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Abstract

Introduction—Multiple pathways may exist for age-related tongue muscle degeneration. Cell 

death is one mechanism contributing to muscle atrophy and decreased function. We hypothesized 

with aging, apoptosis and apoptotic regulators would be increased, and muscle fiber size and 

number would be reduced in extrinsic tongue muscles.

Methods—Cell death indices, expression of caspase-3 and Bcl-2, and measures of muscle 

morphology and number were determined in extrinsic tongue muscles of young and old rats.

Results—Significant increases in cell death, caspase-3, and Bcl-2 were observed in all extrinsic 

tongue muscles along with reductions in muscle fiber number in old rats.

Discussion—We demonstrated that apoptosis indices increase with age in lingual muscles and 

that alterations in apoptotic regulators may be associated with age-related degeneration in muscle 

fiber size and number. These observed apoptotic processes may be detrimental to muscle function, 

and may contribute to degradation of cranial functions with age.
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Introduction

In the next 30 years, the number of individuals 60 years and older will increase to more than 

2 billion, representing 22% of the population.1 Sarcopenia, the age-related degeneration of 

skeletal muscle that culminates in reductions in muscle mass, strength, and function,2 may 

contribute to communication and swallowing deficits in elderly people, negatively impacting 
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health, nutrition, respiratory function, and quality of life.3-8 Processes primary to the age-

related decline in the cranial muscles have been understudied. Knowledge of underlying 

cellular mechanisms contributing to age-related muscular degeneration in the cranial 

muscles is a clinical priority due to the high incidence of communication and swallowing 

disorders in the aging population.

The tongue has an important role in speech, respiration, and swallowing. During speech, 

tongue position and movement is crucial to the production of vowels, consonants, and 

constant-vowel combinations.9-11 For respiratory actions, the tongue's primary function is to 

maintain patency of the upper airway through the dilation and/or narrowing of the pharynx 

during breathing.9,12-14 Additionally, the tongue is active during the swallow, contributing to 

the formation, transport, and propulsion of the bolus.9,15,16 Due to the cross-system role of 

the tongue musculature, age-associated reductions in tongue muscle structure and function 

may have deleterious effects on these critical actions.

Multiple causal pathways may exist for age-related degeneration of the tongue musculature 

that manifest as alterations in muscle fiber biochemistry and a transition toward more slowly 

contracting muscle fibers,17-19 reductions in neuromuscular junction size and number,20 

decreased strength and force production,17,21,22 and increased fatigue.17,22 However, 

mechanisms underlying these morphological and physiological changes remain elusive. 

Possible causal pathways suggested by recent findings in limb muscles include cell 

apoptosis or programmed cell death.23-26 Apoptosis of single myonuclei along the length of 

the muscle fiber has been implicated as a cause of age-related reductions in total muscle 

fiber number and in muscle fiber diameter.23,27-33 It has been well established in limb 

musculature that apoptosis of myonuclei increases with age.26,33-35 In addition, resulting 

imbalances and/or misregulation in the capability of aged muscle to replace nuclei 

eliminated via apoptosis may be primary processes leading to muscle atrophy and ultimately 

to reductions in muscle mass, strength and function.23,25,34,36,37 Mechanisms that regulate 

apoptotic processes, such as mitochondrial dysfunction, mitochondrial damage, and 

increased caspase activity in the cell cytosol, may contribute to age-related muscle 

degeneration.38-40 The protein family Bcl-2 has a major role in regulating mitochondrial 

mediated cell apoptosis, and activation of caspase-3 by mitochondrial and/or the death 

receptor mediated apoptotic pathways execute cell death.39-43 However, processes identified 

in limb skeletal muscles may not be found in cranial skeletal muscles due to distinctions in 

muscle fiber types and geometric arrangements.44-48 Age-induced apoptosis has never been 

characterized in muscles of tongue and may represent a converging mechanism through 

which age-related cranial muscle degeneration ensues.

