 displays the predicted UPDRS trajectories for these two 

patients, based on different amounts of data. When only baseline measurements are used for 

prediction, the predicted UPDRS trajectory is biased with wide uncertainty band. For 

example, Patient 169 had a relatively low baseline UPDRS value of 33 and our model based 

only on baseline measurements tends to underpredict the future UPDRS trajectory (ti = 0, 
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the first plot in upper panels). However, Patient 169’s higher UPDRS values of 41 and 40 at 

months 1 and 3, respectively, subsequently shift up the prediction and tend to overpredict the 

future trajectory (ti = 3 months, the second plot in upper panels). By using more follow-up 

data, predictions are closer to the true observed values and the 95% uncertainty band is 

narrower (ti = 6 or 12 months, the last two plots in upper panels). Patient 169’s predicted 

UPDRS values after 12 months are above 40 and increase rapidly, indicating a higher risk of 

functional disability in the near future. In comparison, the predicted UPDRS values for 

Patient 718 are relatively stable because his/her observed UPDRS values are relatively 

stable.

The predicted probability being in each category for outcomes HY and SEADL are 

presented in Web Figures 1 and 2, respectively. Please refer to the Web Supplement for the 

interpretation. Besides the predictions of longitudinal trajectories, it is more of clinical 

interest for patients and clinicians to know the probability of functional disability before 

time t′ > t: πi(t′|t), conditional on the patient’s longitudinal profiles up to time t and the fact 

that he/she did not have functional disability up to time t. The predicted probabilities for 

Patients 169 and 718 based on various amount of data are presented in Figure 3. A similar 

pattern is that the prediction becomes more accurate if more data are used. With such 

predictions, clinicians are able to precisely track the health condition of each patient and 

make better informed decisions individually. For example, based on the first 12 months’ 

data, for Patient 169, the predicted probabilities in the next 3, 6, 9 and 12 months are 0.21, 

0.46, 0.78 and 0.97 (the last plot of upper panels), while for Patient 718, the probabilities are 

0.02, 0.06, 0.13 and 0.30 (the last plot of lower panels). Patient 169 has higher risk of 

functional disability in the next few months and clinicians may consider more invasive 

treatments to control the disease symptoms before the functional disability is developed.

To facilitate the personalized dynamic predictions in clinical setting, we develop a web-

based calculator available at https://kingjue.shinyapps.io/dynPred_PD. A screenshot of the 

user interface is presented in Web Figure 3. The calculator requires as input the PD patients’ 

baseline characteristics and their longitudinal outcome values up to the present time. The 

online calculator will then produce time-dependent predictions of future health outcomes 

trajectories and the probability of functional disability, in addition to the 95% uncertainty 

bands. Moreover, additional data generated from more follow-up visits can be input to 

obtain updated predictions. The calculator is a user friendly and easily accessible tool to 

provide clinicians with dynamically-updated patient-specific future health outcome 

trajectories, risk predictions, and the associated uncertainty. Such a translational tool would 

be relevant both for clinicians to make informed decisions on therapy selection and for 

patients to better manage risks.

5. Simulation studies

In this section, we conduct an extensive simulation study to investigate the prediction 

performance of the probability π(t′|t) using the proposed Model 1. We generate 200 datasets 

with samples size n = 800 subjects and six visits, i.e., baseline and five follow-up visits (Ji = 

6), with the time vector ti = (ti1, ti2, . . . , ti6)′ = (0, 3, 6, 12, 18, 24). The simulated data 
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structure is similar to the motivating DATATOP study, and it includes one continuous 

outcome and two ordinal outcomes (each with 7 categories).

Data are generated from the following models: θi(tij) = β0+β1xi1+β2tij+ β3xi1tij+ui0+ui1tij 
and hi(t) = h0 exp{γxi2+νθi(t)}, where the longitudinal and survival submodels share the 

latent variable as in proposed Model 1. Covariate xi1 takes value 0 or 1 each with probability 

0.5 to mimic treatment assignment and covariate xi2 is randomly sampled integer from 30 to 

80 to mimic age. We set coefficients β = (β0, β1, β2, β3)′ = (−1,−0.2, 0.8,−0.2)′, γ = −0.12 

and ν = 0.75. For simplicity, baseline hazard is assumed to be constant with h0 = 0.1. 

