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Abstract

Delays in gene networks result from the sequential nature of protein assembly. However, it is 

unclear how models of gene networks that use delays should be modified when considering time-

dependent changes in temperature. This is important, as delay is often used in models of genetic 

oscillators that can be entrained by periodic fluctuations in temperature. Here, we analytically 

derive the time dependence of delay distributions in response to time-varying temperature 

changes. We find that the resulting time-varying delay is nonlinearly dependent on parameters of 

the time-varying temperature such as amplitude and frequency, therefore, applying an Arrhenius 

scaling may result in erroneous conclusions. We use these results to examine a model of a 

synthetic gene oscillator with temperature compensation. We show that temperature entrainment 

follows from the same mechanism that results in temperature compensation. Under a common 

Arrhenius scaling alone, the frequency of the oscillator is sensitive to changes in the mean 

temperature but robust to changes in the frequency of a periodically time-varying temperature. 

When a mechanism for temperature compensation is included in the model, however, we show that 

the oscillator is entrained by periodically varying temperature even when maintaining insensitivity 

to the mean temperature.

Keywords

systems biology; genetic networks; time-varying delay

1. Introduction

Biochemical reaction rates, as with all chemical reaction rates, are sensitive to changes in 

temperature and this effect is captured mathematically by the Arrhenius equation [2, 28]. 

Temperature dependent rates can also alter the dynamics of gene regulatory networks. 

Previous studies have examined how gene networks behave at various temperatures, and, in 

general, their dynamics speed up with increasing temperature [36]. For example, the cell 

doubling time in root meristems of Zea mays decreases 21-fold from 3 – 25°C increase in 

temperature [11]. In nature, variations in temperature often occur at times scales much 

slower than typical time scales of gene networks. However, time-varying temperatures have 
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been shown to impact gene networks, particularly in the temperature entrainment of 

circadian oscillators. In such systems, the diurnal variations in temperature happen at the 

same time scale as the circadian network. For instance, circadian oscillators can be entrained 

by time-varying temperatures that cycle with a period close to 24 hours [5, 26, 35, 46].

In models of gene networks, dynamical delay has been used to model the sequential 

assembly of messenger RNA and then protein. Nucleic acids must be added one by one to 

the growing mRNA chain, while amino acids are joined end to end with peptide bonds to 

create a protein. In each case, the large chain of linear reactions can be compactly modeled 

either with a discrete delay term, or as a distributed delay term [4, 18]. The incorporation of 

delay greatly simplifies models of genetic oscillators while simultaneously maintaining 

qualitative similarities to experimental data [8, 21, 40, 41]. Delay-based models play a 

central role in understanding the origin of oscillations in genetic networks [30, 31] and other 

nonlinear systems [18, 22]. For constant temperatures, the delay time or distribution can be 

scaled with the Arrhenius equation, just as the reaction rates. However, less is known about 

how time-varying temperatures influence delays in such analyses.

Here, we investigate how time-varying temperatures affect delays in genetic networks. We 

first derive how time-dependent temperature affects the delay term. To do this, we assume 

that delays arise from a sequence of first-order reactions that can be modeled as an aggregate 

delay. Although delay in gene networks is the result of the sequential assembly of first 

mRNA [6] and then protein [32] (see Fig. 2.1), we lump these delays into one term and 

represent protein production delay as a reduction of a linear chain of reactions. Each reaction 

in the sequence is then scaled by a common time-dependent Arrhenius factor. Since changes 

in temperature influence each biochemical step in the sequence that constitute the delay, the 

value of the delay time will change. From these assumptions, we derive an expression for the 

time-dependent distribution of delay times. We analyze changes in phase shift and amplitude 

of the resulting time-varying delay as a function of parameters of a sinusoidally time-varying 

rate-coefficient induced by temperature changes. We find a nonlinear relationship and, 

furthermore, find specific cases for which a delay can remain approximately time-invariant 

under time-varying conditions.

