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Abstract

NS1 proteins of influenza A and B viruses share limited sequence homology, yet both are potent manipulators of host cell

processes, particularly interferon (IFN) induction. Although many cellular partners are reported for A/NS1, only a few (e.g.

PKR and ISG15) have been identified for B/NS1. Here, affinity-purification and mass spectrometry were used to expand the

known host interactome of B/NS1. We identified 22 human proteins as new putative targets for B/NS1, validating several,

including DHX9, ILF3, YBX1 and HNRNPC. Consistent with two RNA-binding domains in B/NS1, many of the identified factors

bind RNA and some interact with B/NS1 in an RNA-dependent manner. Functional characterization of several B/NS1

interactors identified SNRNP200 as a potential positive regulator of host IFN responses, while ILF3 exhibited dual roles in

both IFN induction and influenza B virus replication. These data provide a resource for future investigations into the

mechanisms underpinning host cell modulation by influenza B virus NS1.

Although influenza pandemics are historically limited to
influenza A viruses (FLUAV) due to their broad host range
and consequent potential to acquire antigenically novel sur-
face glycoproteins, seasonal human epidemics are caused by
both type A and B influenza viruses. Indeed, influenza B
viruses (FLUBV) can be the predominant circulating human
influenza virus in some seasons, and have been associated
with causing severe disease [1]. Both FLUAV and FLUBV
are members of the Orthomyxoviridae, and have genomes
comprising eight single-stranded, negative-sense RNA seg-
ments. The smallest genomic RNA segment of both virus
types encodes two proteins, NS1 and NEP/NS2 [2]. The
NS1 proteins of both viruses are well described as multi-
functional virulence factors that inhibit host interferon
(IFN) production and IFN-induced antiviral effectors [3–8].
While the functions and host interactors of the FLUAV NS1
protein have been extensively characterized [9], far less is
known about the properties of the FLUBV NS1 protein.
Notably, FLUBV NS1, like FLUAV NS1, interacts with
dsRNA and inhibits the IFN-inducible dsRNA-activated
protein kinase, PKR [4, 10, 11]. However, FLUAV NS1
appears to be unique in targeting specific host-factors such
as CPSF30 and the p85b regulatory subunit of PI3K [12–
14], while FLUBV NS1 can specifically engage with ISG15
to inhibit antiviral activity [5, 15–17]. In this study, we
sought to rationally define the FLUBV NS1 human

interactome in order to aid future studies into the molecular
mechanisms of influenza B virus–host interactions.

CHARACTERIZATION OF A HUMAN CELL LINE

STABLY EXPRESSING B/NS1

Using a previously described lentivirus transduction method
[14], a puromycin-resistant HEp2 cell line stably expressing
an N-terminal V5-tagged form of the FLUBV NS1 protein
(strain B/Yamagata/1/73; B/NS1) was generated. In parallel,
similar HEp2 cell lines were generated using either an
empty multiple cloning site vector (negative control, MCS)
or a vector expressing an N-terminal V5-tagged form of the
FLUAV NS1 protein [strain A/Puerto Rico/8/34 (PR8); A/
NS1]. Compared to parental HEp2 cells, all three cell lines
appeared to grow without any obvious deleterious effects.
This confirms that B/NS1 is unlikely to alter significantly
general host cell gene expression or mRNA processing [10].
The inability of A/NS1 (PR8) to perform these functions is
due to a previously documented strain-specific phenotype
that many other A/NS1 proteins retain [18, 19]. Western
blot analysis confirmed expression of the two V5-tagged
viral proteins (Fig. 1a). Immunofluorescence using an anti-
V5 antibody directly conjugated to FITC (Bio-Rad, USA)
revealed striking differences in the localization of the two
NS1 proteins (Fig. 1b). While both proteins localized pre-
dominantly (but not exclusively) to the nucleus, A/NS1 was

Received 2 June 2017; Accepted 30 July 2017
Author affiliations: 1Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland; 2Biomedical Sciences
Research Complex, University of St. Andrews, St. Andrews, Fife, KY16 9ST, UK; 3Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place,
New York, NY 10029, USA.
*Correspondence: Benjamin G. Hale, hale.ben@virology.uzh.ch
Keywords: influenza; interferon; virus-host interaction; virulence factor; proteomics.
Abbreviations: AUC, area under the curve; CPE, cytopathic effect; EMCV, encephalomyocarditis virus; FLUAV, influenza A virus; FLUBV, influenza
B virus; IFN, interferon; MCS, multiple cloning site; NP40, Nonidet P-40; NS1, non-structural protein 1; PIV5, parainfluenza virus type 5; PKR,
dsRNA-activated protein kinase; PI3K, phosphoinositide 3-kinase; SeV, Sendai virus; vRNP, viral ribonucleoprotein complex.

