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Identification of molecular 
alterations in leukocytes from gene 
expression profiles of peripheral 
whole blood of Alzheimer’s disease
Hongdong Li1, Guini Hong1, Mengna Lin1, Yidan Shi1, Lili Wang1, Fengle Jiang1, Fan Zhang1, 
Yuhang Wang1 & Zheng Guo1,2

Blood-based test has been considered as a promising way to diagnose and study Alzheimer’s disease 
(AD). However, the changed proportions of the leukocytes under disease states could confound the 
aberrant expression signals observed in mixed-cell blood samples. We have previously proposed 
a method, Ref-REO, to detect the leukocyte specific expression alterations from mixed-cell blood 
samples. In this study, by applying Ref-REO, we detect 42 and 45 differentially expressed genes 
(DEGs) between AD and normal peripheral whole blood (PWB) samples in two datasets, respectively. 
These DEGs are mainly associated with AD-associated functions such as Wnt signaling pathways and 
mitochondrion dysfunctions. They are also reproducible in AD brain tissue, and tend to interact with 
the reported AD-associated biomarkers and overlap with targets of AD-associated PWB miRNAs. 
Moreover, they are closely associated with aging and have severer expression alterations in the younger 
adults with AD. Finally, diagnostic signatures are constructed from these leukocyte specific alterations, 
whose area under the curve (AUC) for predicting AD is higher than 0.73 in the two AD PWB datasets. In 
conclusion, gene expression alterations in leukocytes could be extracted from AD PWB samples, which 
are closely associated with AD progression, and used as a diagnostic signature of AD.

Alzheimer’s disease (AD) is the predominant form of dementia. The pathological features of AD include the 
presence of amyloid plaques, neurofibrillary tangles, synaptic loss, soluble amyloid-β (Aβ) oligomers, neuritic 
dystrophy, and eventual neurodegeneration1. In clinical practice, AD diagnosis is mainly based on PET imaging 
or cerebral spinal fluid biomarkers. The major disadvantages of these diagnostic approaches are the high cost, the 
low patient compliance, and most importantly, the difficulty in diagnosing AD at an early stage2.

The natural role of blood cells in immune response to physiologic and pathologic changes has made blood 
an important source for investigation of disease-associated molecular biomarkers3. Recent studies have also 
demonstrated a significant degree of covariability in gene expression between brain tissue and peripheral blood 
cells4–7. Therefore, a diagnostic blood biomarker for AD would be valuable and convenient for the early diag-
nosis of patients presenting at clinics with memory complaints. Actually, the potential use of peripheral whole 
blood (PWB) or peripheral blood mononuclear cell (PBMC) gene expression profiling in the diagnosis of brain 
disorders has been described6–10. These studies detected and analyzed the significantly altered genes6,9 or mod-
ules8,10 by directly comparing the expression measurements between AD and normal blood samples. It’s noted 
that relative proportions of the blood cells may shift under disease states11,12, which may confound the aberrant 
disease signals originated from leukocytes when directly comparing expression values of genes between disease 
and normal blood samples13,14. Consequently, the changed proportions of leukocyte subtypes could introduce 
some differentially expressed genes (DEGs) between disease samples and normal controls which actually have no 
expression changes in any leukocyte subtypes15. Therefore, it is necessary to exclude alteration signals originating 
from leukocyte subtype proportion changes when trying to detect AD-associated cellular molecular changes from 
mixed-cell blood samples.
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In recent years, researchers have developed methods based on deconvolution16 or surrogate variable analysis 
algorithms17,18 to avoid the influence of relative leukocyte subtype proportion changes on the overall signals of 
PWB or PBMCs. Methods based on deconvolution algorithms aim to estimate and adjust the proportion of each 
leukocyte subtype in blood samples using the expression profiles of purified leukocyte subtypes16. However, the 
absolute quantitative gene expression level measurements used in these methods could be sensitive to systematic 
biases of microarray measurements especially examined in different microarray platforms19. Methods based on 
surrogate variable analysis aim to find true disease-associated alterations by estimating and adjusting the con-
founding factors that could have effects on gene expression levels17,18. However, it’s difficult for them to avoid the 
influence of cell proportion changes that are indeed associated with disease progression15. More recently, we 
proposed a method, Ref-REO, to detect leukocyte-specific molecular alterations from mixed-cell blood samples 
of patients through analyzing the disrupted patterns of the pre-determined within-sample relative expression 
orderings (REOs) of genes which are consistent in purified normal leukocyte subtypes15. This method is based on 
the fundamental that if the REOs of any two genes have consistent patterns (eg. >E EA B) in all normal leukocyte 
subtypes, these consistent patterns could be stable in PWB or PBMCs, no matter how the proportion of the con-
stituent cells changes when no expression alterations occur in leukocytes. If inconsistent patterns are observed in 
disease samples, at least one of these two genes has altered gene expression in certain leukocyte subtypes. The 
Ref-REO method has been shown to have higher precision and recall than the previous methods15. Most impor-
tantly, the REOs of genes have been reported to be more robust than the absolute measured levels as REOs are 
invariant to monotonic data transformation (normalization) and rather resistant to batch effects19,20, indicating 
the disease-associated biomarkers detected by this method could be easily validated and transferred.