The effects of temperature on oscillators becomes important in the study of circadian clocks 

and is typically inferred through analysis of system response to single step changes in 

temperature or a single cycle [26]. We incorporate our findings into a model of a synthetic 

gene oscillator with temperature compensation presented by Hussain et al. [21]. In that 

paper, Hussain et al. presented experimental and computational results of a synthetic gene 

oscillator that has the same period regardless of the temperature. However, they only 

considered constant temperatures. Here, we extend their computational model to include 

time-varying temperatures. We find that, when the temperature varies sinusoidally in time, 

the oscillator can be entrained by temperature, but that this entrainment does not occur in the 

absence of the temperature compensation mechanism. In other words we find that the 

temperature compensated oscillator is insensitive to changes in the mean temperature but 

also entrained by periodically varying temperatures, a property explained and observed in 

circadian oscillators.
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2. Characterization of time-varying delays

We begin by approximating protein production with a linear sequence of reactions (see Fig. 

2.1). Transcription can be modeled as a sequence of independent one-nucleotide reaction 

steps as has been done by Arkin et al. in [1]. Furthermore, Bel et al. in [4], investigated more 

general cases by including degradation due to cellular division and considering reversible 

reactions. They found that in the limiting case of decreasing relative variance all systems 

with a forward bias behaved similarly. In this paper we consider only a simplified model, i.e. 

one with irreversible reactions and zero probability of partial transcripts. Since cellular 

division times are much longer than transcriptional delays, we also neglect dilution due to 

cell division but this could be incorporated through a correction factor on the overall 

production rate as explained by O’Brien et al. in [33]. In this case, we consider the 

corresponding generalized mass action model, the dynamics of which can be modeled by

(2.1)

where xi(t) is the concentration of the ith species at time t, x0(t) is the time varying 

concentration of the initial complex, a(t) is the time-varying rate coefficient, and the overdot 

represents differentiation with respect to time. The effects of time-varying temperatures can 

be reflected in the time-varying rate coefficients. From this we deduce the effects of time-

varying temperatures on the delay distribution, i.e. the time it takes to go from the initial 

complex, x0, to mature protein, xN.

To find the distribution function, we first rewrite system (2.1) as

(2.2)

where x(t) = [xN, xN−1, …, x1]T, u(t) = [0, …, 0, a(t)x0(t)] and A(t) = a(t) J−1,N. Here J−1,N 

is the N-dimensional Jordan matrix with eigenvalues −1,

(2.3)

Because A(t1) commutes with A(t2) for all (t1, t2), we can write the general solution to 

equation (2.2) as

(2.4)

where
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(2.5)

Without loss of generality we set t0 = 0 and substitute σ = t − τ. If we assume xj(t0) = 0 for j 
= 1, …, N, the solution reduces to

(2.6)

where . The exponential can be computed and is given by

(2.7)

where ⋆ denotes non-zero entries that are irrelevant due to the structure of u(t) and our 

desired output. In order to extract the expression relating the input x0(t) to the measured 

output xN(t), we multiply equation (2.6) by C = [1, 0, …, 0] on the left-hand side and 

substitute the expression for u(t), which gives the result

(2.8)

where the function

(2.9)

is the impulse response function relating the output to the input of the system. We refer to 

the impulse function as the delay distribution corresponding to protein synthesis times. 

Although we are working with a deterministic system, we refer to the function as a delay 

distribution since it emerges from a stochastic process. Recall that the systems of ODEs 

from which the expression was derived is the generalized mass action model of a sequence 

of stochastic reactions. The impulse function describes the average dynamics of that process. 

The delay distribution must have the constraint , for any time t. This 

constraint is always satisfied by the physics of the problem. The integral can be shown to 

equal one when a(t − τ) > ε for some ε > 0, that is, the reaction rate at all times is positive 

definite. To show this we express the integral as a line integral:
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(2.10)

where the curve C is the domain of integration that is defined by α(t, τ) for t held fixed. 

Note that the expression in the last line is an integral over the Erlang distribution, which is 

equal to one when integrated along the curve C ≡ aτ. For the line integral in equation (2.10) 

to equal one, α(t, τ) must be an injective function in τ meaning dα(t, τ)/dτ = a(t − τ) > 0 

(which implies a(t) > 0 for all t) with α(t, 0) = 0 and limτ→∞ α(t, τ) = ∞. By the definition 

of , we see that a positive definite a(t) in turn satisfies the latter 

conditions.

