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Abstract

Cells present in the adventitia, or outermost layer of the blood vessel, contribute to the progression 

of vascular diseases, such as atherosclerosis, hypertension, and aortic dissection. The adventitial 

fibroblast of the aorta is the prototypic perivascular fibroblast, but the adventitia is composed of 

multiple distinct cell populations. Therefore, methods for uniquely identifying the fibroblast are 

critical for a better understanding of how these cells contribute to disease processes. A popular 

method for distinguishing adventitial cell types relies on the use of genetic tools in the mouse to 

trace and manipulate these cells. As reporter and Cre recombinase expressing mice are used more 

frequently in studies of vascular disease, it is important to outline the advantages and limitations of 

these genetic tools. The purpose of this review is to provide an overview of the various genetic 

tools available in the mouse for the study of resident adventitial fibroblasts.
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Introduction

The dynamic functions of the adventitia are a recent interest to vascular biology. 

Constituents of the adventitia contribute to neointimal hyperplasia1, 2, extracellular matrix 

(ECM) production and deposition3, vessel size regulation4, and immune cell recruitment5. 

Previous studies mainly relied on in vitro cell culture to understand how these cells respond 

to pathological conditions6, 7. While informative, studies focused on the behavior of cells in 

culture may not accurately represent in vivo responses with regard to timing, severity, and 

cellular composition. Experimental approaches in the mouse designed to model diseases 

such as diabetes, aortic aneurysm, and coronary artery disease have added to our 

understanding of these pathological processes, but attribution of discrete signaling pathways 

to a given cell type is complicated due to inefficient methods for identifying and tracking 

these cell lineages. The heterogeneous nature of the adventitia3 creates complications in 

distinguishing cells involved in vascular pathogenesis and fibrosis, and in the past 
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delineation of cell populations has relied on morphology or expression of cell specific genes. 

Advances in genetic markers with Cre-driven recombination and cell type specific reporter 

technology have permitted in vivo examination of vascular cell populations and their 

progeny, as well as targeted gene deletion in these cells8. However, it is clear that relying on 

expression of a single gene to identify a cell population that can have a diverse range of 

injury responses may be problematic. This review aims to define the cells that comprise the 

adventitial compartment with a focus on the resident fibroblast and to characterize the 

advantages and disadvantages of the genetic models available to target this cell population. 

Ultimately, we believe that an understanding of the advantages and the limitations of genetic 

reagents will result in accurate assessment of their contribution to vascular pathology and 

eventually lead to improved methods.

Defining the adventitia

Categorizing the resident cell populations of a blood vessel is an important step in 

understanding cellular contribution to vascular development and disease. In the past, some 

studies have relied on location within the vessel to define these cells. Larger vessels have 

three distinct layers: the intima, media, and adventitia. The tunica intima or innermost layer 

is a monolayer of endothelial cells (EC) in direct contact with blood flow. The intima is 

separated from the media by a basement membrane and in the case of muscular and elastic 

arteries, an internal elastic lamina is present9, 10. The tunica media consists of multiple 

concentric rings of vascular smooth muscle cells (VSMC), the number of which depends on 

vessel size11, 12. The tunica adventitia or simply adventitia is separated from the media by an 

external elastic lamina in arteries and is most the complex layer of the blood vessel13. 

Resident adventitial cells have the capacity to respond to external physiologic stress and 

remodel the vascular wall14. It is important to note that the adventitial fibroblasts are not 

exclusive to the aorta and all large vessels throughout the body have an adventitial layer that 

may have a slightly different composition of cells3, 15. The diverse subset of cells in the 

adventitia and putative markers for each are described below:

Adventitial cell populations

Fibroblasts—The cell type most commonly associated with the adventitial layer is the 

fibroblast. These cells are the predominant resident population of the adventitia and are 

responsible for depositing abundant collagen fibrils around vessels15. Few studies have 

focused on the embryonic origin of these cells but they are believed to derive from local 

mesenchymal cell populations16–19. The fibroblast is also one of the more difficult cell types 

to define in vivo. This is likely due to variations in gene expression even in a quiescent state 

which may reflect cellular origin or anatomic location similar to the VSMC20. While genes 

such as FSP-1, DDR2, and Thy-1 have been used to identify fibroblasts, consistent 

expression by adventitial fibroblasts in vivo is poorly documented21–23. Adventitial 

fibroblasts are sometimes defined by their location because they are generally separated 

from the more readily recognized VSMC layer by an external elastic lamina24. However, the 

adventitia has multiple mesenchymal cell populations (described below). Designation based 

on presence outside of the media may oversimplify matters. Similar to interstitial fibroblast 

populations, activated adventitial fibroblasts proliferate, deposit ECM, and secrete 

inflammatory cytokines and chemokines3, 25–27. This activated fibroblast, often termed a 
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myofibroblast, can be identified by expression of contractile proteins such as α-smooth 

muscle actin (αSMA)28, 29. One caution is that αSMA is present in VSMC and can even be 

heterogeneously expressed in activated fibroblasts30, 31.

Abundant evidence indicates that these resident fibroblasts contribute to vascular 

remodeling. After pressure overload in the heart, ECM accumulation is readily observed 

around the coronary arteries32, 33, and resident fibroblasts are responsible for a majority of 

the matrix production34, 35. Similarly, matrix producing cells in a mouse model of 

Duchenne’s Muscular Dystrophy originated from the coronary adventitia36. Moreover, in the 

atherosclerotic aorta, media-derived VSMC predominate in the neointima37, but adventitial 

fibroblasts can infiltrate lesions and contribute to both the neointima and fibrous cap38–41.

Vascular Progenitors—Another cell population that resides in the adventitia is the 

vascular progenitor. These cells are of interest because they may participate in vessel repair 

and regeneration after injury42. Multiple classes of vascular progenitors have been identified 

including EC43, VSMC38, 44, and mesenchymal stem cells (MSC)14, 45, 46. Specifically 

characterizing and lineage tracing these progenitors has been difficult because reagents to 

uniquely distinguish them are limited42. For example, stem cell antigen-1 (Sca1) and CD34 

have been used to identify progenitor cells in the adventitia of the aorta that can differentiate 

into VSMC and EC in vitro2, 38, 44, 47. Because these markers are also expressed in other cell 

populations, the use of lineage tracing or reporter mice to understand the roles of these cells 

in vivo becomes difficult48, 49. Adding to the confusion regarding these progenitors is the 

recent finding that up to 30% of cells identified as Sca1+ VSMC progenitors have 

transmigrated from the media to the adventitia in the adult aorta47, suggesting that there 

might be cellular exchange between these two anatomic locations.

Pericytes—Pericytes are another mesenchymal cell found in the adventitia. These cells are 

defined by their proximity to capillaries50–53 and are distinct from adventitial fibroblasts. In 

addition, to location, pericytes are often defined by expression of PDGFRβ, NG2, and 

CD14650, 51, 54–57. Some studies suggest that pericytes have fibrogenic potential after injury 

and can express type 1 collagen54, 58. Others have suggested that a unique subset of 

pericytes is capable of producing ECM53, 55, 59.

Immune/bone marrow derived cells—Although the adventitia is predominantly 

comprised of mesenchymal cells, a new appreciation for resident immune cells has 

developed. In mice, resident immune cells have been described within the adventitial layer 

and in diseased vessels, the adventitia becomes a coordinating center for inflammatory 

responses60–63. One study points to bone marrow derived fibrocytes in an angiotensin (Ang) 

II hypertension model64. However, there has been recent debate over the extent of immune 

and bone marrow derived cell contribution to the process of ECM production34, 35, 65, 66. 

