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Abstract

In 2005, two groups independently discovered that the G protein-coupled receptor GPR30 binds 

estradiol in cultured cells and, in response, initiates intracellular signaling cascades [69, 81]. 

GPR30 is now referred to as GPER, the G-protein coupled estrogen receptor [65]. While studies in 

animal models are illuminating GPER function, there is controversy as to whether GPER acts as 

an autonomous estrogen receptor in vivo, or whether GPER interacts with nuclear estrogen 

receptor signaling pathways in response to estrogens. Here, we review the evidence that GPER 

acts as an autonomous estrogen receptor in vivo and discuss experimental approaches to test this 

hypothesis directly. We propose that the degree to which GPER influences nuclear estrogen 

receptor signaling likely depends on cell type, developmental stage and pathology.

Estrogens exert diverse effects on organ systems throughout the body by binding to estrogen 

receptors. Estrogen receptors alpha and beta (ERα, ERβ), members of the nuclear receptor 

family [6, 16], were initially cloned and characterized as ligand-dependent transcription 

factors [22, 23]. Yet we now appreciate that the same nuclear estrogen receptor proteins and 

their alternatively spliced variants can also activate signaling pathways in the cytosol and at 

the plasma membrane, separate from their function as transcription factors [7, 13, 39, 51, 

60]. Ligand bound ERs can associate with the plasma membrane [1, 47, 59, 61, 67] and 

influence kinase signaling cascades via direct interaction with Src [50, 51], B-Raf [73] and 

the p85α subunit of phosphatidylinositol-3-OH-kinase [72]. ERα can also interact directly 

with G proteins [35, 52, 87, 88] and with the integral membrane protein metabotropic 

glutamate receptor type 1a [13, 37]. Whereas ERα and ERβ function in the nucleus and at 

the plasma membrane, the G protein-coupled estrogen receptor (GPER/GPR30) represents a 

new class of estrogen receptor, an integral membrane protein restricted to cell membranes 

that cannot directly regulate gene expression [18, 65, 69, 81]. While GPER, unlike ERα and 

ERβ, is not a transcription factor and thus cannot directly regulate gene expression, GPER 

may regulate gene expression indirectly, by activating proteins that change transcription 

factor activity [3, 34, 56, 66].
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MEMBRANE VS NUCLEAR ESTROGEN SIGNALING

ER splice variants in mammals

How do cells regulate ERα- and ERβ-dependent nuclear vs membrane associated signaling? 

This question remains an active area of inquiry. Alternative splicing of estrogen receptor 

genes has been demonstrated to influence membrane signaling. Alternative splicing of the 

human ESR1 gene results in multiple isoforms of ERα protein, where different isoforms 

differentially associate with cell membranes (Figure 1). The full-length protein encoded by 

the human ESR1 gene, hERα66, acts as a ligand-dependent transcription factor and, 

following post-translational modification, can anchor to the plasma membrane and activate 

signaling cascades [67, 68]. The alternatively spliced hERα46 protein lacks the N-terminal 

transactivation domain (AF-1 domain) [19] and is targeted to the plasma membrane of 

endothelial cells in a palmitoylation-dependent manner [39]. The alternatively spliced 

hERα36 protein lacks both N- and C-terminal transactivation domains (AF-1, AF-2 

domains) [84] and is associated with the plasma membrane, where it activates MAPK 

pathway in a heterologous culture system (HEK293 cells) [85]. In heterologous cell culture 

systems, both hERα46 and hERα36 are less efficient transcription factors than hERα66 and 

are thought to predominantly function as membrane-associated estrogen receptors [39, 85]. 

When overexpressed in cultured HEK293 cells, hERα36 can act as a dominant negative and 

inhibit hERα66-and ERβ-dependent transcription in the nucleus [85]. ERα36 and ERα46 

splice variants are expressed in mice and rats [29, 42], but their function is not well 

understood (Figure 1).

In contrast to nuclear estrogen receptors that are alternatively spliced and signal in the 

nucleus and at cell membranes, GPER is a seven transmembrane GPCR with no known 

alternatively spliced isoforms. GPER has been detected at the plasma membrane and at 

intracellular membranes, such as the endoplasmic reticulum [2, 8, 9, 17, 20, 46, 62, 69, 86].