For the purpose of demonstration we consider a sinusoidally time-varying rate coefficient 

a(t) = δp a0 sin(ω t) + a0 with 0 < δp < 1, assuming the dynamics are induced from an 

appropriate time-varying temperature. Next, we show conditions under which this is a good 

approximation for a sinusoidally time-varying temperature. When a(t) ≡ const. (i.e. a(t) = 

a0), equation (2.9) is the Erlang distribution [29] with mean N/a. If a(t) is not constant, the 

delay distribution will be a function of time. We define the variable E to be E = N/a0 for the 

time-varying case and refer to E as the expected delay. Figure 2.2(a)–(b) shows the delay 

distribution h(t, τ) for different values of N (holding E = N/a0 constant), comparing the time-

invariant case to the time-varying case. Note that, unlike the time-invariant case (Fig. 2.2(a)), 

the distribution in the time-varying case (Fig. 2.2(b)) need not be unimodal, especially for 

small N. For a large N, the distribution function drops off quickly away from the mean, and 

damps out any periodic fluctuations induced by the factor a(t − τ) in equation 2.9. However, 

for small N, we see the effects of the periodically varying reaction rate in the shape of the 

distribution. This multimodal distribution of protein synthesis times for transcription 

initiation at a given time t emerges from the underlying stochastic process combined with 

sensitivity to timing. For example, there may be a set of transcripts that happen to complete 

right before temperatures plunge again, leaving behind another set of transcripts to be 

significantly delayed. Figure 2.2(c) shows how the time-varying distribution changes with 

time for fixed N and a time-varying rate coefficient a(t). Note that the distribution becomes 

unimodal as N increases.

Next, consider the limit as the number of reactions within the sequence tends to infinity. In 

the time-invariant case, one would consider the limit as N → ∞ such that the mean of the 

distribution N/a remains constant. Taking this limit reduces the distribution function to the 

Dirac delta function δ(τ − N/a), which has been shown in other work [4, 12]. To investigate 

the time-varying case, we assume that a(t) = a0f(t), where a0 > 0 and f(t) is a positive 

definite, bounded function of time, which agrees with the sinusoidally varying function a(t) 
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above. In this case, if we take the limit N → ∞ with the constraint E = N/a0 ≡ const., the 

ratio N/α(t, τ) remains finite for finite τ.

In summary, we find that there exists a unique delay τeff such that

(2.11)

The derivation of these results can be found in Appendix A. Therefore, with the integral over 

the function equal to one, in the limit as N → ∞ such that N/a0 = E0 the distribution is 

approximated by a delta function centered at τeff (i.e. limN→∞ h(t, τ) ≈ δ(t − τeff(t))), which 

is necessarily a function of a(t), and therefore time-varying. From the derivation we find that 

this unique delay τeff(t) can be found by solving

(2.12)

for τeff. Note that τeff(t) can be computed with only the expected delay E = N/a0 and the 

time-varying function f(t). Also, since f(s) is positive definite, we can guarantee a single 

solution τeff for every time t. The effective delay τeff is computed such that the integral 

remains constant at E. Note that the area under the curve is zero for τeff = 0 and 

monotonically increases with increasing τeff.

We now apply the method to investigate delays under periodically time-varying 

temperatures. For a time-varying temperature

(2.13)

we can rewrite the Arrhenius equation A(T) = A0 e−θ/T in the form

(2.14)

where  is non-negative and K = −θ/T0. We assume ε ≪ 1 (i.e. ΔT ≪ T0) and in the t!

Taylor expansion we have
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(2.15)

Here, A0 is chosen such that A(0) = 1, i.e. A0 = exp(θ/T0). Therefore for small ε we can 

approximate the time-varying Arrhenius equation by

(2.16)

where . The time-varying rate coefficient for the reaction rates implicit in the delay 

are given by a(t) = a0 · A(t).

For a sinusoidally varying rate coefficient a(t) = a0 δp sin(ω t) + a0, using equation (2.12), 

the effective delay reduces to solving

(2.17)

where E is the expected delay. In the limit analyzed, changes in the delay are determined 

only from the expected delay without perturbation and the perturbation on the reaction rates. 