SHORT COMMUNICATION

Patzina et al., Journal of General Virology 2017;98:2267–2273

DOI 10.1099/jgv.0.000909

000909 ã 2017 The Authors
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, distribution and reproduction in any medium, provided the original
author and source are credited.

2267

http://www.microbiologysociety.org/
http://jgv.microbiologyresearch.org/content/journal/jgv/
http://creativecommons.org/licenses/by/4.0/


distributed in a largely diffuse pattern but was notably
absent in regions likely to be nucleoli [20]. In contrast, B/
NS1 primarily localized into discrete punctate intra-nuclear
bodies previously characterized as nuclear-speckle domains
[21]. During the early stages of FLUBV infection (4–6 h p.
i.), the same B/NS1 distribution pattern can be observed.
However, at later stages of infection, B/NS1 is found only in
the cytoplasm, a re-localization event presumably driven by
other viral factors [21]. Thus, the HEp2 cell line stably
expressing B/NS1 probably phenocopies the function of this
protein in the early post-infection period.

We confirmed that our B/NS1-expressing cells are severely

debilitated in their ability to produce IFN (as determined by

EMCV CPE-reduction bioassay on Vero cells) in response

to infection with the paramyxovirus PIV5 strain CPI- (m.o.

i.=5 p.f.u. cell�1; Fig. 1c). The block in IFN production is

comparable to that observed in HEp2 cells stably expressing

the bovine viral diarrhoea virus (BVDV) NPro protein,

which targets the essential transcription factor IRF3 for pro-

teasome-mediated degradation [22]. Thus, given that B/NS1

has been reported to prevent the pre-transcriptional nuclear
translocation of IRF3 in overexpression experiments [8],
these data suggest that either low levels of cytoplasmic B/
NS1 are sufficient for this activity, or that B/NS1 (like A/
NS1 [18]) has multiple mechanisms for limiting IFN induc-
tion, including one possibly occurring in the nucleus. We
were unable to observe an effect of B/NS1 on the ability of
HEp2 cells to respond to exogenous rIFNa treatment (1000
IU ml�1, 20 h), as determined by both formation of ISG15
conjugates and induction of STAT1 protein levels. For this
assay, PIV5-V was used as a positive control due to its abil-
ity to cause STAT1 degradation [23], thereby blocking IFN
signalling and subsequent ISGylation (Fig. 1d). The inability
of B/NS1 to block ISGylation was initially surprising given
that during overexpression experiments B/NS1 can bind
human ISG15 and prevent its conjugation to cellular pro-
teins [15–17, 24]. It may be that the low level of B/NS1 pres-
ent in the cytoplasm of the HEp2-B/NS1 cells is not
sufficient to perform this function or that B/NS1 has a more
specific role in counteracting ISG15-mediated antiviral
activity, as recently reported by others [5].
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Fig. 1. Characterization of a human cell line stably expressing B/NS1. Western blot analysis (a) and immunofluorescence analysis

(b) of HEp2 cells stably expressing V5-tagged A/NS1 or B/NS1. (c) B/NS1 blocks IFN induction in response to virus infection. Cells

were infected with PIV5(CPI-) at an m.o.i. of 5 p.f.u. cell�1, before supernatants were harvested at the indicated times, UV inactivated

and titrated by biological EMCV CPE-reduction assay. Mean values of triplicate experiments are shown. Error bars represent standard

deviation (SD). (d) Western blot analysis of lysates from HEp2 cells treated, or not, for 20 h with 1000 IU ml�1 rIFNa. The indicated pro-

teins were detected with specific antibodies. (e) Specific co-immunoprecipitation of ISG15 and PKR with V5-B/NS1 from lysates of IFN-

stimulated (or mock-treated) cells. Asterisks indicate antibody heavy and light chain. ISG15 and potential ISG15-conjugates are indi-

cated by (̂). Molecular weight markers (kDa) are indicated to the right.
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IDENTIFICATION OF HUMAN PROTEINS