The purpose of this study was to examine the effect of age on cell apoptosis, protein 

regulators of cell apoptosis, and muscle fiber size and number in extrinsic tongue muscles of 

young adult and old rats. We hypothesized that with aging, cell death would be increased, 

protein expression of apoptotic regulators involved in intrinsic and extrinsic pathways of cell 

death would be altered, and that there would be a reduction in muscle fiber size and number 

in the genioglossus (GG), styloglossus (SG), and hyoglossus (HG) muscles of old compared 

to young adult rats.
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Materials and Methods

Animals

This study was performed in accordance with the NIH Guide for Care and Use of 

Laboratory Animals, 8th Edition, 2011. The animal care and use protocol was approved by 

University of Wisconsin School of Medicine and Public Health Animal Care and Use 

Committee. A total of 8 young adult (9 months old) and 8 old (32 months old) male Fischer 

344/Brown Norway rats were obtained from the National Institute on Aging colony (Harlan 

Laboratories, Indianapolis, IN). The Fischer 344/Brown Norway rat median life span is 

approximately 36 months of age.49 Rats were housed in standard polycarbonate cages in 

pairs in a light controlled environment with a 12:12-hour light-dark reversed light cycle with 

food and water provided ad libitum. Animals were obtained 2 weeks before experimentation 

to allow for acclimation to the vivarium and light cycle reversal.

Tissue collection

Rats were anesthetized with isoflurane (4%), and euthanized by an overdose of Beuthanasia 

(0.3 mL, IP injection). The genioglossus (GG), styloglossus (SG), and hyoglossus (HG) 

muscles were extracted and rinsed in 0.9% saline solution. Muscles from the right or left 

side of the tongue were either individually embedded in optimum cutting temperature 

compound (OCT) and snap-frozen in 2-methylbutane cooled by liquid nitrogen or 

immediately frozen in liquid nitrogen, and stored at -80°C until future use.

TUNEL assay and laminin staining analysis

DNA fragmentation was determined using a standard TUNEL assay (TdT-mediated dUTP 

nick end labeling; In Situ Cell Death Detection Kit, Roche). OCT embedded tissue was cut 

into serial 10 μm cross-sections using a -16°C cryostat (Leica CM 1850, Leica Biosystems) 

and mounted on slides. Tissue was then fixed with 4% paraformaldehyde and washed with 

phosphate-buffered saline (PBS). Tissue sections were permeabilized for 2 minutes on ice in 

a solution consisting of 0.1% Triton X-100 and 0.1% Triton, and washed with PBS. The 

TUNEL reaction mixture was then prepared per manufacturer's recommendations and was 

applied to cross-sections. Tissue sections were then incubated for 60 minutes at 37°C. 

Positive-controls were incubated for 10 minutes with DNase I recombinant (1000 U/ml in 50 

mM Tris-HCl pH 7.5, 10 mM MgCl2, and 1 mg/ml BSA) to induce DNA strand breaks prior 

to TUNEL labeling. Negative-controls were incubated for 60 minutes at 37°C with label 

solution.

Following TUNEL labeling, tissue sections were washed with PBS and blocked in a solution 

of 10% normal goat serum and 0.3% Triton X-100 suspended in PBS for 20 minutes. 

Sections were then incubated for 1 hour at room temperature in diluted primary antibody 

(polyclonal rabbit anti-laminin IgG, Sigma) for cross-sectional area analysis and washed in 

PBS. Slides were then incubated with the fluorescent secondary antibody (Cy3 conjugated 

goat anti-rabbit IgG, Roche) for 1 hour at room temperature. Following PBS wash, slides 

were mounted with ProLong Gold Antifade with DAPI (Life Technologies) to visualize 

nuclei and stored at 4 °C to preserve fluorescence until microscopy was performed. Negative 
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control slides were stained following the same procedure with omission of the primary 

antibody.

TUNEL- and DAPI-stained nuclei and laminin staining were examined under a fluorescent 

microscope (Nikon N-STORM) equipped with a digital camera (Andor iXon 897 EMCCD). 