Also note that in the extreme limits of the frequency, we have

(2.18)

Taking the integral in equation (2.17), the solution can be shown to solve the system

(2.19)

In this case the effective delay at each time t must be solved numerically. Figure 2.3 shows 

the delay as a function of time for a periodically varying temperature. The solution is found 

numerically for a discretized range of time. In Fig. 2.3 we consider the expected delay E = 

13.5 min.

We now consider the effects of changing parameters δp and ω on the time-varying delay. 

Figure 2.4 shows analysis of the calculated time-varying delay as a function of various 

parameters. Figure 2.4(a) shows an example of the time-varying function τeff(t). In Figure 
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2.4(b)–(d), we look at how the mean and amplitude of the time-varying function τeff changes 

as we change the expected delay E, the relative perturbation δp, and the frequency ω of the 

time-varying rate function a(t). Most of the results are in line with intuition. For example the 

amplitude of τeff(t) increases with an increase in the relative perturbation δp and decreases as 

the frequency ω of a(t) increases. If the environmental conditions change too quickly, the 

system does not effectively respond. An unexpected result is the non-monotonic behavior of 

the function τeff(t) as the mean delay changes. Figure 2.4(b), implies that τeff remains 

constant when the mean delay is exactly equal to the period of a(t). With this observation we 

note that if ω = 2πn/T for any positive integer n in equation (2.19), then we always have the 

solution τeff(t) = T. This suggests that delays are minimally affected by sinusoidally time-

varying reaction rates when the mean delay is an integer multiple of the period. We see the 

result of this in Figure 2.4(c) as well.

It is apparent from Figure 2.4, that the dependence of τeff on the sinusoidally time-varying 

temperature can be nonlinear. In this respect, we analyze the phase shift between the 

sinusoidally time-varying reaction rate a(t) and the resulting time-varying delay τeff(t). In 

Figure 2.5(a)–(c), we look at how the phase shift changes as we change the expected delay 

E, the relative perturbation δp, and the period of the time-varying rate function a(t). Before 

calculating phase shift we account for the fact that the reaction rate and delay functions are 

initially 180° out of phase because the delay decreases when the reaction rate a(t) increases. 

Also, since τeff(t) is not a perfect sinusoid, we calculate phase shift based on the distance 

between peaks. In general we find an increase in phase shift with an increase in expected 

delay E, the relative perturbation δp, and the period of the time-varying rate function a(t). 
However, Figure 2.5(b)–(c) show an existence of discontinuities in the phase shift. There is a 

180° phase jump when the expected delay equals the period. Recall, that the amplitude of 

τeff(t) becomes zero when the delay is an integer multiple of the period. As the response 

τeff(t) crosses this critical point there is a 180° phase shift as the amplitude of the response 

becomes non-zero again. Furthermore, the frequency of discontinuities increase on the log 

scale as a function of frequency and expected delay. We show trends in a limited range of 

frequencies and expected delays in Figure 2.5(b)–(c) to help highlight where the 

nonlinearities come from and demonstrate the non-trivial behavior.

3. Temperature Entrainment of a Dual-Feedback Oscillator

We now consider the entrainment properties of a temperature compensated dual-feedback 

oscillator presented by Hussain et al. [21]. The oscillator, as depicted in Fig. 3.1, can be 

modeled as [21]:

(3.1)
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where x and y are the concentrations of the repressor (LacI) the activator (AraC); αx and αy 

are the maximal transcription initiation rates for x and y, respectively; Cx and Cy are the 

binding affinities of LacI and AraC to the promoter, respectively; β is the dilution rate due to 

cellular growth; η is a measure of the strength of the positive feedback loop; R0, γx, and γy 

are Michaelis-Menten constants for enzymatic decay of the proteins; τx an τy are 

temperature dependent delay times for the production of LacI and AraC, respectively; and 

A(T) is the common Arrhenius scaling of all reaction rates. Additionally, the Arrhenius 

scaling term has the form A(T) = A0 e−θ/T, where θ is the temperature scale. Note that 

increasing temperature increases the scaling coefficient A(T) and hence speeds up the 

dynamics of the system. In Hussain et al. [21], the authors scale the delay by the Arrhenius 

constant when predicting dynamics at varying temperatures (the temperatures are held 

constant for each assay). In this case, we consider predictions under time-varying 

temperatures defined by equation (2.13). We use the method derived in Section 2 to 

determine the resulting time-varying delay. The binding affinity of LacI, Cx(T) is a also a 

function of the temperature

(3.2)

and provides the mechanism for temperature compensation in the oscillator [21]. Cx,min and 

Cx,max are the minimum and maximum biding affinities of LacI to its promoter. Tlac is the 

temperature at which Cx(T) is half-maximal and b is a Hill coefficient.