Parameters for the continuous outcome are a1 = 15, b1 = 7 and σε = 5. Parameters for the 

ordinal outcomes are a2 = (0, 1, 2, 4, 5, 6), a3 = (−1, 1, 3, 4, 6, 8), b2 = 1 and b3 = 1.2. We 

assume that random effects vector ui = (ui0, ui1)′ follows a multivariate normal distribution 

N2(0,Σ), where  with σ1 = 1.5, σ2 = 0.15 and ρ = 0.4. The 

independent censoring time is sampled from Uniform(10, 24).

From each simulated dataset, we randomly select 600 subjects as the training dataset and set 

aside the remaining 200 subjects as the validation dataset. Web Table 3 displays bias (the 

average of the posterior means minus the true values), standard deviation (SD, the standard 

deviation of the posterior means), coverage probabilities (CP) of 95% equal tail credible 

intervals (CI), and root mean squared error (RMSE) of model inference based on the training 

dataset. The results suggest that the model fitting based on the training dataset provides 

parameter estimates with very small biases and RMSE and the CP being close to the 

nominal level 0.95. Using MCMC samples from the fitted model and available 

measurements up to time t, we make prediction of πi(t′|t) for each subject in the validation 

dataset.

Web Table 4 compares the time-dependent AUC based on various amount of data from 

Model 1, Model JM and naive Cox model. When 3 or 6 months data are available, Model 1 

outperforms Model JM and Cox with high discriminating capability and higher AUC values 

above 0.9. In general, AUC is increasing with more available data, e.g., AUC(3, 12) = 0.920 

and AUC(6, 12) = 0.930.

From each of the 200 simulation datasets, we randomly select 20 subjects to plot the bias 

between the predicted event probability π(t′|t) from Model 1 and the true event probability 

with t′ = 9 (upper panels) and t′ = 12 (lower panels) in Web Figure 4. When more data are 

available, bias is decreasing as more bias is within the region of [−0.2, 0.2]. For example, 

with only baseline data, 5.8% and 21.7% of bias for the predictions of π(t′ = 9|t = 0) and 

π(t′ = 12|t = 0), respectively, are outside the range. With up to three months’ data, 3.4% and 

13.7% of bias for the predictions of π(t′ = 9|t = 3) and π(t′ = 12|t = 3), respectively, are 

outside the range. With up to six months’ data, the prediction is precise with only 1.2% and 

7.7% of bias for the prediction of π(t′ = 9|t = 6) and π(t′ = 12|t = 6), respectively, being 

outside the range.
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6. Discussion

Multiple longitudinal outcomes are often collected in clinical trials of complex diseases such 

as Parkinson’s disease (PD) to better measure different aspects of disease impairment. 

However, both theoretical and computational complexity in modeling multiple longitudinal 

outcomes often restrict researchers to a univariate longitudinal outcome. Without careful 

analysis of the entire data, pace of treatment discovery can be dramatically slowed down.

In this article, we first propose a joint model that consists of a semiparametric multilevel 

latent trait model (MLLTM) for the multiple longitudinal outcomes by introducing a 

continuous latent variable to represent patients’ underlying disease severity, and a survival 

submodel for the event time data. The latent variable modeling effectively reduces the 

number of outcomes and has improved computational feasibility and model interpretability. 

Next we develop the process of making personalized dynamic predictions of future outcome 

trajectories and risks of target event. Extensive simulation studies suggest that the 

predictions are accurate with high AUC and small bias. We apply the method to the 

motivating DATATOP study. The proposed joint models can efficiently utilize the 

multivariate longitudinal outcomes of mixed types, as well as the survival process to make 

correct predictions for new subjects. When new measurements are available, predictions can 

be dynamically updated and become more accurate and efficient. A web-based calculator is 

developed as a supplemental tool for PD clinicians to monitor their patients’ disease 

progression. For subjects with high predicted risk of functional disability in the near future, 

clinicians may consider more targeted treatment to defer the initiation of levodopa therapy 

because of its association with motor complications and notable adverse events (Brooks, 

2008). Although the dynamic prediction framework has utilized only three longitudinal 

outcomes in the DATATOP study, it can be broadly applied to similar studies with more 

longitudinal outcomes.