The microscopist (HK) was masked to the animal age group. Photographs of four random 

non-overlapping images at an objective magnification of 20× were taken.50 FIJI (LOCI, 

University of Wisconsin Madison) was used to analyze images for quantification of indices 

of apoptosis. The number of TUNEL- and DAPI-positive nuclei were counted for each 

image. The TUNEL index was calculated by counting the number of TUNEL-positive nuclei 

divided by the total number of nuclei (DAPI-positive nuclei) multiplied by 100 for each of 

the four images from each muscle (GG, SG, and HG).50

The MATLAB application SMASH (Semi-automatic Muscle Analysis using Segmentation 

of Histology) was used to calculate GG and SG muscle fiber cross-sectional area (CSA; 

μm2), minimal Feret's diameter (minimum distance of parallel tangents at opposing borders 

of the muscle fiber; μm), and the coefficient of variance ((standard deviation/mean)ˆ103; %) 

in four non-overlapping images.51-55 The HG was excluded from muscle fiber morphometric 

analyses due to the high number of elongated fibers in each tissue cross-section which would 

not permit and confound accurate calculation of muscle fiber cross sectional area. True 

cross-sections were difficult to obtain because of the geometry of the HG muscle. Data 

analysis was constrained to muscle fibers between 150 and 2,500 μm2 to allow exclusion of 

non-muscle connective tissue bodies and vasculature.52 Elongated and elliptically shaped 

regions were also excluded.

Western Blot Analysis

Western blot analyses were performed to determine the protein expression of caspase-3 and 

Bcl-2 in the GG, SG, and HG muscles.56 Following tissue homogenization, the protein 

concentration was determined (DC Protein Assay; Bio-Rad), 50 μg of protein from each 

tissue sample was loaded into a 4-20% precast gradient gel (Criterion TGX, Bio-Rad), and 

gel electrophoresis was performed. Proteins were then transferred to a nitrocellulose 

membrane and washed in TBST (Tris buffered saline, 0.15% Tween 20). Membranes were 

blocked in 5% non-fat dry milk in TBST for one hour at room temperature, and then 

incubated with caspase-3 (Cell Signaling Technology) or Bcl-2 (BioLegend) antibodies 

overnight at 4°C. Following primary antibody incubation, membranes were washed in TBST 

and incubated for 1 hour in horseradish peroxidase-conjugated secondary antibodies (Cell 

Signaling Technology). After final TBST washes, membranes were developed (SuperSignal 

West Femto Chemiluminescent Substrate, Thermo Scientific) for 5 minutes using a 

ChemiDoc-It2 Imaging System (UVP). Following immunodetection, membranes were 

washed with TBST and stained with SimplyBlue SafeStain (Invitrogen) to determine the 

total amount of protein transferred for data normalization.57-59 Blots were analyzed with 

FIJI to quantify caspase-3 and Bcl-2 protein expression; data are represented as a ratio of 

protein band relative to the total protein in lieu of loading controls.
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Statistical Analysis

T-tests were used to compare TUNEL indices, protein expression, the number of muscle 

fibers per unit area between each age group, and body weights between age groups. Pearson 

correlation coefficients were used to evaluate the relationship between body weight and all 

muscle fiber morphometric measures. Since weight is often associated with age, we used a 

one-way analysis of covariance (ANCOVA) with a body weight covariate to compare 

dependent variables between groups. The critical value of obtaining statistical significance 

was set at α=0.05. Data were presented as means ± SE. SPSS 23 was used for all analyses 

(IBM SPSS Statistics, IBM Corp., Armonk, NY).

Results

Body Weight

Body weights were significantly greater in the old rat group (t14=-9.82, p<.001). Because 

muscle fiber morphometric measures can be highly correlated with body size,60,61 Pearson 

correlation statistics were used to evaluate the relationship between body weight and all 

muscle fiber morphometric measures. We found moderate-to-high correlations and thus used 

a one-way analysis of covariance (ANCOVA) with a body weight covariate to compare 

dependent variables between groups (cross-sectional area, R = 0.576; minimal Feret's 

diameter, R = 0.617; coefficient of variance, R = -0.877).