INTERACTING WITH B/NS1

To identify human proteins interacting with B/NS1, including
those potentially upregulated by IFN, we took advantage of
the observation that HEp2-B/NS1 and HEp2-MCS cell lines
responded normally to treatment with exogenous rIFNa, and
optimized small-scale immunoprecipitation experiments.
Cells were pre-treated for 20 h with 1000 IU ml�1 rIFNa in
order to upregulate IFN-stimulated genes, before lysing and
performing immunoprecipitation of V5-tagged proteins with
protein G Sepharose beads coated with anti-V5 antibody as
previously described [14] (Fig. 1e). In line with other studies, a
robust interaction was observed between B/NS1 and IFN-
inducible PKR [25], as well as ISG15 [15, 17]. In addition, it
was observed that B/NS1 interacted with specific ISGylated
proteins that only appeared after rIFNa stimulation. The
identity of these proteins is unknown, but the pattern of inter-
actors is strikingly similar to that observed during FLUBV
infection [5]. These data reveal that this system faithfully reca-
pitulates some of the known B/NS1 interactions observed
under infection conditions.

Large-scale anti-V5 immunoprecipitations were performed
from lysates of cells cultured in the presence of rIFNa as
previously described [14], except using a modified buffer
containing 40mM Tris-HCl (pH 7.8), 400mM NaCl, 4mM
EDTA and 0.4%NP-40. Analysis of the resulting immuno-
precipitates by SDS-PAGE and Coomassie blue staining
revealed several polypeptide bands that were specific to the
B/NS1 pull-down, and were not found in the precipitate
from HEp2-MCS cells (Fig. 2a). These polypeptides were
excised from the gel and identified by mass spectrometry
(bands 1–8). As a negative control for B/NS1 band 4, the
corresponding band in the MCS lane was also excised, and
the proteins identified in this band by mass spectrometry
were excluded from our data set as potential contaminants:
namely, HSP70, DDX3, RBM14 and keratin. Overall, 22 B/
NS1-interacting human proteins were identified in our
study (Fig. 2b and c), including 6 that were previously
described out of 70 interactors of the NS1 protein from B/
Lee/1940 [26]. Differences in experimental set-up, such as
treatment, cell line or virus strain used, most likely explain
this low overlap between studies, but nevertheless suggest
that the 6 common interactors (DHX9, ILF3, YBX1, RPL3,
RPL6 and HNRNPC) are general factors targeted by B/NS1
proteins from different virus strains (see Fig. 2b, highlighted
in yellow). Notably, neither this study nor the study of
Pichlmair et al. identified PKR or ISG15 as B/NS1 interac-
tors by the affinity proteomics approach. The host CrkII
adaptor protein, recently identified as a B/NS1 interactor
during infection [27], was also not identified by either study.
This perhaps indicates sensitivity issues with respect to these
proteins using mass spectrometry, or different protein com-
plex stabilities under infection conditions that impact detec-
tion capacity.

To validate a subset of these data, we confirmed the specific
association of B/NS1 with DHX9, ILF3, YBX1 and

HNRNPC by co-transfection of 293 T cells with GST or
GST-tagged B/NS1 and the respective tagged host factor
constructs [28–30], followed by GST pull-down and identi-
fication of co-precipitated proteins by western blot (Fig. 2d–
g). These four factors are all known RNA-binding proteins,
and therefore by performing the pull-downs either in the
absence or presence of RNase A we were also able to show
that B/NS1 does not appear to interact indirectly with ILF3
or HNRNPC via common RNA-binding activities
(Fig. 2e and g). In contrast, DHX9 and YBX1 exhibited a
more striking RNA-dependent interaction with B/NS1
(Fig. 2d and f). These data support the mass spectrometry-
based identification of human host factors engaged by B/
NS1.

