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The Timing of Reward-Seeking Action Tracks Visually Cued
Theta Oscillations in Primary Visual Cortex
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Department of Neuroscience, The Johns Hopkins University, Baltimore, Maryland 21205, 2Systems Neuroscience Group, IFIBIO Bernardo Houssay
(CONICET-UBA), Department of Physiology and Biophysics, University of Buenos Aires, School of Medicine, Buenos Aires, Argentina 1121, and
3Department of Psychiatry and “Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599

An emerging body of work challenges the view that primary visual cortex (V1) represents the visual world faithfully. Theta oscillations in
the local field potential (LFP) of V1 have been found to convey temporal expectations and, specifically, to express the delay between a
visual stimulus and the reward that it portends. We extend this work by showing how these oscillatory states in male, wild-type rats can
even relate to the timing of a visually cued reward-seeking behavior. In particular, we show that, with training, high precision and
accuracy in behavioral timing tracks the power of these oscillations and the time of action execution covaries with their duration. These
LFP oscillations are also intimately related to spiking responses at the single-unit level, which themselves carry predictive timing
information. Together, these observations extend our understanding of the role of cortical oscillations in timing generally and the role of

V1 in the timing of visually cued behaviors specifically.

Key words: decision making; intertemporal choice; primary visual cortex; sensory cortex; theta oscillations; timing

Significance Statement

Traditionally, primary visual cortex (V1) has been regarded as playing a purely perceptual role in stimulus-driven behaviors.
Recent work has challenged that view by showing that theta oscillations in rodent V1 may come to convey timed expectations.
Here, we show that these theta oscillations carry predictive information about timed reward-seeking actions, thus elucidating a
behavioral role for theta oscillations in V1 and extending our understanding of the role of V1 in decision making.

Introduction

Timed responses to environmental stimuli are crucial for sur-
vival. Such stimulus-driven behaviors require knowledge of both
what to expect and when and many high-level brain areas have
been shown to report this information. Neurons in the striatum
(Hikosaka et al., 1989; Apicella et al., 1992; Shidara et al., 1998;
Tremblay et al., 1998), orbitofrontal cortex (Schoenbaum et al.,
1998; Tremblay and Schultz, 1999; Hikosaka and Watanabe,
2000), and amygdala (Schoenbaum et al., 1998) have been found
to express temporal predictions about outcomes, whereas dorso-
lateral premotor cortex (Okano and Tanji, 1987; Romo and
Schultz, 1987; Kurata and Wise, 1988), prefrontal cortex (Wa-
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tanabe, 1996), and distinct regions of the striatum (Schultz and
Romo, 1988) have been implicated in translating this temporal
information into action. Sensory regions such as primary visual
cortex (V1), in which the earliest stage of cortical visual process-
ing occurs, are typically regarded as contributing only to the first
phase of such behaviors: perception (Hubel and Wiesel, 1962,
1965). However, recent work suggests that experience-dependent
plasticity in V1 can also give rise to information about when to
expect an outcome (Shuler and Bear, 2006; Sharma et al., 2015). It
has even been shown that such sustained modulations in firing
rate in V1 may be involved in visually timed behaviors (Nam-
boodiri et al., 2015).

Oscillations in V1 local field potentials (LFPs) have also gen-
erally been interpreted as relaying perceptual information. One
of the key roles for oscillations, particularly in the gamma range,
may be to enhance binding of visual features to create a complete
visual percept (Eckhorn et al., 1988, 1990). Another crucial func-
tion of oscillations is to facilitate anticipation of upcoming stim-
uli, though this type of predictive information is often reported as
lasting on the order of only tens or hundreds of milliseconds
(Engel et al., 2001; Arnal and Giraud, 2012; Gavornik and Bear,
2014). However, recent observations have also pointed to a role
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for oscillations in stimulus prediction on the order of seconds
(Lima et al., 2011; Sharma et al., 2015), the temporal range that is
crucial in many cognitive tasks. Moreover, it has been found that
theta oscillations in the LFP of well trained rodents predict the
expected delay to reward (Zold and Hussain Shuler, 2015). Al-
though it is of interest that this LFP signal expresses temporal
information, it is not known how it relates to interval timing
activity expressed by V1 neurons nor to the performance of in-
terval timing behavior.