In Hussain et al. [21], the period of the genetic oscillator is shown experimentally to remain 

largely unaffected by changes in constant temperature due to a temperature sensitive LacI 

mutant, which is modeled by the temperature dependent binding affinity Cx(T). We now 

consider entrainment properties of the circuit with time-varying temperatures in silico. In 

order to compare entrainment properties to a system without such a temperature dependent 

mechanism we consider the temperature-invariant binding affinity

(3.3)

and compare the two models. First, we study system (3.1,3.2) and compare results with 

system (3.1,3.3). In this case temperature affects are introduced solely through an Arrhenius 

scaling and implicitly through the time-varying delay. We drive the system with a time-

varying temperature described by equation (2.13) with ΔT = 2°C. From this we can 

approximate the time-varying Arrhenius scaling using equation (2.16) with θ = 4500K. 

Then the delay is calculated at each time step by solving equation (2.19). Details of the 
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simulations are found in Appendix B. In Fig. 3.2(a) we fix the frequency of the temperature 

at  and vary the mean temperature T0 in the two models in order to verify the 

temperature compensating property achieved through the temperature dependent LacI 

mutant. Without the temperature compensating mechanism the frequency of oscillations 

changes linearly with the mean temperature but remains constant with the LacI mutant. In 

Fig. 3.2(b) we fix the mean temperature at T0 = 36°C and vary the frequency ω to study 

frequency entrainment for the same system with and without the temperature compensating 

mechanism. It is clear that the system entrains only under the influence of the temperature 

sensitive promoter. A common Arrhenius scaling alone does not allow for frequency or 

phase entrainment. The same mechanism that provides temperature compensation 

(insensitivity to changes in mean temperature) also makes the system sensitive to 

temperature dynamics, achieving entrainment. This is in agreement with circadian clocks as 

well [5].

Finally, we consider a stochastic analog of system (3.1,3.2) with a distributed delay as a 

more realistic model. Discrete delays are used as a simplifying approximation but do not 

occur in nature. We implement a sequence of reaction equations to model the delay (the 

same reaction equations used to arrive at equations (2.1)). Therefore, the probability density 

function describing the time required to complete transcription should be described by 

equation (2.9). The stochastic model is simulated using the standard Gillespie algorithm 

[14]. The details of the model can be found in Appendix C. The results are shown in Fig. 

3.3, where we look at response of the system to varying mean temperatures and frequencies 

as done above. Each point represents the average steady state period across 20 simulations 

with error bars representing a standard deviation above and below the mean. We see a 

similar response as seen in the deterministic model.

4. Conclusion

It was found that periodic temperature fluctuations induce periodically time-varying delays. 

The effects of a time-varying temperature on delays within a genetic network can be highly 

nonlinear and so the delay cannot be simply scaled by an Arrhenius coefficient in this case. 

With this, we investigated properties of a delay-based model of a temperature sensitive 

oscillator. This oscillator has been shown to exhibit temperature compensation, that is, the 

frequency of oscillation is insensitive to temperature variations. This was shown by 

analyzing the dynamics at different constant temperatures. Using the method derived, we 

were able to simulate the system under a periodically time-varying temperature. Simulations 

showed improved temperature compensating properties under the dynamically varying 

temperatures, over constant temperatures. Simulations also predicted reliable temperature 

entrainment. The frequency of protein expression coincided with that of the time-varying 

temperature.