Therefore, in this study, we apply the Ref-REO method to detect and analyze the AD-associated cellular 
expression alterations from two independent AD PWB datasets. The results showed that these AD-associated 
molecular alterations detected from PWB by Ref-REO were significantly enriched in AD-associated pathways. 
They were reproducible in brain tissue of AD-patients, and had interactions with reported AD biomarkers and 
overlaps with the targets of AD-associated miRNAs.

Materials and Methods
Datasets.  The gene expression data were downloaded from the Gene Expression Omnibus database (GEO, 
http://www.ncbi.nlm.nih.gov/geo/). Detailed information for each dataset was described in Table 1. The PLS-
47 (GSE28490) dataset examined 47 expression profiles for nine leukocyte subtypes, which were isolated from 
healthy human blood and assessed for cell type purity by flow cytometry21. The PLS-33 (GSE28491) dataset 
examined 33 expression profiles for seven leukocyte subtypes, which were obtained from a separate panel of 
healthy donors at the University Hospital of Geneva. These two datasets were used to detect the gene pairs with 
stable REOs in each purified leukocytes21. The PWB-AD-249 (GSE63060) and PWB-AD-275 (GSE63061) data-
sets examined the PWB expression profiles for AD and normal control samples which were obtained from the 
AddNeuroMed consortium, a large cross-European AD biomarker study and a follow-on Dementia Case Register 
(DCR) cohort in London22. These two datasets were used to detect the AD-associated molecular alterations in 
leukocytes. The PWB-Normal-61 dataset included the PWB expression profiles for 61 healthy controls with age 
ranging from 18 to 56, which were obtained from the GEO dataset (GSE19151)23. In GSE19151, control samples 
of unknown age were excluded, thus only the 61 samples with age information were collected in PWB-Normal-61, 
which was used to detect aging-associated genes. The Brain-AD-161 (GSE5281) dataset examined 161 expression 
profiles of six brain regions for AD and normal control samples24. This dataset was used to evaluate whether the 
AD-associated PWB molecular alterations had expression changes in brain tissue. For each dataset, the normal-
ized data were downloaded from GEO. The original platform annotation file obtained from GEO for each dataset 

Dataset* Characteristic of Sample Age (Years) Platform (#Gene) GEO Accession ID Ref

Purified leukocyte subtypes (PLS)

PLS-47
All: 47 Monocytes: 10, B cells:5, CD4+ T cell:5, 
NK cells:5, CD8+ T cell:5, Eosinophils:4, mDCs:5; 
Neutrophils:3, pDCs:5

— GPL570 (11,241) GSE28490 21

PLC-33
All: 33 CD19+ B cells: 5, CD14+ monocytes:5, 
CD4+ T cells:5, CD8+ T cells:5, Eosinophils:3, NK 
cells:5; Neutrophils:5

— GPL570 (10,689) GSE28491 21

peripheral whole blood (PWB)