To address this, we analyzed data from a task (Namboodiri et
al., 2015) in which rodents with chronic electrode implants in V1
execute a timed action in response to a visual cue to achieve
reward. Surprisingly, we found that these visual cues evoked theta
oscillations in V1, the presence of which corresponded to im-
provement in timing accuracy and precision in the task. Further,
the degree of this improvement was largest when the spatial ex-
tent of these oscillations was greatest. Importantly, we found that
the duration of these oscillations covaried with the time of action
on a per-trial basis and that this relationship evolved with train-
ing. This theta-oscillatory activity in the LFP was also found to be
intimately related to the activity of single units, which were ob-
served to spike at the frequency of the LFP oscillation and were
themselves found to carry predictive information about the tim-
ing of the action. Interestingly, the likelihood of evoking these
oscillatory states was found to depend on the rate of experienced
reward, thus linking them to motivation and the balance between
exploration and exploitation. Therefore, these findings further
our understanding of sensory cortex’s involvement during
stimulus-driven behaviors, provide evidence for theoretical ac-
counts of timing that implicate neuronal oscillators (Miall, 1989;
Church and Broadbent, 1990; Buhusi and Meck, 2005), and ex-
tend our knowledge of the role for theta oscillations.

Materials and Methods

Behavioral task and neural recordings. Experimental procedures were as
described previously (Namboodiri et al., 2015). Briefly, water-deprived,
adult, male, wild-type Long—Evans rats were trained to perform a visually
cued timing task in which they entered a nose poke, waited a random
delay without licking, received a 100 ms full-field monocular visual stim-
ulus, executed a lick, and obtained a water reward (on 5/6 visually cued
trials). The amount of reward available upon licking after the stimulus
increased linearly up to 1.5 s, after which no reward was available (see Fig.
la). After animals were sufficiently trained (average wait times exceeded
one second for 3 consecutive days), they were stereotaxically implanted
bilaterally with 2 X 8 electrode arrays (2.5 mm length; 0.5 mm width)
targeted to the binocular zone of V1 (1.5 mm anterior and 4.2 mm lateral
from lambda, at a depth of 1.0 mm). After recovery and water depriva-
tion, animals performed the task while neural recordings were collected,
amplified, and filtered by Neurlanyx hardware. For a different cohort of
animals, referred to here as naive, implantation occurred before training
(and the ramp of available reward extended only to 1 instead of 1.5 5). All
procedures were conducted in accordance with the National Institutes of
Health’s Guide for the Care and Use of Laboratory Animals and were
approved by The Johns Hopkins University Institutional Animal Care
and Use Committee. Six spatially distant electrodes (three per hemi-
sphere) were selected for LFP analysis to reduce redundancy in the
signals.

LEFP processing. Neural signals were sampled continuously at 32 kHz,
downsampled to 2.2 kHz, and band-pass filtered (1-400 Hz). This fil-
tered LFP signal was then converted to concentrated energy scores by
applying a methodology described previously (Zold and Hussain Shuler,
2015), which was chosen in that study because it provided a better agree-
ment between quantitative analysis of signal duration and visual inspec-
tion than using energy alone. Here, concentrated energy is defined as the
mean energy divided by the purity. To calculate the mean energy, we first
generated a time—frequency representation from the filtered LFP by ap-
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plying Gabor filters with frequencies from 4 to 9 Hz in 0.5 Hz steps (SD of
Gaussian kernel = 0.5). The mean of this time—frequency representation
across all frequency values for each point in time is defined as the mean
energy. Purity, a measure of how concentrated the energy was among
particular frequencies, was calculated as follows:

purlty = Efz * €norm (f* enurm)z

where fis the frequency values and e, ., is the energy at each frequency
at every point in time normalized to the total energy at that time. Impor-
tantly, to minimize the opportunity for bias, the parameters for this study
were taken exactly from the prior study and were not adjusted across
sessions or animals.