We focused on properties important in circadian oscillators, namely, temperature 

compensation and temperature entrainment. Ideally, a circadian oscillator should 

demonstrate properties of entrainment with insensitivity to changes in mean temperatures 

[10]. Here we highlight a case where the entrainment is a byproduct of the same mechanism 
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which makes the system insensitive to changes in mean temperature. This is in agreement 

with Bodenstein et al. [5], where temperature entrainment was shown to naturally follow 

from circadian clock models tuned for temperature compensation through the Arrhenius 

coefficients. In the oscillator of Hussain et al. [21], there is an inherent tradeoff between 

robustness to unwanted temperature fluctuations about a mean and robustness to changes in 

mean temperatures, with the latter admitting temperature entrainment. Here, an 

understanding of the effects of temperature on delays eased the analysis of a delay-based 

model of a circuit with circadian clock-like properties.

Future work includes investigation of circadian oscillators, which have an intricate 

relationship with temperature. For instance, circadian oscillators exhibit temperature 

compensation [3, 37], i.e. their periods do not vary with changes in the average temperature. 

Theorists have investigated methods of temperature compensation in models of circadian 

oscillators, often minimizing the effects of Arrhenius-scaled rate constants [10, 17, 19, 20, 

39, 42]. Periodic changes in temperature have also been implicated in the entrainment of 

circadian oscillators to the day/night cycle [26, 35, 38, 43, 46]. However, entrainment of 

circadian oscillators is most commonly associated with periodic changes in light, and 

mathematical models have been developed explaining this phenomenon [9, 15, 16, 23, 24, 

25, 27, 34, 44, 45]. Less is understood about the role of temperature.
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Appendix A

Time-varying distribution limit

Here, we provide details on taking the limit N → ∞ with the constraint N/a0 = E on the 

time-varying distribution

(A.1)

We will show that in the limit the distribution, while maintaining an integral equal to one (as 

shown in the main text), becomes zero everywhere and infinity at a single point. In 

summary, we find that there exists a unique delay τeff such that

(A.2)

Applying Stirling’s formula for large N, namely
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(A.3)

to the distribution (A.1) gives

(A.4)

(A.5)

which asymptotically converges to equation (A.1) in the limit as N → ∞. Rearranging 

terms in equation (A.5) and making use of the substitution a(t) = a0 f(t) gives

(A.6)

We define

(A.7)

and investigate the limit of equation (A.6) for different ranges of K by looking at the term

(A.8)

Note that K remains constant with changing N under the constraint N/a0 = E. For ease of 

analysis we ignore the coefficient  in equation (A.6), which also does not change in 

the limit. We will show that in the limit N → ∞, equation (A.8) is zero everywhere and 

infinity at a singular point for any time t.
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Applying l’Hôptial’s rule for K < 1

(A.9)

and for K ≥ 1

(A.10)

It remains to show that K ≤ 1 for all τ. We would like to determine when K reaches its 

maximum value. As a necessary condition for an extremum we must have

(A.11)

Since the first two terms are always strictly positive, we find that an extremum occurs at τeff, 

where

(A.12)

Plugging equation (A.12) back into equation (A.7),

(A.13)

we find K = 1 at the extremum. It can be easily shown that

(A.14)

therefore, the extremum is a maximum, hence, K ≤ 1 for all τ. We see that in the limit as N 
→ ∞, h(t, τ) is zero everywhere for all τ except for at τeff, where K(τ) = 1 and h(t, τ) = ∞. 

Furthermore, since α(t, τ) is an injective function in τ, equation (A.12) has a single solution, 

hence, τeff provides a global maximum at a given time t, which is the single non-zero 

solution.

Appendix B

Simulations of the dual-feedback oscillator

The oscillator modeled by
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(B.1)

where for the temperature compensating model we have

(B.2)

and for the non-temperature compensating model we have

(B.3)

using the parameters shown in Table B.1.

This system is modeled using dde23 in Matlab with discretized delays. Using dde23, one 

can specify the delayed states to be used in the delay differential equation. Using the method 

derived in Section 2, we can determine the range of delays for which we need state 

information. The range of delays is discretized into bins of width .05min so that state 

information is saved for N ∈ ℤ different delays, where N = (τmax − τmin)/.05. The delay 

used in the simulation is the mid-point of each bin. At each iteration, we calculate what the 

time-varying delay is at that time using again the method in Section 2 and find the 

appropriate bin. The corresponding delayed state is then fed into the delay differential 

equation, simulating the time-evolution of the model above with a time-varying delay.