PWB-AD-249 ALL:249 Control: 104; AD:145 52 ~ 90 GPL1122 (21067) GSE63060 22

PWB-AD-275 ALL:275 Control: 135;AD:140 57 ~ 100 GPL1122 (18327) GSE63061 22

PWB-Normal-61 61 18 ~ 56 GPL571 (12432) GSE19151 23

Brain tissue

Brain-AD-161

Brain region (Control: AD) Entorhinal Cortex 
(13:10) Hippocampus (13:10) Middle temporal gyrus 
(12:16) Posterior cingulate cortex (13:9) Superior 
frontal gyrus (11:23) Primary visual cortex Control 
(12:19)

63 ~ 102 GPL570 (20848) GSE5281 24

Table 1.  Datasets analyzed in this study. *The abbreviation of each dataset is denoted by the phenotype followed 
by sample size.

http://www.ncbi.nlm.nih.gov/geo/
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was used to annotate the CloneIDs to GeneIDs. The number of genes measured in each dataset was shown in 
Table 1. Totally, 8,708 genes commonly measured in all datasets were analyzed in the study.

Detecting disease-associated cellular alterations from AD PWB samples.  The Ref-REO method 
was employed to detect the AD-associated cellular alterations from AD PWB samples15. Briefly, the algorithm 
detected the disease-associated cellular alterations according to the following steps as shown in Fig. 1: (1) Select 
reference gene pairs. Reference gene pairs are gene pairs whose REOs are stable and consistent across different 
purified normal leukocytes. The REOs of these gene pairs could be stable under normal condition or disease state, 
no matter how the proportion of the constituent cells changes when no expression alterations occur in leukocytes. 
(2) Filter the reference gene pairs by the control samples in the dataset under study to exclude the gene pairs 
whose REOs are easily affected by age, sex, experimental batch effects25 and other factors. (3) Detect reversed 
gene pairs. Reversed gene pairs are the gene pairs that have inconsistent REO patterns with reference gene pairs 
in the disease samples. The reversed REO patterns of these gene pairs should be caused by expression alterations 
occurred in leukocyte subtypes, given that the changed proportion of the constituent cells could not affect REOs 
of the reference gene pairs when no expression alterations occur in leukocytes. (4) Detect DEGs. Based on the fil-
tered reference gene pairs and reversed gene pairs, whether a gene could be observed in the reversed gene pairs by 
random chance was evaluated by the hypergeometric distribution model. The DEGs were detected as significant 
if the adjusted P-value was less than 0.0515.

Detecting DEGs in various brain regions of AD patients.  The student’s t-test was used to detect DEGs 
in various brain regions of AD patients comparing to normal controls. P-values were adjusted for multiple testing 
using the Benjamini-Hochberg procedure to control the FDR level. If the adjusted p-value for a gene was less than 
0.05, this gene was considered as a DEG.

Detecting aging-associated genes from normal PWB samples.  Because the relative proportions 
of the blood cells in older adults shifted weakly as age increases12, the linear regression model was employed to 
detect the aging-associated genes in the normal PWB controls of the datasets analyzed in this study. P-values were 
adjusted for multiple testing using the Benjamini-Hochberg procedure26 to control the FDR level at 0.05. If the 
adjusted p-value for a gene was less than 0.05, this gene was considered as an aging-associated gene.

Random experiments.  Two random experiments were performed in this study.
The first random experiment was performed to evaluate whether the number of reversed gene pairs detected 

in a dataset was significantly more than expected by chance. Supposed there are n reversed gene pairs observed in 
a study dataset. The random experiment consists of the following steps: (1) Randomly disturb sample labels. The 
sample sizes of normal controls and AD samples are kept the same in randomized data and in the study dataset. 
(2) Calculate the number of reversed gene pairs detected in the randomized data, denoted as m. (3) Repeat step 2 
for 1,000 times and calculate the percentage of the random experiments in which m is larger than n, defined as the 
probability of observing n reversed gene pairs by random chance. A p-value <0.05 was considered as significant.