Oscillation detection and duration. As done previously (Zold and Hus-
sain Shuler, 2015), the concentrated energy scores during a session were
used to detect the presence of an oscillation and duration. To categorize
trials into oscillatory and nonoscillatory groups, we first created a thresh-
old according to the following formula:

threshold = (CE,,.x — CE,..,)/c

where CE, .. and CE,;, are the maximum and minimum mean concen-
trated energy scores (taken from a 200—700 ms window following a visual
stimulus) for any visually cued trial across the session, respectively, and ¢
is a constant equal to 2.5. An oscillation trial is then defined as any trial in
which the concentrated energy value crosses this threshold at any point in
the 200-700 ms poststimulus window. For trials with an oscillation, the
duration of the oscillation was the amount of time between when the
concentrated energy exceeded this threshold to when it subsequently fell
below the threshold.

Oscillation states. To establish whether it is appropriate to treat trials as
belonging to one of two classes (oscillatory or nonoscillatory), we mod-
eled the poststimulus responses across trials. To do this, we took the
mean concentrated energy from a 200—700 ms window poststimulus on
each trial and attempted to find a good fit to this distribution. We started
with the most straightforward hypothesis that the concentrated energy
values across trials arose from a Gaussian process, N'(u, o) that would
result in a unimodal distribution. This was tested against a mixed model
in which two Gaussian processes are linearly combined, p * N'(ul, o1) +
(1 = p) * N(u2, 02), which would result in a bimodal distribution. To
compare these “1-Gaussian” and “2-Gaussian” models, we calculated the
corrected Akaike information criterion (AICc) values for each. The AIC
takes into account the likelihood (derived from maximum likelihood
estimation) and also the model complexity, such that models with more
parameters are penalized. In this case, the 2-Gaussian model has 5
parameters, whereas the 1-Gaussian model has only 2 parameters.
AICc is a correction for small samples and is calculated as follows:
AICc = AIC + 2k(k + 1)/(n — k — 1). The difference in AICc
values (or, more specifically, exp((AICc1 — AICc2)/2) thus provides a
measure of the relative likelihoods of the models.

Because a unimodal Gaussian model is a simplistic alternative, we also
tested against a variety of more plausible models. Specifically, we tried to
find the best alternative to the 2-Gaussian model among 17 continuous
distributions implemented in a custom MATLAB script by Mike Shep-
pard (including, among others, the following distributions: beta, expo-
nential, gamma, generalized extreme value, inverse Gaussian, logistic,
log-logistic, lognormal, normal, Rayleigh, and Weibull). Of these, 10
provided reasonable fits to the data in <30% of cases and thus were
excluded from the data. Of the remaining seven candidates (which pro-
vided reasonable fits in 100% of cases), the generalized extreme value
distribution had the lowest overall AICc value across sessions and there-
fore was chosen as the best alternative to the 2-Gaussian model. Unlike
the unimodal Gaussian model, this model has skew and thus can fit the
distribution of concentrated energies across trials better.

Visually evoked potential (VEP) correlation. The acute response to the
visual stimulus, termed the VEP, is defined here as the voltage modula-
tion in the LFP during the first 200 ms poststimulus. To assess whether
the correlation between the timed lick and oscillation can be explained by
an earlier physiological event, we assessed whether the magnitude of the
VEP (i.e., the absolute difference between the peak and the trough in the
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voltage trace during this 200 ms period) might be predictive of wait time.
Specifically, we calculated the percentage of variance explained by a single
variable (either oscillation duration or VEP amplitude) compared with a
linear regression with both variables across all sessions and channels.

Spike-LFP phase locking. Spiking data were sorted manually using Of-
fline Sorter software from Plexon. Finding the phase of the oscillation at
which these spikes occurred required converting the filtered LFP signal
into a phase position at each time point. This was achieved, as described
previously (Galinanes, 2009; Zold and Hussain Shuler, 2015; Zold, 2007),
by decomposing the signal with a discrete, Meyer-type wavelet transform
into its 3.9—7.9 Hz components, applying a Hilbert transform on the
reconstituted signal, and computing the angle of this result, z, with the
following equation: angle(z) = imag(log(z)). Rayleigh’s test for circular
uniform distributions was then used to determine whether the phase angles
at which the spikes occurred was isotropic.