ER splice variants in teleosts

As in humans, many teleost fish species express alternatively spliced variants of ERα, 

including sea bream [64], killifish [24] and zebrafish [10] (Figure 1). Though six splice 

variants have been identified in zebrafish, none appear orthologous to the two 

physiologically relevant human ERα splice variants hERα36 and hERα46. Additionally, no 

functional role has been identified yet for any ERα splice variant in zebrafish. Thus, it is not 

known whether zebrafish ERα splice variants preferentially signal at the cytosol or cell 

membranes.

GPER signaling in teleosts

GPER mediates oocyte maturation in teleosts [44, 57, 58, 63]. Oocytes mature in the 

presence of progestins, while estrogens block maturation. In oocytes from Atlantic croaker 

(Micropogonias undulates), common carp (Cyprinus carpio) and zebrafish (Danio rerio), the 

GPER agonist G1 blocked progestin-induced maturation [44, 57]. In the absence of 

exogenous progestins, G1 reduced spontaneous maturation of croaker and zebrafish oocytes 

[57], while the GPER antagonist G15 increased spontaneous maturation of carp and 

zebrafish oocytes [44, 63], suggesting that estrogens act via GPER to block oocyte 
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maturation. In zebrafish oocytes, G15 blocked the inhibitory effects of estradiol. 

Additionally, reducing GPER function using either anti-sense morpholino oligonucleotides 

or pre-treatment with GPER antibodies blocked the inhibitory effects of estradiol [57, 63]. 

Knockdown of ERα did not alter the response to estradiol, suggesting that estradiol acts via 

GPER and not via ERα to block oocyte maturation [58]. However, the involvement of ERβ, 

or of alternatively spliced variants of ERα, has not been explored.

GPER signaling in mammals

Several groups have independently generated GPER mutant mice. Disruption of the first two 

transmembrane domains of the GPER gene by insertion of a lacZ reporter gene resulted in 

mice with no gross changes in fat mass, growth or reproductive ability [30]. Disrupting the 

GPER gene with a neomycin resistance cassette resulted in mice that were viable and fertile 

with no gross abnormalities in physical, immunological, or neurological development [83]. 

However, Haas et al. later reported that these mice exhibited increased body weight and 

abdominal fat compared to wildtype [25]. Two groups independently deleted the complete 

GPER open reading frame using Cre-mediated recombination: one by deleting the entire 

open reading frame [45], the other by deleting exon 3 entirely (open reading frame plus 

additional untranslated regions) [55]. The former mutant mice exhibited hyperglycemia, 

impaired glucose tolerance, reduced body growth, and increased mean arterial blood 

pressure associated with decreased insulin production in female mice [45], while the latter 

mutant mice exhibited no abnormalities in blood pressure, growth, fertility or expression of 

estrogen responsive genes [55]. Subsequent studies have identified potential roles for GPER, 

but few have utilized the available ERα and ERβ mutant mice, together with GPER, to 

directly test whether GPER and ERs interact in a number of physiological processes. 

Additionally, double and triple combination mutants would help further our understanding of 

these complex interactions between estrogen receptors.

EVIDENCE FOR GPER INTERACTING WITH ER SIGNALING

GPER activity leads to increased expression of ERα36

Evidence that GPER upregulates hERα36 expression comes from studies in cultured cells. 

In HEK293 and COS7 cells lacking endogenous GPER and hERα36 expression, 

overexpression of GPER increased expression of hERα36 but not hERα66 [34]. Conversely, 

in the SK-BR-3 breast cancer cell line, knockdown of GPER reduced hERα36 expression, 

while knockdown of hERα36 had no effect on GPER expression [34]. These results suggest 

that under certain contexts, GPER can upregulate ERα expression.

Note that these results do not exclude GPER acting as an autonomous estrogen receptor. 

Temporal differences in GPER activity could explain how GPER can act autonomously and 

influence ER expression in the same cells. Immediately following GPER activation, GPER 

may activate G proteins and other signaling proteins independently of ERα. Such 

downstream signaling pathways may ultimately upregulate hERα36, but this may occur 

hours following initial GPER activity.
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GPER and ERα proteins interact

Two independent studies provide evidence for a physical association between GPER and 

ERα proteins in human primary monocytes (hPM) and in a human endometrial 

adenocarcinoma cell line (Ishikawa cells) [62, 82]. Derived from normal men or 

premenopausal women, hPMs express hERα36 and GPER but not hERα66 or ERβ [62]. 