The second random experiment was performed to evaluate whether the number of observed AD-DEGs hav-
ing interactions with the AD-associated biomarkers was significantly more than expected by chance. Suppose k 
out of n AD-DEGs interact with at least one of the AD-associated biomarkers, the random experiments were done 

Figure 1.  The flow chart of detecting AD-associated cellular alterations by the Ref-REO method.
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with the following steps: (1) Randomly select n genes from the background genes as the randomized AD-DEGs. 
(2) Calculate the number of the randomly defined AD-DEGs that interact with at least one of the AD-associated 
biomarkers, denoted as m. (3) Repeat step 2 for 1,000 times and calculate the percentage of the random experi-
ments in which m is larger than k, defined as the probability of observing k AD-DEGs interacting with at least one 
of AD-associated biomarkers by random chance. A p-value <0.05 was considered as significant.

Enrichment analysis.  The KEGG (Kyoto Encyclopedia of Genes and Genomes) and Gene Ontology data-
bases were used to evaluate the AD-associated cellular alterations in PWB by the functional annotation tool 
DAVID (https://david.ncifcrf.gov/, version 6.8)27. For a given dataset, all of the measured genes annotated in the 
KEGG or Gene Ontology database were considered as the background genes.

String, AlzGene, and miRTarBase databases.  The protein-protein interactions were downloaded from 
STRING database (https://string-db.org/, Version 10) that collected known and predicted 82,160 protein-protein 
interactions involving 7,638 proteins28. The AD-associated biomarkers were download from AlzGene database 
which is a collection of published AD genetic association studies29 including 618 genes (http://alsgene.org/, 
download at April, 2017). These two databases were used to evaluate the interactions between AD-associated 
cellular alterations in PWB and AD-associated alterations collected in AlzGene database. MiRNA-mRNA inter-
actions were downloaded from miRTarBase database at April 2017 (http://mirtarbase.mbc.nctu.edu.tw/). In 
this study, only the experimentally validated microRNA-target interactions were downloaded, which included 
322,161 miRNA-mRNA interactions involving 2,618 miRNAs and 14,831 mRNAs30.

Results
AD-associated cellular alterations in PWB.  First, gene pairs with stable REOs in different normal leu-
kocytes were detected in purified leukocyte expression datasets using the Ref-REO method. Totally, 9,638,173 
and 8,832,824 gene pairs were detected in the gene expression profiles of purified leukocyte subtypes examined 
in PLS-47 and PLS-33, respectively. The two lists shared 6,133,414 gene pairs, and 99.9% of them had consistent 
REO patterns, which was unlikely to happen by chance (binomial distribution test, p-value <2.2 × 10−16). These 
consistent gene pairs (totally 6,124,866) were used as the reference for recognition of abnormal disease signals in 
leukocytes.

Then, the reference gene pairs were evaluated in AD PWB expression profiles examined in PWB-AD-249 and 
PWB-AD-275, respectively. For dataset PWB-AD-249, 4,524,607 of the reference gene pairs retained the REO 
patterns in at least 95% of the 104 normal PWB profiles. Among them, 1,145 gene pairs had significantly reversed 
REO patterns in the 145 AD PWB profiles (Fisher exact test, adjusted p-value <0.05). For dataset PWB-AD-275, 
4,673,704 genes pairs had consistent REO patterns with the reference in at least 95% of the 135 normal PWB 
profiles. Among them, 1,249 gene pairs showed significantly reversed REO patterns in the 140 AD PWB profiles 
(Fisher exact test, adjusted p-value <0.05). Though relatively little in quantity, these reversed gene pairs may 
reflect the true AD-associated information, as no reversed genes pairs could be detected in the 1,000 random 
experiments by randomly disturbing the sample labels of controls and cases (p-value <0.001, see Materials and 
Methods).

Based on the reference gene pairs and reversed gene pairs, DEGs were detected from PWB-AD-249 and 
PWB-AD-275 using the Ref-REO method15. Totally, with FDR <5%, 42 and 45 DEGs were detected respectively 
(Table 2), which shared 21 genes. All of the 21 shared DEGs had consistent expression dysregulated directions 
(up- or down-regulation) in AD samples compared to normal samples in the two datasets, which was unlikely to 
happen by chance (binomial distribution test, p-value <2.2 × 10−16). This result indicated the cellular alterations 
detected from AD PWB could be reproducible. In the following study, genes detected as significant in at least one 
of these two AD datasets were analyzed, denoted as AD-DEGs, which included 66 genes.