Because it is beyond the scope of this review, genetic tools to investigate immune cell 

conversion into a fibrogenic phenotype will not be discussed.
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Genetic tools used to identify adventitial fibroblasts

The use of a combination of markers and mouse genetic tools to identify specific cell 

populations has permitted researchers to examine the function and influence of adventitial 

fibroblasts on neighboring cells, but these reagents have limitations and may need further 

refinement and definition. This section describes available genetic tools that have been used 

to identify and manipulate these adventitial fibroblast cells (Table 1).

Collagen1a1

Because type I collagen production is one identifying feature of a fibroblast, several mouse 

lines have been generated using type I collagen cis-regulatory elements to track collagen 

promoter activity67–70. Many mice with type I collagen transgenes have not been 

documented for expression within adventitial populations. However, Collagen1a1-GFP 
transgenic mice that contain a mutated collagen enhancer element70 express GFP in the 

adventitia of coronary arteries, aorta, and pulmonary vein35 but not cardiac NG2+ 

pericytes66.

In postnatal livers, Collagen1a1-GFP was observed in both HSC and portal vein fibroblasts, 

but after postnatal day 14, GFP expression was downregulated8, 70 and negligible in resting 

adult liver fibroblasts68–70. During hepatotoxic (carbon tetrachloride, CCl4) and cholestatic 

(bile duct ligation, BDL) liver injury, Collagen1a1-GFP was re-expressed in both portal vein 

fibroblasts and HSC67, 69 permitting identification of a population of adventitial fibroblasts.

In uninjured kidney, Collagen1a1-GFP was expressed in podocytes and perivascular 

fibroblasts, but not in mesangial cells or VSMC58. After UUO injury, a majority of GFP+ 

cells overlapped with αSMA indicating Collagen1a1 promotor activity in activated cells, but 

perivascular expression was not determined. While use of genetic tools using Collagen1a1 
cis-regulatory elements to identify fibroblasts is logical, these reagents are unlikely to 

distinguish between perivascular fibroblasts and interstitial fibroblasts. In addition, this 

collagen reporter has also been observed in podocytes58, osteoblasts71, colon fibroblasts72, 

and spinal cord perivascular fibroblasts73. Because collagen expression has a dynamic range, 

it may be difficult to generate genetic reagents that consistently and uniformly label 

fibroblasts in all organs.

Enolase 2

Although enolase 2 (Eno2) is predominantly a neuron specific protein74, a recent study 

demonstrated that Cre activity was observed in the adventitia of the ascending, but not 

descending aorta75 in an Eno2-Cre transgenic mouse line76 (JAX #006663, 006297, 

005938). The lineage traced cells co-localized with reticular fibroblast marker (ER-TR7) but 

not with a VSMC marker (αSMA). This line was used to conditionally delete the AT1a 
receptor in fibroblasts to study Ang II-induced medial hyperplasia. In response to Ang II 

infusion, medial thickness was reduced in the ascending aorta, but the efficiency of 

recombination was not reported75. Further validation of Cre recombination efficiency by this 

line may be necessary to definitively determine if this Cre line is appropriate for further 

studies of adventitial fibroblasts.
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Fibroblast specific protein 1

Three transgenic mouse lines have been generated using the promoter of Fibroblast specific 
protein 1 (FSP1/S100A4) including a Cre line77 (JAX #012641), a thymidine kinase line78 

(JAX #012902), and a GFP expressing line79 (JAX #012893). The Cre expressing line was 

used to ablate the AT1a receptor and ~80% reduction in AT1a receptor transcript was 

observed in the aortic adventitia. Ang II-induced medial thickness in the ascending aorta was 

attenuated in these mice75. However, recent studies suggest that FSP1-GFP is expressed in 

immune cells22 and FSP1-Cre recombination was observed in liver Kupffer and macrophage 

cells after injury80. Furthermore, FSP1 protein expression was observed in skeletal muscle 

pericytes50 and immune infiltrates after cardiac pressure overload35. Therefore, experiments 

using these lines should consider the possibility of FSP1 promoter expression in other cell 

populations when interpreting results.