FUNCTIONAL CHARACTERIZATION OF

COMPONENTS OF THE B/NS1 INTERACTOME

Western blot analysis of lysates derived from FLUBV-
infected A549s revealed that, from a selected subset of B/
NS1 interactors, only YBX1 levels appeared to be upreg-
ulated at late times post-infection relative to the other host
factors (Fig. 3a). This was not due to YBX1 being IFN-
inducible, as none of the selected factors was inducible by
rIFNa treatment alone (Fig. 3b). Notably, YBX1, a cellular
protein described as being involved in mRNA metabolism
[31], has recently been implicated in FLUAV vRNP traffick-
ing and budding [32, 33]. A similar involvement of YBX1 in
the FLUBV replication cycle remains to be determined, as
does the function of YBX1 protein upregulation and its
interplay with B/NS1 during the course of infection.

B/NS1 is well described in regard to counteracting IRF3 sig-
nalling and the induction of IFN, potentially at the level of
the RIG-I sensor, and possibly via two independent mecha-
nisms involving B/NS1 domains that can both bind RNA [4,
8, 34, 35]. Given that neither this study nor Pichlmair et al.
identified classical components of the RIG-I/TRIM25/
MAVS signalling axis as B/NS1 interactors, we investigated
whether another B/NS1 interactor impacted IFN induction,
and could therefore be a target for B/NS1 antagonism. In
this regard, an siRNA screen was performed to determine
the contribution of selected B/NS1 interactors to Sendai
virus (SeV)-induced activation of the IFNb-promoter. B/
NS1 interactors were selected with known RNA-binding or
helicase activities from the proteomic screens: DHX9 and
ILF3 as hits from both screens, SNRNP200 as a unique hit
from our screen and ZNF346 as a unique hit from the
screen of Pichlmair et al. For the assay, a previously estab-
lished A549-based reporter cell line that expresses GFP
under control of the IFNb-promoter [36] was used. Cells in
96-well plates were independently transfected with four
individual siRNAs per factor (or positive/negative
controls, all from Qiagen) for 48 h prior to stimulation of
the IFNb-promoter with SeV. Cells were then continuously
monitored for green fluorescence over a 24 h period using
the IncuCyte Live-Cell Analysis System (Essen BioScience)
(Fig. 3c). The number of GFP-expressing cells was
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automatically counted and normalized to overall cell den-
sity. The relative total area under the curve (AUC) for each
condition was then taken as an indirect measure of IFNb-
promoter activation, with untreated, SeV-infected cells set
to 100% induction. This level of induction would represent

an approximate 2000-fold increase in IFNb mRNA over
baseline if quantified by qPCR (data not shown). The screen
was performed three times independently, and parallel,
uninfected plates were used to determine potential siRNA
toxicity as measured by cell viability (CellTiter-Glo
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Luminescent Cell Viability Assay, Promega). To define a
‘hit’ that impacted IFNb-promoter activation, a stringent
threshold was chosen of four standard deviations away from
the untreated, SeV-infected condition (considering all sam-
ples from all independent experiments) that had to be

observed for at least three out of four individual siRNAs
(Fig. 3d and e). Using these criteria, RIG-I and IRF3 were
confirmed to play essential roles in SeV-induced activation
of the IFNb-promoter, while no significant impact could be
determined for DHX9 or ZNF346. However, all four

(b)

Actin

RIG-I

HNRNPC

ILF3

DHX9

IFNa : − +

YBX1

(a)

(c) (d)

ILF3

DHX9

YBX1

HNRNPC

Time p.i.:

B/NS1

1 4 3 2 
0

1 4 3 2 1 4 3 2 

DHX9 

1 4 3 2 

ILF3 SNRNP200 RIG-I 

U
n
tr

e
at

e
d

S
c
ra

m
b

le
d

si
IR

F
3

-1

si
IR

F
3

-2

100

IF
N

b
 in

d
u
c
tio

n
 (

A
U

C
, %

 o
f 
u
n
tr

e
at

e
d

)

  50

150

4 3 1 2 

ZNF346 

C
e
ll viab

ility (R
L
U

, %
 o

f u
n
tre

ate
d

)

0

100

  50

150

0 

3 21 4
150

50 

100

DHX9

ILF3

SNRNP200

RIG-I

ZNF346

siRNA
transfection

SeV infection

Monitor for
GFP+ cells

(g)(f)(e)

FLAG

Actin

U
n
tr

an
sf

e
c
te

d

w
/o

 s
iR

N
A

si
IL

F
3

-1

si
IL

F
3

-2

si
IL

F
3

-3

si
IL

F
3

-4

S
c
ra

m
b

le
d

3

5

4

7

6

2

p
.f.