For the AD-DEGs, the enrichment analysis was conducted based on KEGG and Gene Ontology databases by 
DAVID27. The result showed that these DEGs were significantly enriched in oxidative phosphorylation, protea-
some and ribosome pathways in KEGG, and Wnt signaling pathway and translation pathway in Gene Ontology 
(Table 3). These enriched pathways have been demonstrated to be closely associated with AD development and 
progression. For example, oxidative phosphorylation has been reported to be down-regulated in AD patients31,32. 
Ribosome dysfunction has been considered as an early event in AD progression33. The inhibition of proteasome 
activity has been reported to be sufficient to induce neuron degeneration in AD34. Specially, 10 AD-DEGs were 
enriched in mitochondrial inner membrane, suggesting that mitochondrial dysfunctions could play an impor-
tant role in AD development. In fact, mitochondrial dysfunctions have been found in PWB lymphocytes of AD 
patients, which have been considered as a trigger of AD pathophysiology35,36.

Expression changes of AD-associated PWB cellular alterations in various brain regions of AD 
patients.  The Brain-AD-161 dataset, which examined expression profiles of six different brain regions in 
AD and normal controls, was used to evaluate the expression changes of PWB AD-DEGs in brain tissue of AD 
patients. By using the Student’s t-test with FDR <5%, the DEGs were detected from various brain regions of AD 
patients (Table 4). The AD-DEGs were found to significantly overlap with the DEGs detected from hippocampus, 
middle temporal gyrus, superior frontal gyrus and primary visual cortex of AD patients (Table 4). For example, 
among the 66 AD-DEGs, 53 DEGs were detected as DEGs in superior frontal gyrus of AD patients (hyperge-
ometric distribution test, p-value = 7.30 × 10−4) and 49 out of them had consistent alteration directions in AD 
patients compared to normal controls. Totally, 60 out of the 66 AD-DEGs had expression changes in at least one 
of the six brain regions between AD and normal control samples, among which 52 genes had consistent alteration 
directions in PWB and brain tissue. The results further suggested that the cellular alterations observed in PWB 
could be closely associated with AD.

https://david.ncifcrf.gov/
https://string-db.org/
http://alsgene.org/
http://mirtarbase.mbc.nctu.edu.tw/
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AD-associated cellular alterations in PWB tend to interact with reported AD-biomarkers.  The 
AD-DEGs were compared with the 618 AD-associated biomarkers collected from AlzGene database29. The result 
showed that only three AD-DEGs (ABCA2, CARD8 and RXRA) overlapped with the AD-associated biomark-
ers. With the protein-protein interaction data from STRING, we found 23 AD-DEGs each interacting with at 
least one of the AD-associated biomarkers (Fig. 2). The number was significantly more than expected by chance 
(p-value = 0.027): when randomly choosing the same number of genes as AD-DEGs, the mean number of ran-
dom DEGs having interactions with the AD-associated biomarkers was 16.37 ± 3.6878, which was estimated in 
the 1,000 random experiments (see Materials and Methods). With FDR <0.05, the KEGG pathway enrichment 
analysis showed the interaction partners of AD-DEGs also tended to be enriched in the AD-associated oxidative 
phosphorylation (p-value = 5.2 × 10−4) and RRAR signaling pathways (p-value = 1.30 × 10−6)37.

AD-associated aberrant miRNA alterations observed in PWB were also analyzed for the AD-DEGs. The 
PWB aberrant miRNAs were collected from a study, which detected 12 diagnostic miRNAs (brain-miR-112, 
brain-miR-161, hsa-let-7d-3p, hsa-miR-5010-3p, hsa-miR-26a-5p, hsa-miR-1285-5p, hsa-miR-151a-3p, hsa-miR-
103a-3p, hsa-miR-107, hsa-miR-532-5p, hsa-miR-26b-5p and hsa-let-7f-5p) between 48 AD patients and 22 
non-AD control PWB samples38. From the miRTarBase database30, 1620 targets of the 10 miRNAs (two miRNAs 
weren’t collected by miTarbase) were downloaded. Among the 66 AD-DEGs, 19 were included in the 1620 targets, 
which was unlikely to happen by chance (hypergeometric distribution test, p-value = 0.028) (Fig. 3).

The above results further indicated that the AD-DEGs could be closely associated with AD development and 
progression.