Exposure to lipopolysaccharides (LPS) induces expression of pro-inflammatory genes IL-6 

and TNF-α, and this effect is blocked by pre-incubation with estradiol [62]. Interestingly, 

both ICI182,780 (ICI), an ER antagonist/GPER agonist, and G15, a GPER antagonist, block 

the effects of estradiol. If ICI is acting predominantly as a GPER agonist in this situation, 

then it is unclear how opposing actions on GPER – either inhibiting GPER with G15 or 

activating GPER with ICI — could block the effects of estradiol. Alternatively, if ICI is 

acting predominantly as an ER antagonist, then this suggests that both hERα36 and GPER 

are required for estradiol to block LPS-dependent IL-6 and TNF-α expression. To explore 

this further, the authors found that G1 pretreatment (GPER agonist) failed to reduce LPS-

dependent IL-6 expression, suggesting that ICI182,780 acts predominantly as an ER 

antagonist rather than as a GPER agonist in this context [62]. These results also suggest that 

both hERα36 and GPER must be activated to block LPS-dependent IL-6 expression.

To test the hypothesis that hERα36 and GPER are physically associated to regulate the anti-

inflammatory response in hPMs, Pelekanou and colleagues used proximity ligation assay, a 

histological method to visualize protein colocalization [75], and found that LPS treatment 

caused an association between hERα36 and GPER [62]. Additionally, hERα36 and GPER 

were associated with each other in the area of atherosclerosis plaques from human samples 

with coronary artery disease [62], suggesting that hERα36 and GPER inhabit the same 

membrane complex in vivo.

In Ishikawa cells, estradiol increases proliferation. Estradiol-dependent proliferation was 

blocked following silencing of GPR30 or ERα by RNA interference [82]. This suggests that 

both proteins are involved, but whether they interact or are parts of two independent 

pathways was not known. To test for a direct interaction, Vivacqua and colleagues used co-

immunoprecipitation and found that ERα and GPER interact directly [82], supporting the 

hypothesis that GPER and ERα interact to regulate proliferation in Ishikawa cells.

Using the BG-1 ovarian cancer cell line, Albanito and colleagues demonstrated that both 

ERα and GPER are required for estradiol-dependent proliferation [3]. In BG-1 cells, 

estradiol treatment upregulates c-fos expression, increases levels of phosphorylated ERK1/2 

and cell proliferation. These effects were blocked by antisense oligonucleotides targeting 

either ERα or GPER, demonstrating that ERα and GPER are necessary for estradiol-

dependent increase in cfos, phosphorylated-ERK1/2 and proliferation, similar to what was 

reported in Ishikawa cells [82]. In contrast to studies in Ishikawa and hPM cells, it is not 

known whether ERα and GPER interact in BG-1 cells.

EVIDENCE FOR GPER ACTING AUTONOMOUSLY

GPER activity influences physiology throughout the body, including metabolic functions [4, 

36, 71] and reproductive [11, 21] and cardiovascular systems [32, 40, 41, 48, 49]. A majority 
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of these studies rely solely on pharmacologic approaches to implicate GPER signaling. 

Pharmacologic approaches, while useful, are limited by non-specific effects. For example, 

G-1, developed as a selective GPER agonist that would not activate nuclear estrogen 

receptors [5], was later shown to influence nuclear estrogen receptor activity [74]. Without 

complementary genetic approaches, such as the use of estrogen receptor mutant animals or 

cell lines, it is difficult to investigate the degree to which GPER acts autonomously.

Comparing phenotypes among estrogen receptor deficient animals

The use of targeted, loss-of-function mutations in estrogen receptor genes is a powerful 

approach for identifying the function of estrogen receptors in animals. If estradiol 

administration causes a phenotype in wildtype animals and in animals deficient in ERα or 

ERβ, but estradiol administration fails to cause the same phenotype in animals deficient in 

GPER, then this suggests that estradiol acts via GPER but independently of nuclear estrogen 

receptors. This paradigm was tested using the cardiac ischemia-reperfusion injury model: 

ischemia causes cardiac damage, but estradiol administration reduces cardiac damage 

following ischemia [26, 53, 76]. To identify the receptor required for estradiol’s protective 

effects, Kabir and colleagues subjected hearts from male mutant mice lacking either GPER, 

ERα or ERβ to ischemia-reperfusion injury in the presence of estradiol or vehicle. Estradiol 

treatment protected wildtype and ERα and ERβ mutant mice from injury, but had no effect 

on GPER mutant mice [33]. These results indicate that GPER, but not nuclear estrogen 

receptors, are required for estradiol-dependent protection of cardiac injury following 

ischemia in male mice. Furthermore, these results also support the hypothesis that GPER 

acts as an autonomous estrogen receptor in vivo.