Gli1

The Gli family of transcription factors mediate sonic hedgehog (Shh) signaling81 and 

recently, expression of these genes has been described in perivascular progenitor cells with 

MSC-like qualities (tri-lineage differentiation, PDGFRβ expression, and adhesion to plastic 

in vitro) in various organs59. Using Gli1CreERT282 (JAX #007913) for cell labeling, Gli1 
lineage cells were localized to the adventitia of large arteries and arterioles, as well as a 

pericyte niche59. The perivascular proximity of these Gli1 lineage cells was observed in 

heart, kidney, lung, liver, bone marrow, and muscle. In the heart, Gli1 lineage cells expanded 

after Ang II administration and transverse aortic constriction (TAC), and coincided with 

ECM production and αSMA expression. Ablation of Gli1 lineage cells attenuated fibrosis 

and rescued left ventricular function after TAC. Efficiency and reproducibility of 

recombination with this Cre line was not demonstrated for adventitial cells. This Gli1 
lineage comprised about 0.02% of the cells in the aortic arch adventitia. After wire injury of 

the femoral artery or during atherosclerosis, the lineage traced cells could be found within 

the media and neointima83. In atherosclerotic mice (ApoE−/− on high fat diet) with induced 

chronic kidney failure, Gli1 lineage cells were necessary for calcification of the aortic 

arch83. Single cell analysis demonstrated that the Gli1 lineage of cells were heterogeneous in 

gene expression83. Because these cells are heterogeneous and relatively rare in the 

adventitia, this Cre may not be ideal for gene ablation studies.

In the same study that implicated Gli1 lineage cells in the heart, Gli1 lineage cells were 

found to contribute to kidney, liver, and lung fibrosis. Cells traced by Gli1CreERT2 were in 

perivascular regions in uninjured and injured organs59. Lineage traced cells were found 

outside of the endothelial layer and overlapped with PDGFRβ expression but only 

constituted a small fraction of the PDGFRβ+ cells. After injury, Gli1+ cells proliferated and 

many expressed αSMA, indicating that these cells became activated fibroblasts. Similar to 

what was observed in the heart, genetic ablation of Gli1 expressing cells reduced kidney 

fibrosis after UUO injury. Taken together these data suggest that the Gli1CreERT2 mouse line 

labels a subpopulation of adventitial cells that are relevant to vascular pathologies, but 

further validation of Cre recombination and deletion efficiency is required to determine the 

role Gli1 lineage cells play during fibrosis and neointima formation. In addition, Gli1CreERT2 
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recombination occurs in cranial sutures84; neural stem cells85; hair follicle stem cells86; lung 

mesothelial cells87; and lung peribronchial and perivascular smooth muscle88.

Patched-1 and patched-2

Shh is an important developmental morphogen, but recently a greater role for this molecule 

has been documented in adult tissues89. A role for Shh signaling is becoming evident in the 

adventitia as well. Reporter activity of patched-1 and patched-2, two Shh receptors, has been 

documented in the adventitia. At postnatal day 2, patched-1LacZ90 (JAX #003081) and 

patched-2LacZ91 (JAX #005827) mice exhibit robust β-galactosidase activity in the adventitia 

of all major arteries including the aortic root, thoracic aorta, coronary, intercostal, 

mesenteric, and femoral arteries44, 92. The extent of the cell labeling was not quantified and 

expression of the reporter was decreased in adult tissues. Because these receptors are 

downstream targets of Shh signaling and lacZ reporters demarcate cells that are receptive to 

Shh, reporter expression was seen to increase in the presence of active signaling93. As Shh 

signaling declines with age, these lines may have limited utility in labeling resting 

adventitial cells. In addition, the hedgehog pathway is active in many cell types, and β-

galactosidase expression has been observed in kidney epithelial, glomerular94, duodenal 

mesenchymal95, neural90, lymphatic endothelial96, lung mesothelial87, and hair follicle stem 

cells86.

PDGFRα

Recent data has demonstrated that PDGFRα is expressed in a wide variety of fibroblast 

populations including dermal97, lung98, 99, liver100, and cardiac34, 35, 65, 101–103 fibroblasts. 