u
. m

l-1
 (

lo
g

1
0

)

1 2 

ILF3 

4 

sc
r

0 h 1 h 3 h 6 h 9 h 12 h 24 h

Fig. 3. Functional characterization of components of the B/NS1 interactome. (a) Western blot analysis of specific B/NS1 interactors

during the course of FLUBV (B/Yamagata/88) infection in A549s (m.o.i. of 5 p.f.u. cell�1). (b) Western blot analysis of A549 cell lysates

previously treated or not with rIFNa (1000 IU ml�1, 20 h). The indicated proteins were detected with specific antibodies. (c–e) Reporter

assay for IFNb-promoter induction. A549-pr(IFNb).GFP cells were transfected for 48 h with specific siRNAs before IFNb-promoter acti-

vation was induced by SeV infection (c). The number of GFP-positive cells was monitored over 24 h, and normalized to overall cell con-

fluency. The area under the curve (AUC) in relation to the untreated control from three independent experiments is depicted (d, green

bars, left axis: error bars=SD). Dotted line indicates four SD values away from the negative control. In addition, cell viability after siRNA

transfection was measured, and mean relative light units (RLU) from three independent experiments are depicted in relation to the

untreated sample (d, black lines, right axis: error bars=SD). Dashed line indicates 80%cell viability. (e) Heat map representation of the

data shown in (d), indicating levels of IFNb-promoter activation. (f) Western blot analysis of 293 T cells co-transfected (or mock) for

48 h with a plasmid expressing FLAG-ILF3 and the indicated siRNAs. (g) A549 cells were transfected with the indicated siRNAs for 48 h

before infection with FLUBV (B/Yamagata/88) at an m.o.i. of 1 p.f.u. cell�1. Bars represent mean viral titres in supernatants at 48 h

post-infection (n=2, error bars represent SD).

Patzina et al., Journal of General Virology 2017;98:2267–2273

2271



siRNAs targeting the B/NS1 interactors SNRNP200 and
ILF3 showed a strong impact on IFNb-promoter induction,
suggesting important roles for these factors in IFN produc-
tion (Fig. 3d and e).

Another group recently reported that SNRNP200 contrib-
utes to the IFN induction pathway by a mechanism involv-
ing its interaction with viral RNA and the cellular adapter
protein, TBK1, leading to activation of IRF3 signalling [37].
However, ILF3 (also known as NF90) has not been previ-
ously implicated directly in regulating IFN induction,
although it has been reported to have some antiviral activity
against FLUAV [38–40]. We therefore investigated whether
ILF3 also influences the replication of FLUBV. It was con-
firmed that all four siRNAs targeting ILF3 were able to
reduce ILF3 levels in co-transfected cells (Fig. 3f), and that
three out of four siRNAs did not reduce cell viability >20%
(Fig. 3d). Next, A549 cells were transfected with the three
non-toxic siRNAs for 48 h before infecting them with
FLUBV (strain B/Yamagata/88) at an m.o.i. of 1 p.f.u. cell�1

. At 48 h post-infection, supernatants were collected and
virus levels were titrated via standard plaque assay. As
shown in Fig. 3(g), under these conditions, targeting ILF3
with 3 independent siRNAs negatively affected FLUBV
propagation up to 1-log, with impact on virus replication
correlating, to a certain extent, with the knockdown capacity
of each siRNA. These data suggest that ILF3, despite its
potential role in IFN induction pathways, plays an import-
ant role in FLUBV replication. Such apparently discordant
observations have been noted previously, as ILF3 and ILF3-
related proteins can exhibit context-dependent pro- or anti-
viral activities [41–46]. Thus, the precise contribution of
ILF3 to the IFN response in FLUBV-infected cells, as well as
its interplay with both B/NS1 and general viral replication,
require further investigation.

CONCLUDING REMARKS

Herein, we expanded the known human host interactome of
the isolated FLUBV NS1 protein, a multifunctional viru-
lence factor heavily understudied in comparison to FLUAV
NS1. It will be critical to confirm these interactions in the
context of virus infection, and to determine their relative
importance. Nevertheless, this functionally validated dataset
is a valuable new resource to complement future studies
into the mechanism of action of how this viral protein
manipulates host-cell processes, as well as its potential roles
in directly influencing virus replication and counteracting
host innate immune responses.
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