Crucially, Kabir and colleagues used ERα knockout mice that have no detectable expression 

of ERα splice variants ERα36 and ERα46 [14], splice variants that encode membrane-

associated ERα proteins [39, 84, 85]. Thus, it is difficult to argue that the protective effects 

of estradiol following cardiac ischemia are due to membrane-associated ERα signaling.

A second example comes from zebrafish embryos. Acute exposure to estradiol increased 

heart rate in zebrafish embryos. This effect was absent in GPER mutant zebrafish. In 

contrast, estradiol exposure increased heart rate in ERα and ERβ mutant embryos [Romano 

& Gorelick, bioRxiv preprint doi: https://doi.org/10.1101/088955], demonstrating that 

GPER, but not nuclear estrogen receptors, are required for estradiol-dependent increase of 

heart rate in zebrafish embryos.

Ethinyl estradiol (EE2) can reduce severity of established disease in experimental 

autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, when 

administered following the onset of disease symptoms [80]. EE2 treatment reduced disease 

severity in ERα −/− mice, but was not effective in GPER −/− mice [89], suggesting that 

EE2 acts via GPER, not ERα, to improve EAE symptoms. This protective effect was 

associated with increased production of the anti-inflammatory cytokine IL-10. Following 

treatment with EE2, IL-10 was increased in both wildtype and ERα −/− mice, but not in 

GPER −/− mice [89]. Though the complete story of how GPER mediates immune function 

is still unclear, this study suggests that GPER functions autonomously to increase IL-10 

production and improves disease outcome in EAE. Note that ERβ function was not explored 
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in the context of EE2-induced reduction in EAE severity, thus it is possible that GPER and 

ERβ interact, or influence parallel pathways, to reduce EAE symptoms. To make matters 

more complex, the preceding model examined estrogen ability to reduce symptoms in 

established EAE. Other studies using genetic approaches have shown that estrogens, when 

administered prior to EAE onset, exhibit neuroprotective effects and that this is dependent 

on ERα [77, 78]. The degree to which GPER is involved in neuroprotection of EAE onset is 

not well understood.

GPER and ER signaling influence parallel signaling pathways to achieve the same result

Two examples of GPER and ER acting in parallel signaling pathways to achieve the same 

result come from studies investigating apoptosis in two distinct cell types: thymocytes and 

islet cells. Prolonged treatment with E2 can lead to thymic atrophy. This effect can only be 

partially attributed to ERα signaling [79] and subsequent studies identified an insignificant 

contribution from ERβ [15]. Using a genetic approach, E2-induced thymic atrophy was 

attenuated in both ERα −/− mice and GPER −/− mice [83]. However, further investigation 

demonstrated that ERα activity blocked thymocyte maturation, which triggered cell death, 

whereas GPER activity induced mature thymocytes to undergo apoptosis [83]. Consistent 

with these results, the GPER agonist G-1 induced thymic atrophy via apoptosis but did not 

block thymocyte maturation [83]. Together, these results indicate that GPER acts 

autonomously to induce thymocyte apoptosis, while ERα acts to block thymocyte 

maturation. Activation of either receptor, potentially acting via independent pathways, leads 

to thymic atrophy.