PDGFRαnGFP mice104 (JAX #007669) express a nuclear H2B-eGFP from the PDGFRα 
locus and are a useful tool to identify fibroblasts in a majority of organs. In the heart, cells 

expressing GFP were observed in the coronary artery, the thoracic aorta adventitia66, and 

myocardial interstitium103. These cells are not coincident with PDGFRβ expressing cells 

and are not considered pericytes66, 101. In the liver, PDGFRαnGFP expression was reported 

as HSC specific, but after CCl4 treatment GFP+ cells accumulated around central and portal 

veins suggesting that this GFP reporter may also be expressed by portal vein fibroblasts after 

injury100. Lineage traced cells in the skeletal muscle of an inducible PDGFRα-CreER 

mouse105 (JAX #018280) co-localized with collagen production around vessels in both 

uninjured and injured skeletal muscle36. PDGFRα protein and GFP reporter activity are also 

expressed in a wide variety of cell types including astrocytes106, neural stem cells107, 

oligodendrocytes108, 109, perichondrium104 and adipocyte precursors110. Thus care should 

be taken when using these tools as fibroblast specificity is organ dependent and may vary 

according to the age being studied.

Sca1

Sca1 is a surface receptor that is expressed on many cell types including fibroblasts, 

hematopoietic stem cells111, and EC66. In Sca1-GFP transgenic mice112 (JAX #012634), 

GFP+ cells are observed in the coronary adventitia. These cells were believed to be 

fibroblast or fibroblasts progenitors, as they were negative for the NG2 pericyte marker66. 

The use of this cell line may be more complicated as bone marrow chimeras suggested that 

Sca1-GFP may also identify a fibrocyte population64. Therefore, this reporter line is unlikely 
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to be useful for general analysis of adventitial fibroblasts as it does not label all of these cells 

and expression is observed in multiple other cell types49, 112.

Tcf21

The transcription factor Tcf21 is expressed in adult cardiac fibroblasts and interstitial valve 

cells113. Tcf21LacZ reporter mice114 have expression of β-galactosidase in coronary 

adventitia, aortic root, and interstitial cells of the heart115. In atherosclerotic lesions, β-

galactosidase activity was observed on the luminal side of lesions and in the fibrous cap115. 

In the kidney, another Tcf21LacZ116 reporter line showed β-galactosidase activity in 

adventitial cells117. A tool for identifying Tcf21 lineage cells was generated by inserting an 

inducible Cre recombinase at the Tcf21 locus118 (Tcf21mCrem). Tcf21 lineage cells were 

present in the adventitia of coronary arteries and the aortic root, as well as aortic root media 

and fibrous cap after injury102, 115. In addition to cells of the heart, adult induction of 

Tcf21mCrem recombination also lineage tags splenic interstitial cells119, kidney podocytes 

and mesangial cells, lung interstitial cells, and liver interstitial cells8, 118. Although not 

specifically noted, Tcf21 lineage cells are observed surrounding arteries in liver, lung, and 

kidney, but not in the descending aorta (MDT, unpublished observation).

Guidelines for use of lineage markers and Cre lines

Few of the genetic tools described above uniformly label a lineage of cells, or if they do, 

additional mesenchymal lineages are also marked. To refine fibroblast genetic tools we must 

first develop ways to distinguish this cell population from other cell types. Although 

defining these populations has been challenging for many years, new insights into fibrogenic 

cells are likely to be forthcoming. The use of single cell sequencing can provide additional 

insights into cell populations and even subgroups within a cell type. Recent single cell 

analyses have indicated that periostin may be a more robust marker for activated cardiac 

fibroblasts, but details on adventitial expression were not explored65, 120. Because fibroblasts 

are likely to have a dynamic range of gene expression depending on if they are in a 

proliferative, inflammatory, anti-inflammatory, or matrix producing phase, it may be useful 

to focus on genes that are uniformly expressed by fibroblasts such as, PDGFRα or 

collagens. Another successful tactic used for the cardiac fibroblast has been labelling cells 

by their developmental origin34, 35, 102. While the embryonic origin of some fibroblasts is 

defined such as the cardiac fibroblasts16–18, the origin of other adventitial fibroblast 

populations is still a relative mystery. Hopefully, future studies will investigate this topic.