TUNEL Index

In the old rat group, the number of nuclei staining positively for DNA fragmentation, an 

indication of cell apoptosis or programmed cell death, was significantly greater in the GG, 

SG, and HG muscles than in the young adult rat group (Fig. 1a-c: t14=-3.018, p=0.009; 

t14=-6.028, p=0.008; t14=-8.389; p<0.001; respectively). That is, with increasing age there 

was a significant increase in the index of cell death for all muscles studied in the extrinsic 

tongue. Representative images of immunostained cross-sections from young adult and old 

HG muscles are found in Figure 2.

Protein Expression

The expression of full-length caspase-3 was significantly higher in all extrinsic tongue 

muscles of old compared to young adult rats (Fig 3a-c: GG, t14=-3.93, p<0.001; SG, 

t13=-6.38, p<0.001; and HG t14=-9.037, p<0.001; respectively). There was no evidence of 

caspase-3 cleavage in the extrinsic tongue muscles. With aging, there was also significantly 

increased expression of Bcl-2 in the GG (t14=-6.819, p<0.001; Fig. 4a), SG (t13=-6.494, 

p<0.001; Fig. 4b), and HG muscles (t14=-8.07, p<0.001; Fig. 4c). As demonstrated in Figure 

5, protein expression of both caspase-3 and Bcl-2 increased in the extrinsic tongue 

musculature of old rats compared to young adult rats.

Muscle Morphology

Muscle fiber CSA and the minimum Feret's diameter were measured in a total of 1678 

muscle fibers in the GG and 1604 muscle fibers in the SG. For each rat on average, 104 

muscle fibers from each GG image and 100 muscle fibers from each SG image were 
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measured. A coefficient of variance was determined for both GG and SG muscle fiber CSA 

and minimum Feret's diameter.

Genioglossus

With increasing age, muscle fiber diameter and CSA were not significantly reduced 

(respectively, F1, 15 = 4.58, p = 0.052; F1, 15 = 3.857, p = 0.072; Fig. 6a-b). Variability in 

muscle fiber diameter and size did not significantly change with increased age (F1, 15 = 

0.028, p = 0.87; F1, 15 = 0.016, p = 0.90, respectively; Fig. 6c-d). However, there was a 

significant reduction in muscle fiber number in the old group versus the young adult group 

(t61= 2.12, p=0.038; Figure 7a).

Styloglossus

Muscle fiber diameter was not significantly decreased with age (F1, 15 = 3.66, p = 0.078; 

Fig. 6e). There was no difference in muscle fiber CSA with increasing age (F1, 15 = 2.913, p 

= 0.11; Fig. 6f). The old group had more variability in muscle fiber CSA compared to the 

young adult group (F1, 15 = 4.59, p = 0.052; Fig. 6h). However, variations in muscle fiber 

diameter were not observed with increased age (F1, 15 = 2.22, p = 0.16; Fig. 6g]. The old 

group had a significant reduction in muscle fiber number compared with the young adult 

group (t62= 2.05, p=0.044; Fig. 7b).

Discussion

Our results supported our hypotheses in part. We observed increased cell death and 

expression of apoptotic regulator proteins in all muscles of the extrinsic tongue with age, a 

reduction in muscle fiber number in the genioglossus and styloglossus, and higher variability 

of myofiber size in the styloglossus muscle. The results are indicative of an underlying 

cellular mechanism that may contribute to age-related lingual muscle degeneration, and, if 

also found in humans, may be associated with the development of oromotor decline 

evidenced in elderly people.62-64

Cell apoptosis, or programmed cell death, is characterized by a series of molecular, 

biochemical, and morphological changes that result in cellular self-destruction.34,65-67 