Spike train analysis. To compare the degree of rhythmic activity on
oscillatory and nonoscillatory trials, we created the autocorrelation dif-
ference index (ADI). The ADI is the difference in the autocorrelation
scores on oscillation and nonoscillation trials, which are defined as the
sum of the sample autocorrelation function from 100-300 ms (which
encompasses the range of the oscillatory periods) derived from the peri-
stimulus time histogram (PSTH). Note that this range is distinct from the
200-700 ms range to determine the energy of the oscillation, which is a
fixed window. This 100-300 ms range is not a fixed observation window,
but rather a span over which the autocorrelation function is evaluated.

To separate trials based on their spike trains alone, we assessed whether
the autocorrelation score defined above increased or decreased as each
trial was removed from a session’s overall PSTH. If removing a trial de-
creased the overall autocorrelation, then it was considered an oscillatory trial
and vice versa. For the ensemble analysis, each neuron in the ensemble (i.e.,
the group of neurons recorded simultaneously during a session) was given a
vote based on the aforementioned criterion and the majority vote deter-
mined whether a particular trial was labeled as oscillatory.

Oscillation prevalence modeling. As stated, a 200—700 ms window post-
stimulus was used to determine whether an oscillation was present on
each trial. To dissociate the contributions of various behavioral rates
(reward, trial, and photic) to the likelihood of evoking an oscillation, we
swept systematically through a parameter space of integration filters that
incorporated past behavioral statistics. For completeness, we used both a
uniform and exponential distribution as filters. The distribution of
means tested for each filter type were identical, and were 2% s, where x
took on all integer values from 0 to 11, inclusive. The differentiability
between the rates computed for all these parameters on oscillation and
nonoscillation trials was measured on each session using the receiver
operating characteristic (ROC). The mean ROC for a particular filter,
mean parameter, and rate type was the average ROC value computed in
this way across sessions and channels. We define the maximal mean ROC
as the highest mean ROC for a given filter type (across all mean param-
eters and rate types).

Assessing the acute effect of licking. We examined the possibility that the
lick itself could affect an ongoing oscillation, thereby artificially creating
a distinction between oscillatory and nonoscillatory states. Three analy-
ses were brought to bear on this question. First, we investigated whether
licking suppresses an oscillation acutely. To address this, we calculated
the average difference in concentrated energy between a 50 ms window
before and after a lick and compared it with the null distribution of
concentrated energy differences obtained by repeatedly (n = 1000) shuf-
fling the relationship between the wait times and trial number. Second,
we investigated whether there was a phase relationship between licking
and oscillations, in a manner similar to that described above in the
“Spike-LFP phase locking” section but for licks. Third, we investigated
whether there was a discernable difference in oscillatory power even
before licking. To address this, we calculated the distribution of concen-
trated energy scores in 50 ms windows before the first lick on a given trial
for oscillation and nonoscillation trials separately.

Experimental design and statistical analysis. All of the above analyses
were performed using MATLAB_R2015b. Experimental procedures were as
described previously (Namboodiri et al., 2015) and were performed with
eight wild-type adult male Long—Evans rats. In total, 150 experimental ses-
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sions, each consisting of 360 trials, were run (69 trained, 81 naive). Statistical
tests and results are as reported in the Results section.

Results

Oscillatory states appear in V1 during a visually cued

timing task

Eight wild-type rats were trained on a timing task (Namboodiri et
al., 2015). In this task, the animal enters a nose poke to initiate a
trial, waits a random delay without licking, receives a full-field
monocular visual stimulus (100 ms, green LED, delivered through
head-mounted goggles), and then licks at a chosen time. The time
that the animal chooses to lick after stimulus determines the
amount of reward it obtains on a given trial. Specifically, the
amount of water reward available rises linearly with time up until
1.5 s, at which point it drops to and remains at zero (Fig. 1a). In
this way, animals are encouraged to time their licks from the
visual stimulus so that they fall near, but not past, the peak of the
reward ramp.