When using genetic tools, reproducibility and reliability of the reporter or Cre line are 

imperative. Rigorous details outlining activity of the genetic reagent should accompany all 

studies. These details should include quantitative evaluations of how consistent the reporter 

or Cre line is at labeling the cell population of interest and if there is any promiscuity in 

other cell types. In addition to validating recombination using a Cre reporter allele, 

efficiency of gene deletion in the cell type should be provided for all studies using Cre lines. 

For systems that are not inducible, there is the added complication that expression can be 

acquired by new cell populations after injury, inflammation, or aging. Transplant or adoptive 

transfer is one method for verification of fidelity, although this procedure might not be 
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feasible for every circumstance. Potentially, more refined methods for fibroblast 

identification will help to resolve the questions regarding contribution of fibrocytes, 

pericytes, and progenitor cells to vascular fibrosis.

Perspectives

The adventitia is not only a gateway between circulation and the surrounding tissues, but in 

response to vascular injury, the resident adventitial fibroblasts secrete ECM and 

inflammatory mediators leading to vascular stiffness and tissue disruption26. Because 

regulation of these activities could be beneficial in controlling vascular pathogenesis, the 

adventitial fibroblast may be an optimal target for therapeutic intervention24. It is important 

to note that some of our current knowledge of adventitial fibroblasts has been extrapolated 

from studies of general fibroblast responses to injury, and until recently very little 

information has specifically related to adventitial fibroblasts. As we learn more about the 

specific and distinct nature of each adventitial cell population, future studies will lead to 

more refined mouse tools to further our knowledge of vascular fibrosis and tissue 

regeneration.

Abbreviations

αSMA α-smooth muscle actin

Ang II angiotensin II

AT1a angiotensin II type 1a

BDL bile duct ligation

CCl4 carbon tetrachloride

CD34 cluster of differentiation 34/hematopoietic progenitor cell 

antigen

CD146 cluster of differentiation 146/melanoma cell adhesion 

molecule

Cre P1 bacteriophage recombinase enzyme

DDR2 discoidin domain receptor tyrosine kinase 2

EC endothelial cell

ECM extracellular matrix

ER-TR7 reticular fibroblasts

Eno2 enolase 2

FSP1/S100A4 fibroblast specific protein 1

GFP green fluorescent protein
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Gli1 Gli family zinc finger 1

HSC hepatic stellate cell

LacZ β-galactosidase gene

MSC mesenchymal stem cell

NG2 neural/glial antigen 2

PDGFRα platelet derived growth factor receptor α

PDGFRβ platelet derived growth factor receptor β

PF portal fibroblast

Shh sonic hedgehog

Sca1 stem cell antigen-1

TAC transverse aortic constriction

Tcf21 transcription factor 21

Thy-1/CD90 cluster of differentiation 90

UUO unilateral ureteral obstruction

VSMC vascular smooth muscle cell
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Highlights

– Distinguishing the cellular constituents of the adventitia is an important step 

in understanding the contribution of each cell to vascular diseases, such as 

hypertension, atherosclerosis, and aortic aneurysm.

– Resident adventitial fibroblasts are main contributors to the disease process 

that acquire fibrogenic, proliferative, and inflammatory properties after 

vascular injury.

– This review summarizes the advantages and disadvantages of mouse genetic 

markers with Cre-driven recombination and cell type specific reporter 

technology currently available to study adventitial fibroblasts.

– The heterogeneous functions of the adventitial fibroblast warrant additional 

tools to identify these cells with focus on the adventitia rather than the 

general fibroblast population to better understand vascular fibrosis and 

pathogenesis.
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