Gene ID Symbol Direction P-value Gene ID Symbol Direction P-value

DEGs detected from PWB-AD-249 DEGs detected from PWB-AD-275

5684 PSMA3 down <2.2 × 10−16 2079 ERH down <2.2 × 10−16

9360 PPIG down <2.2 × 10−16 6160 RPL31 down <2.2 × 10−16

51574 LARP7 down <2.2 × 10−16 9552 SPAG7 down <2.2 × 10−16

51611 DPH5 down <2.2 × 10−16 51188 SS18L2 down <2.2 × 10−16

84987 COX14 down <2.2 × 10−16 5716 PSMD10 down <2.2 × 10−16

7381 UQCRB down 7.00 × 10−9 7155 TOP2B down 1.35 × 10−11

6741 SSB down 1.98 × 10−8 522 ATP5J down 4.74 × 10−11

219927 MRPL21 down 3.83 × 10−6 20 ABCA2 up 2.32 × 10−8

57396 CLK4 down 4.04 × 10−6 5204 PFDN5 down 5.59 × 10−8

10600 USP16 down 1.83 × 10−5 79746 ECHDC3 up 5.69 × 10−8

51637 C14orf166 down 1.03 × 10−4 10632 ATP5L down 6.84 × 10−8

11168 PSIP1 down 3.31 × 10−4 23500 DAAM2 up 1.85 × 10−6

126208 ZNF787 up 5.17 × 10−4 27089 UQCRQ down 3.35 × 10−4

762 CA4 up 6.52 × 10−4 8664 EIF3D down 6.21 × 10−4

23478 SEC. 11 A down 3.00 × 10−3 5683 PSMA2 down 1.69 × 10−3

65056 GPBP1 down 3.32 × 10−3 51019 CCDC53 down 1.73 × 10−3

5685 PSMA4 down 1.20 × 10−2 29093 MRPL22 down 1.89 × 10−3

202018 TAPT1 down 1.51 × 10−2 9550 ATP6V1G1 down 2.56 × 10−3

84343 HPS3 up 1.55 × 10−2 6256 RXRA up 4.15 × 10−3

6038 RNASE4 up 1.49 × 10−2 23294 ANKS1A up 4.65 × 10−3

54556 ING3 down 4.01 × 10−2 4082 MARCKS up 1.18 × 10−3

85464 SSH2 up 1.66 × 10−2

286006 LSMEM1 up 3.46 × 10−2

22900 CARD8 up 4.26 × 10−2

Overlapped DEGs between PWB-AD-249 and PWB-AD-275

521 ATP5I down <2.2 × 10−16 51371 POMP down <2.2 × 10−16

2959 GTF2B down <2.2 × 10−16 80135 RPF1 down <2.2 × 10−16

3301 DNAJA1 down <2.2 × 10−16 3476 IGBP1 down 9.67 × 10−13

4694 NDUFA1 down <2.2 × 10−16 153527 ZMAT2 down 1.06 × 10−11

6119 RPA3 down <2.2 × 10−16 8813 DPM1 down 2.22 × 10−11

6154 RPL26 down <2.2 × 10−16 25847 ANAPC13 down 6.66 × 10−9

6233 RPS27A down <2.2 × 10−16 388789 LINC00493 down 1.12 × 10−6

9553 MRPL33 down <2.2 × 10−16 1622 DBI down 7.53 × 10−6

51258 MRPL51 down <2.2 × 10−16 6645 SNTB2 up 3.35 × 10−5

51503 CWC15 down <2.2 × 10−16 55505 NOP10 down 3.98 × 10−3

55854 ZC3H15 down <2.2 × 10−16

Table 2.  DEGs detected from PWB-AD-249 and PWB-AD-275.
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AD-associated cellular alterations in PWB and aging-associated genes.  Aging-associated genes 
were detected from normal control samples in PWB-AD-249, PWB-AD-275 and PWB-Normal-61 using the lin-
ear regression model (see Materials and Methods). With FDR <5%, 1,332 and 3,146 aging-associated genes were 
identified in PWB-AD-249 and PWB-Normal-61, respectively, while no aging-associated genes were identified in 
PWB-AD-275. The numbers of detected aging-associated genes differed significantly in the three datasets, which 
could be explained by the different age distribution patterns: there were 104 normal controls with ages ranging 
from 52 to 87 in PWB-AD-249, while in PWB-AD-275, there were 135 normal controls with ages ranging from 