Animals trained in this task exhibit cue-evoked theta oscilla-
tions in the LFP recordings from the V1. This theta oscillation can
be seen in the average voltage trace across trials of a session when
aligned to stimulus onset, as in Figure 1b. In this example, the
average voltage trace exhibits appreciable oscillatory strength for
~1 s after visual stimulation. Separating the responses per trial
(Fig. 1¢) reveals differences in the presence, amplitude, and du-
ration of theta oscillations across trials (Fig. l¢, inset).

To quantify these across-trial differences in the presence, am-
plitude, and duration of oscillations, we transform this raw volt-
age signal into a metric of oscillation strength. We focus our
analysis within a 4-9 Hz frequency range as the preponderance of
the signal power falls within this range (Fig. 1d). Using this range,
we generate a “concentrated energy” score, a measure of the
power and purity of the oscillation (see Materials and Methods),
for every time point within each trial, as done previously (Zold
and Hussain Shuler, 2015; Fig. le). Note that, unlike for the raw
voltage signal shown in Fig. ¢, the concentrated energy scores
rise before stimulus onset due to the blurring in time that occurs
when translating to a time—frequency representation. Qualita-
tively, trials with large oscillations in voltage (as in Fig. 1c) have
high concentrated energy scores (as in Fig. 1e). Using these con-
centrated energy scores, we can investigate how the oscillation
strength, defined as the mean concentrated energy within a 200—
700 ms time window;, varies across trials. By inspection, the prob-
ability density function (Fig. 1f) of the oscillatory strength (see
Materials and Methods) is well described for this session by a
bimodal fit (bottom), but not a unimodal fit (top), suggesting
that there are distinct oscillatory states across trials. Therefore, we
compared the quality of each fit by calculating the difference in
the AIC scores (See Materials and Methods). For this example, the
AAIC is large and negative (~—99.76), which indicates that the
bimodal model is heavily favored over the unimodal model. Apply-
ing this process across all sessions, we found that the bimodal
model is overwhelmingly preferred (p = 6.87e-66, W,,, = 1186,
z = —17.14; Fig. 1g, histogram) for a variety of metrics, including
the median concentrated energy (AAIC = —27.78), mean con-
centrated energy in a later window from 0.5-1 s (AAIC =
—49.33), and using raw energy scores (AAIC = —120.99), and
when compared with a number of alternative models (p = 4.20e-
33, Wy, = 13753, z = —11.99 for best alternative, generalized
extreme value distribution; see Materials and Methods). Given
that trials appear to have either a high- or low-power oscillation,
a threshold (Fig. 1h) for sorting trials into “oscillation” and
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Figure 1.  Oscillatory states are present in V1 during a visually guided timing task. a, Schematic of the task reward structure in which waiting longer to lick after a visual stimulus (time 0) results

ina larger volume of water delivery at the lick tube. Maximum delivery occurs at 1.5 s and drops to 0 thereafter, so that animals must time their lick. b, Average voltage trace in the LFP taken from
an electrode in an example session, with a green bar overlaid to indicate when the visual stimulus was on. The voltage values seem to oscillate for ~1 s poststimulus. ¢, Voltage traces per trial for
the example session. d, Average time—frequency representation of the trials in ¢. e, Concentrated energy through time of the trialsin . f, Empirical probability density function (PDF) for the log(mean
concentrated energy) scores on each trial shown in e are shown in blue. The mean concentrated energy is calculated in a 200700 ms window poststimulus. A unimodal Gaussian fit is shown in red
(top) and a bimodal Gaussian fit is shown in green (bottom). g, The distribution of the difference in AlCvalues for each model across all sessions is left shifted, indicating an overall preference for the
bimodal model. The dotted lines around 0 are the bounds at which the relative likelihood of a model compared with another model is 5%. h, Sorted concentrated energy scores for the example
session with a dotted line indicating the threshold used for determining whether a trial has an oscillation. If the concentrated energy score crosses this threshold during the 200 —700 ms window
poststimulus, itis considered to have an oscillation. /, Raw voltage trace in ¢ sorted by the mean concentrated energy in the analysis window on a given trial. Oscillations were detected for trials above
the dotted line.