Activated by two main pathways, intrinsic (mitochondrial mediated) or extrinsic (death 

receptor mediated), apoptosis is a conserved molecular process that occurs normally during 

development and aging, and is an important homeostatic mechanism that maintains cellular 

populations in a variety of tissues.34,67,68 The mitochondrial mediated pathway to cell death 

is highly regulated by the Bcl-2 protein family.38,40,42,43 Cytotoxic stress results in the 

imbalance of apoptotic regulator proteins, such as Bcl-2, and initiates a cascade of events 

that lead to cell death through the release of apoptogenic factors from the mitochondria into 

the cell cytosol. Mitochondrial and death receptor mediated pathways of cell death intersect 

at the activation of caspase-3 in the cell cytosol.40 The main executioner of cell death, 

caspase-3 coordinates the destruction of key cellular proteins and initiates apoptotic DNA 

fragmentation.39,41,42 Our findings in muscles of the tongue were consistent with cell death 

pathways proposed in the limb literature.24,69 With aging, we also observed upregulated 

expression of apoptotic regulator proteins, Bcl-2 and caspase-3, suggesting that both 
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extrinsic and intrinsic mediated pathways of cell death may contribute to the increased DNA 

fragmentation we detected in extrinsic tongue muscles of old rats.

Age-related increases in muscle cell apoptosis have been found in the soleus, extensor 

digitorum, and gastrocnemius muscles in aging Fischer 344/Brown Norway rats,23-25 and in 

the vastus lateralis muscle of elderly humans.27,28 In our study, significant increases in 

nuclear DNA fragmentation, indicative of cell apoptosis, were observed in the genioglossus, 

styloglossus, and hyoglosuss muscles of old rats compared to young adult rats. We observed 

elevated Bcl-2 and caspase-3 protein expression with increasing age, that is comparable to 

previously reported data in aged rat limb muscle.24,69 The increase in Bcl-2, an anti-

apoptotic regulator, may be a compensatory measure to combat an increase in pro-apoptotic 

events occurring during mitochondrial mediated cell death, in order to prevent the age-

related loss of muscle mass and size.70-72 However, an alternative explanation for elevated 

Bcl-2 may be related to the protein's loss of function as an anti-apoptotic regulator.69,71 

Previous studies have reported that phosphorylation of Bcl-2 inactivates the anti-apoptotic 

function of the protein, and that Bcl-2 phosphorylation increases with age in skeletal 

muscles in conjunction with increased Bcl-2 expression.69 This suggests that Bcl-2 

expression may be upregulated to counteract the increase in the biologically inactive 

phosphorylated form of the protein. To further elucidate the mechanism of increased Bcl-2 

elevation, it would be helpful in the future to examine the ratio of pro- and anti-apoptotic 

regulators of the Bcl-2 family of proteins, and determine the level of Bcl-2 phosphorylation. 

With aging, we also observed increased expression of full length caspase-3, without a 

concomitant increase of the activated and cleaved form, in the GG, SG, and HG muscles. 

This is consistent with previous reports from the limb literature.24 An age-related increase in 

the full length caspase-3 protein may suggest that extrinsic tongue muscles are more 

susceptible to apoptosis.70,71,73,74 The absence of the activated, cleaved form of caspase-3, 

may mean that few muscles fibers are actively undergoing apoptosis at the 32 month time-

point24 or may, in fact, be indicative of a caspase-independent pathway of age-related 

myonuclear loss.38,70,71,73,74 Misregulation of these apoptotic processes may have 

deleterious consequences in the affected tissue.36,66

In aging tongue muscle, alterations in the apoptotic regulator proteins, Bcl-2 and caspase-3, 

resulting in increased activation of apoptotic processes, may have led to the removal of 

individual myonuclei, the associated sarcoplasm, 65,66 and contributed to the eventual 

atrophy and loss of muscle fibers we observed in the genioglossus and styloglossus muscles 

of old rats. When an imbalance exists between mechanisms of muscle regeneration and 

degeneration, an increase in apoptotic signaling may lead to protein degradation, fiber 

atrophy, myofiber loss, and decreased function in that muscle.32,34-37,68,75-77 As such, the 

morphological changes in muscle fiber size and reductions in myofiber number, consistent 

with age-related sarcopenia, that we observed in GG and SG muscles of our study may be 

associated with increased muscle cell death.24,29 Consistent with limb literature, we 

observed reductions in muscle fiber cross-sectional area (CSA), minimal Feret's diameter, a 

robust measure of muscle fiber size due to its insensitivity to deviations from an optimal 

cross-section, and a significant reduction in muscle fiber number with increasing age in the 