63 to 91; and the PWB-AD-249 dataset had more samples with age ≤ 65 (9.62%) than the PWB-AD-275 data-
set (2.22%, Fisher’s exact test, p-value = 0.019). In PWB-Normal-61, the age distribution was wider: there was 
61 samples with ages ranging from 18 to 56. Compared the aging-associated genes identified in PWB-AD-249 
and PWB-Normal-61, the results showed that these two lists shared 515 aging-associated genes (hypergeometric 
distribution test, p-value = 1.90 × 10−2), and 479 out of them had the same alteration directions with age in both 
datasets, which was unlikely to happen by chance (binomial distribution test, p-value <2.2 × 10−16). Thus, only 
the 479 genes were analyzed in the following study, which were denoted as aging-DEGs.

The aging-DEGs and the AD-DEGs shared 21 genes, and all of them had consistent directions of correla-
tions with age and expression changes (hypergeometric distribution test, p-value = 2.02 × 10−11). The path-
way enrichment analysis showed that these aging- and AD-associated genes were also enriched in proteasome 
(p-value = 1.82 × 10−4) and RRAR signaling pathways (p-value = 3.70 × 10−3). Interestingly, more reserved gene 
pairs were found from AD patients with age ≤ 65 than AD patients with age > 65. In PWB-AD-249, the average 
numbers of reversed gene pairs identified from AD patients with age ≤ 65 and age > 65 were 529.64 ± 286.45 and 
269.18 ± 228.31 (Wilcoxon rank sum test, p-value = 4.5 × 10−3), respectively. In PWB-AD-275, there were only 
three AD patients with age ≤ 65. Therefore, the phenomenon that the number of reserved gene pairs differed 
between the two groups was unobvious: the average numbers of reversed gene pairs identified from AD patients 
with age ≤ 65 and age > 65 were 282.52 ± 176.77 and 228.67 ± 163.95 (Wilcoxon rank sum test, p-value = 0.57), 
respectively. Actually, previous studies have compared the prevalence of a number of clinical features occurring in 
patients with early- and late-onset primary degenerative dementia of the Alzheimer type. The early-onset group 

ID Name Hit Genes P-value

KEGG

hsa00190 Oxidative phosphorylation ATP5I, ATP5J, NDUFA1, UQCRB, ATP6V1G1, ATP5L, UQCRQ 6.63 × 10−5

hsa03010 Ribosome RPL26, RPL31, RPS27A, MRPL21, MRPL22, MRPL33 6.62 × 10−4

hsa03050 Proteasome PSMA2, PSMA3, PSMA4, POMP 5.15 × 10−3

Gene ontology

molecular function

  GO:0003735 structural constituent of ribosome RPL26, RPL31, RPS27A, MRPL21, MRPL22, MRPL33, MRPL51 2.43 × 10−4

  O:0003723 RNA binding RPF1, LARP7, RPL31, C14orf166, ZMAT2, RPL26, MRPL21, SSB, 
CWC15, EIF3D 1.18 × 10−3

cellular component

  GO:0005743 mitochondrial inner membrane ATP5J, ATP5I, MRPL22, UQCRB, ATP5L, MRPL21, MRPL51, 
NDUFA1, UQCRQ 2.25 × 10−4

  GO:0019773 proteasome core complex, PSMA2, PSMA3, PSMA4, POMP 8.89 × 10−4

biological process

  GO:0060071 Wnt signaling pathway PSMA2, PSMA3, PSMA4, RPS27A PSMD10 9.50 × 10−4

  GO:0006412 translation RPL26, RPL31, RPS27A, MRPL21, MRPL22, MRPL33, MRPL51 3.57 × 10−3

Table 3.  Pathways and functional terms enriched for AD-DEGs.