There are some limitations in our proposed dynamic prediction framework that we will 

address in the future study. First, the semiparametric MLLTM submodel assumes a 

univariate latent variable (unidimensional assumption), which may be reasonable for small 

number of outcomes. However, for large number of longitudinal outcomes, multiple latent 

variables may be required to fully represent the true disease severity across different 

domains impaired by PD. We will develop a multidimensional latent trait model that allows 

multiple latent variables. Second, Proust-Lima, Amieva and Jacqmin-Gadda (2013) and 

Proust-Lima, Dartigues and Jacqmin-Gadda (2016) proposed a flexible multivariate 

longitudinal model that can handle mixed outcomes, including bounded and non-Gaussian 

continuous outcomes. In contrast, our model (1) only applied to normally distributed 

continuous outcomes. In our future research, we would like to extend the dynamic prediction 

framework to accommodate more general continuous outcomes including bounded and non-

Gaussian variables. Third, we have chosen multivariate normal distribution for the random 

effects vector because it is flexible in modeling the covariance structure within and between 

longitudinal measures of patients and it has meaningful interpretation on correlation. In fact, 

misspecification of random effects and residuals has little impact on the parameters that are 

not associated with the random effects (Jacqmin-Gadda et al., 2007; Rizopoulos, Verbeke 

and Molenberghs, 2008; McCulloch et al., 2011). The impact of misspecification in the 
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proposed modeling framework warrants further investigation. Alternatively, we will relax the 

normality assumption by considering Bayesian non-parametric (BNP) framework based on 

Dirichlet process mixture (Escobar, 1994).

Equation (2) for ordinal outcome requires the proportional odds assumption. Statistical tests 

to evaluate this assumption in the traditional ordinal logistic regression have been criticized 

for having a tendency to reject the null hypothesis, when the assumption holds (Harrell, 

2015). Tests of the proportional odds assumption in the longitudinal latent variable setting 

are not well established, and the consequence of violating the assumption is unclear and is 

worth future examination. Three different functional forms of joint models that allow various 

association between the longitudinal and event time responses are examined and they 

provide comparable predictions in the DATATOP study. Instead of selecting a final model in 

terms of simplicity and easy interpretation, a Bayesian model averaging (BMA) approach to 

combine joint models with different association structures (Rizopoulos et al., 2014) will be 

investigated in future study. In addition, missed visits and missing covariates exist in the 

DATATOP study. In this article, we assume that they are missing at random (MAR). 

However, the missing data issue becomes more complicated in prediction model framework 

because it can impact both the model inference (missing data in the training dataset) and 

dynamic prediction process (e.g., the new subject only has measurements of UPDRS and 

HY, but not SEADL). How to address this issue in the proposed prediction framework is an 

important direction of future research. Moreover, the online calculator is based on the 

DATATOP study, which may not represent PD patients at all stages and from all populations. 

Nonetheless, the large and carefully studied group of patients provides an important resource 

to study the clinical expression of PD. We will continue to improve the calculator by 

including more heterogeneous PD patients from different studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
Mean UPDRS values over time.
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Fig 2. 
Predicted UPDRS for Patient 169 (upper panels) and Patient 718 (lower panels). Solid line is 

the mean of 2000 MCMC samples. Dashed lines are the 2.5% and 97.5% percentiles range 

of the 2000 MCMC samples. The dotted vertical line represents the time of prediction t.

Wang et al. Page 22

Ann Appl Stat. Author manuscript; available in PMC 2017 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 3. 
Predicted conditional failure probability for Patient 169 (upper panels) and Patient 718 

(lower panels). Solid line is the mean of 2000 MCMC samples. Dashed lines are the 2.5% 

and 97.5% percentiles range of the MCMC samples.
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Table 2

Parameter estimates for the DATATOP study from Model 1.

Mean SD 95% CI

For latent disease severity

Int −0.738 0.338 −1.385 −0.081

Duration (months) 0.021 0.004 0.014 0.028

Age (years) 0.024 0.005 0.014 0.035

Trt (deprenyl) −0.108 0.099 −0.304 0.099

Time (months) 0.021 0.025 −0.028 0.070

Trt × Time −0.089 0.010 −0.109 −0.071

ρ 0.310 0.044 0.226 0.393

σ1 1.328 0.051 1.230 1.430

σ2 0.116 0.006 0.104 0.128

σε 5.081 0.074 4.933 5.226

For survival process

Duration (months) −0.009 0.004 −0.017 −0.002

Age (years) −0.034 0.006 −0.045 −0.024

Trt (deprenyl) −0.608 0.118 −0.846 −0.375

ν 0.692 0.039 0.618 0.769
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