GG and SG muscles. Because of the high variability of muscle fiber size in the cranial 

musculature, we also determined the variance coefficient for muscle fiber CSA and minimal 

Kletzien et al. Page 7

Muscle Nerve. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Feret's diameter.53,54,78 We identified significantly greater variability of muscle fiber CSA in 

the SG of old rats, which could be indicative of atrophic muscle fibers and a disruption in 

the ability of the muscle to replace and/or repair damaged or degenerating fibers.52-54 Our 

results suggest that age-related muscle atrophy may be associated with increased activation 

or the misregulation of apoptotic processes in the extrinsic tongue muscles. The 

ramifications of age-related myonuclear loss and reductions in myofiber size and number 

may be detrimental to muscle function, leading to losses in muscle mass and contractile 

function, and must be investigated further.

Apoptosis may be an underlying cellular mechanism contributing to age-related cranial 

muscle degeneration. Understanding how age-related processes contribute to other 

manifestations of aging, the destruction of myonuclei and myofibers in tongue muscles, and 

functional deficits is crucial to the development of potential pharmacological and exercise-

based therapies for communication and swallowing disorders.
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Abbreviations

ANCOVA analysis of covariance

CSA cross-sectional area

GG genioglossus

HG hyoglossus

MHC myosin heavy chain

OCT optimum cutting temperature compound

PBS phosphate-buffered saline

SG styloglossus

SMASH Semi-automatic Muscle Analysis using Segmentation of Histology

TUNEL TdT-mediated dUTP nick end labeling

TBST Tris buffered saline
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Figure 1. 
Cell death indices were significantly increased in the genioglossus (A), styloglossus (B), and 

hyoglossus (C) muscles of old versus young adult rats. (* signifies p<0.05)
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Figure 2. 
Representative images for TUNEL labeling for young adult (A, B, C, D) and old rat (E, F, G, 

H) hyoglossus muscles. Immunostaining of laminin (A, E) and myonuclei (B, F) was 

performed following TUNEL staining (C, G) to identify co-localization of TUNEL-positive 

myonuclei with regard to the basal lamina. Images were super imposed to allow for the 

identification of apoptotic muscle nuclei. The enlarged box demonstrates TUNEL-positive 

nuclei (arrow) with myonuclei in relation to the sarcolemma (I). (scale bar = 100 μm)
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Figure 3. 
Caspase-3 protein expression was significantly elevated in all extrinsic muscles of old rats 

compared to young adult rats (genioglossus, A; styloglossus, B; hyoglossus, C). (* signifies 

p<0.05)
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Figure 4. 
Expression of Bcl-2 significantly increased in the genioglossus (A), styloglossus (B), and 

hyoglossus (C) with age. (* signifies p<0.05)
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Figure 5. 
Representative immunoblots from the genioglossus muscle of 4 young adult and 4 old rats.

Kletzien et al. Page 17

Muscle Nerve. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
With increasing age, reductions in genioglossus muscle diameter and cross-sectional area 

were observed, but were not significantly different (A, B). In the styloglossus muscle, 

muscle fiber diameter was not significantly reduced with increasing age (E), and 

significantly more variability in muscle fiber cross-sectional area (H) was observed in the 

old rat group. (* signifies p<0.05; ˆ signifies p<0.08)
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Figure 7. 
There was a significant reduction in the number of muscle fibers in the old versus young 

adult rats in the genioglossus (A) and styloglossus muscles (B). (* signifies p<0.05)
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