Treating mice with streptozotocin (STZ) causes pancreatic islet cell apoptosis and is 

commonly used to generate animal models of type 1 diabetes [38]. Estradiol (E2) can protect 

islet cells from STZ-dependent apoptosis, however this protection is only partially mediated 

by nuclear estrogen receptors. In ERα −/− or ERβ −/− mice, STZ + E2 exhibited partial 

protection of pancreatic β-cell apoptosis compared to STZ + E2 in wildtype mice [38], 

suggesting that multiple estrogen receptors cooperate to mediate the protective effects of E2 

in the pancreas. Consistent with this idea, in ERα/ERβ double knockout mice, E2 only 

partially protected islet cells from STZ-dependent apoptosis [43], implicating a third 

estrogen receptor, likely to be GPER. E2 failed to protect GPER deficient female mice from 

STZ-dependent apoptosis [43]. Further, G1 protected cultured wildtype islet cells from STZ-

induced oxidative stress [43]. Islet cells cultured from GPER mutant mice were no longer 

protected by G1, but the protective effects of E2 were still present in GPER deficient islets 

[43]. These results suggest that ERα, ERβ and GPER respond to E2 to protect pancreatic 

islet cells from oxidative stress, but that GPER plays the dominant role. It is possible that 

GPER acts via a separate, independent pathway from ERα and ERβ to protect islet cells 

from STZ-dependent apoptosis. This idea is supported by the fact that in ERα/ERβ double 

knockout mice, E2 is only partially protective.

Comparing gene expression following differential estrogen receptor activity

Notas and colleagues used cDNA microarrays to compare gene expression following 

pharmacologic inhibition of ERα versus GPER in multiple cells lines [54]. Identifying 

transcripts uniquely regulated by GPER would support the hypothesis that GPER can act 
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independently of ERα. Cell lines were incubated with a membrane-impermeable estradiol-

BSA conjugate (E2-BSA), in the presence or absence of ICI182,780 (ER antagonist/GPER 

agonist) or G15 (GPER antagonist). In T47D and SKBR3 cell lines, which express both 

GPER and hERα36, 17 out of 403 transcripts (4%) and 33 out of 393 transcripts (8%) were 

significantly and uniquely inhibited by G15. These transcripts were upregulated at least 1.5x 

by E2-BSA and downregulated by E2-BSA + G15 but not downregulated by E2-BSA + 

ICI182,780. The majority of transcripts were inhibited by both ICI and G15, suggesting 

some interplay between GPER and ERα. However, it is important to note that the presence 

of transcripts uniquely downregulated by G15 suggests that GPER can act as an autonomous 

estrogen receptor. The fact that this response is different between different tumor cell lines 

supports the idea that the degree to which GPER acts autonomously of ERα depends on the 

cell type.

This genomic approach has several limitations. G15 may also have some activity against 

ERα [12], meaning that the few transcripts uniquely regulated by G15 could be GPER-

independent. The use of microarrays to compare gene expression is more biased than using 

RNAseq, which has the potential to reveal not only additional differentially expressed genes 

but also differences in expression of noncoding RNAs. Ultimately, comparing gene 

expression among ER and GPER mutant cells may be a powerful approach to identify genes 

uniquely regulated by a specific estrogen receptor.

Is cross-talk between GPER and ER signaling influenced by cell type, developmental stage 
or pathology?

Evidence from knockout mice and cultured cells suggests that GPER can act as an 

autonomous receptor and can also interact with nuclear estrogen receptors (Figure 2). 

However, the degree to which GPER acts autonomously likely depends on cell type, 

differentiation status and pathology, i.e. whether the cell is quiescent, proliferative or 

cancerous.

Comparing the function of GPER in different cancer cell lines, we see that GPER requires 

ERα for the estradiol-dependent proliferation of ovarian cancer cells (BG-1) and 

endometrial adenocarcinoma cells (Ishikawa)[82], but not to induce cell proliferation in 

breast cancer cells (SKBR3) [3]. This suggests that GPER/ER interactions and crosstalk may 

depend on the cellular context of the tumor or cell type. In contrast, GPER signals 

autonomously to induce apoptosis in thymocytes [83] and to protect pancreatic islet cells 

from oxidative stress-induced apoptosis [38], both in vivo and in cultured cells. This 

suggests that GPER acts autonomously in different cell types, and that GPER can act to 

induce opposite effects depending on the cell type in which it is acting. In these examples, 

nuclear estrogen receptors activated signaling in a parallel pathway to achieve a similar 

effect. This indicates that GPER and nuclear ERs are sometimes present in the same cell or 

tissue type, yet signal independently of each other.
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FUTURE DIRECTIONS: MERGING PHARMACOLOGIC AND GENETIC 