Brain region DEGs Overlapped with AD-DEG P-value*

Entorhinal Cortex 1334 5 (5)# 0.98

hippocampus 2346 26 (21) 1.90 × 10−2

Middle temporal gyrus 2253 28 (26) 2.52 × 10−3

Posterior cingulate 
cortex 3273 24 (24) 0.64

Superior frontal gyrus 5344 53 (49) 7.3 × 10−4

Primary visual cortex 373 9 (9) 1.91 × 10−3

Table 4.  Comparison of PWB AD-DEGs with DEGs detected from various brain regions of AD patients. 
#The number outside the parentheses indicates the number of overlapped genes between AD-DEGs and brain 
tissue DEGs and the number inside the parentheses indicates the number of overlapped genes with consistent 
expression alterations in both PWB and brain tissue of AD patients. *Represent the probability of observing the 
number of overlapped genes by chance calculated by the hypergeometric distribution model.
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demonstrated a greater prevalence of language disturbance, a disproportionate number of left-handers and a 
much shorter relative survival time than the late-onset group39.

These results showed that the occurrence of AD is closely related to aging, further suggesting that AD could 
be an excessive aging disease.

Prediction performance of AD-associated cellular alterations in PWB.  One task of the blood-based 
test is to detect biomarkers for disease diagnostic workup. In this study, the detections of DEGs were based on 
gene pairs that have reversed REO patterns in AD patients compared with normal controls. These reversed gene 
pairs could be naturally used as diagnostic biomarkers for AD. The result showed that these reversed gene pairs 
had good prediction performance for classifying AD and normal samples: the 1,145 reversed gene pairs detected 
in PWB-AD-249 discriminated AD from the normal samples in PWB-AD-275 with an area under the curve 
(AUC) of 0.733, while the 1,249 reversed gene pairs detected in PWB-AD-275 discriminated AD from the nor-
mal samples in PWB-AD-249 with an AUC of 0.775 (Fig. 4). The prediction performances were better than 
the reported prediction performance by Nicola et.al. (AUC 0.729,10), which used a pathway based classification 
method based on the same data.

Figure 2.  Interactions between AD-DEGs and AD-associated biomarkers.

Figure 3.  Interactions between AD-DEGs and PWB aberrant miRNAs.
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Discussion
The concept of using blood such as peripheral blood cells as the source of information to detect disease-associated 
molecular alterations relies on the natural role of these cells in immune response to physiologic and pathologic 
changes40. In this study, we tried to detected AD-associated leukocyte cellular alterations from AD peripheral 
whole blood samples using the Ref-REO method15, which is based on within-sample REOs in purified leukocytes.

In the study, the number of PWB AD-DEGs identified by Ref-REO was relatively low, suggesting that 
the Ref-REO method had its disadvantages to some extent. Firstly, this method may fail to detect some 
disease-associated cellular alterations, as the reference pairs were required to have stable REO patterns in all 
purified leukocytes and in more than 95% of normal PWB samples, which could miss some AD-associated altera-
tions. Secondly, the method of Ref-REO itself tended to detect DEGs with larger magnitude of cellular expression 
alterations, as greater expression alterations will have greater REO changes. Thus, genes with weak changes may 
be missed. Lastly, the Ref-REO method may not be able to detect those alterations occurring in leukocyte sub-
types with limited proportions, as the signal could be easily covered by other leukocyte subtypes. However, it’s 
important to note that the PWB alterations identified by Ref-REO were closely associated with the development 
and progression of disease: the AD-DEGs were significantly enriched in AD-associated pathways, reproducible 
in brain tissue of AD patients and tended to interact with reported AD-associated biomarkers. Therefore, though 
low in quantity, the AD-DEGs identified by Ref-REO could be real expression alterations occurring in PWB 
leukocytes15.

Interestingly, our results showed that few AD-associated cellular alterations were enriched in PWB immune 
associated pathways or functional terms. In contrast, most of them were involved in aging-associated pathways 
or functional terms. For example, oxidative phosphorylation and mitochondrial have been reported to be closely 
associated with aging41. In AD blood samples, an increased neutrophil-lymphocyte ratio has also been reported 
as a function of age42. These results suggested that AD-associated cellular alterations in PWB might mainly reflect 
aging-associated alterations. Fortunately, such alterations could also be detected in the diagnostic workup of 
Alzheimer’s disease (AD), as AD is an excessive aging disease.
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