Appendix C

Gillespie simulations of the dual-feedback oscillator

We use the following reaction equations to generate Gillespie simulations:
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(C.1)

where

(C.2)

and

(C.3)
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The reaction rates are determined from the delay with equations ax = N/τx and ay = N/τy, 

where we set N = 40 as an approximation. The remainder of the parameters are borrowed 

from the deterministic system. The system is simulated using the standard Gillespie 

algorithm [14] custom coded in Matlab. The average period for each simulation was 

determined by first simulating the system for 15 periods to ensure steady state dynamics and 

taking the average period across the last 5 oscillations.
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Figure 2.1. Modeling of delays in protein production
Transcriptional delays (top) are modeled by a sequence of chemical reactions (bottom) with 

common reaction rate a(t) for each reaction R1, …, RN.
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Figure 2.2. Delay distribution for different values of N with E = 15 for a constant and time-
varying rate a
(a) Delay distribution for different values of N with E = 15 for a constant rate coefficient a. 

(b) Delay distribution for different values of N with E = 15 for a time-varying rate 

coefficient a(t) = .5 a0 sin(ω t) + a0 at time t = 0. (c) Distribution as a function of time with 

a(t) = a0 δp sin(ω t) + a0, N = 100, (N + 1)/a0 = 15, δp = .5, and ω = 2π/20. The dashed line 

indicates the nominal time-invariant distribution with a(t) = a0.
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Figure 2.3. Amplitude of the delay changes with the period of the time-varying temperature
Time-varying delays (green solid lines) corresponding to various time-varying temperature T 

(t) = ΔT sin(ωt) + T0 (red dashed lines). Parameter values here are θ = 4500K, E = 13.5 

min., ΔT = 6°C, T0 = 36°C, and δp = .28. (a) . (b) . (c) .
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Figure 2.4. Mean and peak-to-peak amplitude of τeff as a function of δp, E, and ω
(a) τeff as a function of time with ω = π/15, ϕ = 0, E = 15, and δp = .5. (b) τeff as a function 

of the expected delay with ω = π/15, ϕ = 0, and δp = .5. (c) τeff as a function of the 

frequency of a(t) with ϕ = 0, E = 15, and δp = .5. (d) τeff as a function of the relative 

perturbation δp with ω = π/E, ϕ = 0, and E = 15.
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Figure 2.5. Phase shift between a(t) and πeff(t) as a function of δp, E, and ω
(a) phase shift as a function of δp with E = 15 and ω = 2π/30. (b) phase shift as a function 

of ω with E = 15, and δp = .5. (c) phase shift as a function of E with ω = 2π/50, and δp = .5.
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Figure 3.1. Schematic of the temperature compensating oscillator [21]
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Figure 3.2. Entrainment of the synthetic gene oscillator with (Mutant LacI) and without a 
temperature sensitive promoter (WT LacI)
(a) Frequency entrainment of the circuit with and without temperature compensation for ΔT 

= 2°C and T0 = 36°C. (b) Period of the circuit with and without temperature compensation 

for ω = 2π/50 min−1, ΔT = 2°C, and different mean temperatures T0 in Eq. (2.13).
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Figure 3.3. Gillespie simulation of the synthetic gene oscillator with a temperature sensitive 
promoter showing entrainment
(a) Frequency entrainment of the circuit with ΔT = 5°C and T0 = 36°C. (b) Period of the 

circuit for ω = 2π/50 min−1, ΔT = 5°C, and different mean temperatures T0 in Eq. (2.13).
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Table B.1

System parameter values.

Parameter Value

τx 13.5 min.

τy 15 min.

β .0275 min−1

γx 76 (mol./cell)min−1

γy 76 (mol./cell)min−1

R0 1.8 mol./cell

η .5 (unitless)

Cy 5 mol./cell

αx 265 (mol./cell)min−1

αy 92.75 (mol./cell)min−1

θ 4500 K

Cx,max 830 mol./cell

Cx,min 50 mol./cell

Tlac 36°C

b 20 (unitless)

N 4
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