APPROACHES

With existing pharmacologic and genetic tools, it is possible to investigate the degree to 

which GPER acts autonomously of nuclear estrogen receptors in vivo. Comparing 

phenotypes among ER- and GPER-deficient mice, as Kabir and colleagues did for cardiac 

ischemia [33], is a powerful approach that can be applied to any phenotype of interest 

exhibited by GPER-deficient mice. To control for genetic compensation, one could compare 

phenotypes between GPER-deficient mice [45] and mice with homozygous mutations in 

both nuclear estrogen receptors alpha and beta [14]. Additionally, because estrogen signaling 

is conserved among vertebrates, many of these approaches could be carried out in zebrafish, 

where CRISPR-Cas technology allows rapid and straightforward generation of embryos with 

multiple loss-of-function mutations [31]. Comparing gene expression between wildtype, 

GPER mutant, ERα mutants, ERβ mutants and compound mutant animals will be a 

powerful approach to identify genes regulated by specific estrogen receptors in vivo and to 

identify the degree to which GPER and nuclear ER signaling overlap.

Small molecules that specifically target GPER, with low or no affinity for nuclear estrogen 

receptors, can be used to identify genes specifically regulated by GPER in cultured cells, 

isolated tissues and whole animals. Pharmacologic approaches avoid genetic compensation, 

which can be induced by deleterious mutations but are less likely to be induced by gene 

knockdown or temporary perturbation of receptor activity [70]. Comparing gene expression 

in a whole animal, tissue or cell type of interest following exposure to GPER-, ERα- or 

ERβ-specific agonists (such as G1, PPT and DPN [5, 28]) could provide important insights 

into GPER- versus ERα- versus ERβ-dependent gene expression. For example, 

administering such chemicals to different groups of mice, and then comparing gene 

expression in the liver, would generate an interesting list of candidate genes regulated by 

specific estrogen receptor types in vivo. Varying the dose and duration of treatment could be 

used to infer whether gene expression changes are regulated by a specific estrogen receptor 

directly or indirectly. Such gene expression studies could be performed on multiple different 

organisms in parallel, to compare the degree to which estrogen receptor regulate unique or 

overlapping genes in different species [27].

Pharmacologic approaches are limited by non-specific effects. However, non-specific effects 

could be controlled by combining pharmacologic and genetic approaches. In the previous 

example, a specific GPER agonist, such as G1, could be administered to wildtype and to 

GPER mutant animals. By comparing gene expression in the liver between wildtype and 

GPER-deficient animals following G1 exposure, it should be possible to identify genes non-

specifically regulated by G1 and exclude them from future analyses. Analogous approaches 

could be used to identify genes non-specifically regulated by ERα- and ERβ-specific 

agonists and antagonists.

Biochemistry and cell biology should also be used to explore associations between GPER 

and ER proteins in vivo. Immunoprecipitation approaches can be used to test GPER and ER 

interactions in vivo, while newer histologic methods, such as proximity ligation, can be used 

to detect small amounts of GPER and ER proteins in fixed tissue and determine whether 
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they interact. While these approaches were used to show GPER-ERα interactions in human 

primary monocytes and in cultured Ishikawa cells [62, 82], there are many more cell types 

that express both GPER and nuclear estrogen receptors that have yet to be assayed for 

interactions among estrogen receptors. It will be interesting to explore how cell type and 

ligand regulate interactions between GPER and nuclear estrogen receptors.
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Highlights

• GPER acts as an autonomous estrogen receptor in vivo

• GPER also interacts with nuclear estrogen receptors

• Whether GPER influences nuclear estrogen receptor signaling may depend on 

cell type
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Figure 1. Estrogen receptor alpha (ERα) splice variants
Depicted protein structures of full length and spice variants in human (h), mouse (m), 

zebrafish (z), killifish (k) and sea bream (sb). Functional regions (based on Krust et al, 

EMBO J 1986): AF-1, activating function 1 domain; DBD, DNA binding domain; LBD, 

ligand binding domain; AF-2, activating function 2 domain. Blank regions indicate amino 

acid sequence unique to the splice variant, except for kfERαL∆6 and kfERαS∆6 where the 

sequence following the E domain is identical. NTERP, N terminally truncated ER protein; 

CTERP, C terminally truncated ER protein.
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Figure 2. Models for autonomous GPER signaling versus GPER-ER signaling interactions
KO, knockout animal; GPER, G protein-coupled estrogen receptor; ER, nuclear estrogen 

receptor alpha or beta
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