“nonoscillation” trials was lawfully applied (Zold and Hussain
Shuler, 2015). Ordering the trials from Figure 1¢ by the strength
of their oscillation makes the difference in oscillatory power
across trials visually apparent (Fig. 11). Finally, we define an osci-
llation’s duration as the interval between the first moment post-
cue that the concentrated energy score surpasses this threshold
for detection and the first moment it falls below it.

Lick-timing precision and accuracy improve during theta
oscillation states

Having defined cue-evoked oscillations and their duration, we
next addressed whether across-trial differences in the perfor-
mance of the visually cued timing behavior tracks changes in the
oscillatory state. To visualize whether performance is related to
the presence/absence of cue-evoked theta oscillations, we plot,
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Number of electrodes with
an oscillation per trial

Wait time precision is higher during oscillatory states. a, Concentrated energy values with first wait times (white squares) poststimulus overlaid for each trial of an example session in

chronological order (top) and sorted by oscillation duration (bottom). The dashed black line is the threshold for being categorized as oscillatory. b, Empirical cumulative density functions for the first
lick times (wait times) poststimulus on oscillation (black) and nonoscillation (green) trials in a. ¢, Histogram of the difference in lick variability on oscillation and nonoscillation trials for each session
recorded ona given electrode. d, Differences in wait time variability on oscillatory and nonoscillatory trials for all sessions and channels of trained (blue) and naive (red, animals. e, Top, Lick variability
decreases as the number of electrodes on which an oscillation was detected increases for a given trial. Standard error bars are shown in black, with the regression line in red. Bottom, Percentage of
water obtained over baseline (defined as trials in which no oscillations were detected on any electrodes) increases as the number of electrodes showing an oscillation increases. Standard error bars

are shown in black, with the regression line in red.

per trial, the time of the first lick poststimulus (the behavioral
variable relevant for reward acquisition) atop the concentrated
energy values (see Fig. 2a, top, for an example session). Viewed in
this way, it is apparent that there is considerable variability in the
time of the first lick (white squares), but challenging to see what,
if any, relationship there is between concentrated energy and the
delay to the first lick (the “wait time”). However, sorting trials by
the strength of the oscillation (Fig. 2a, bottom) reveals that there
is considerably greater precision in time to initiate licking on
trials with higher oscillatory power. To quantify this difference,
we compared the temporal distribution of wait times (<5 s post-
stimulus, >95%, to avoid outliers) on oscillation and nonoscil-
lation trials (Fig. 2b, threshold shown by black dotted line). Wait

times on oscillation trials tend to be more tightly packed (Fig. 2b,
purple line) than on nonoscillation trials (Fig. 2b, green line).
Indeed, this tends to be the case across all sessions recorded on
this channel (Fig. 2¢; p = 4.05e-11, Wyq = 2139, z = 6.60, two-
tailed Wilcoxon signed-rank test against median = 0) and all
channels (p = 4.8e-54, W3 = 78618, z = 15.48). Moreover, the
difference in variability across sessions from this channel tends to
be more pronounced in well trained animals (i.e., rats performing
at least 3 consecutive sessions with a median wait time of 1 s or
greater) compared with naive on this channel (see Materials and
Methods; p = 0.01, U = 5274, z = 2.43, n, = 66, n, = 75,
two-sided Mann—Whitney U test) and across all channels (Fig.
2d; p = 1.4062e-15, U = 205955, z = 7.98, n, = 408, n, = 457).
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Because this increased variability on nonoscillation trials pre-
dominantly comes from a higher fraction of early licks, the cen-
tral tendency of the wait times across sessions is significantly
lower on nonoscillation trials (median of ~1006 ms) than
oscillation trials (median of ~1103 ms; p = 1.51e-14, U =
193710,z = 7.69, n, = 409, n, = 410, two-sided Mann—-Whit-
ney U test). This means that, on average, licks on oscillation
trials occur farther along the ramp, where more water is avail-
able and thus are more accurate. Therefore, the precision and
accuracy of timed licks are considerably higher on trials with
strong oscillations.

Because the presence of an oscillation detected at a given elec-
trode covaries with behavioral improvements, we hypothesized
that there would be larger behavioral improvements during trials
with more spatially widespread oscillations in V1. Because we
analyzed LFP recordings from six channels (three per hemi-
sphere) per session, we can assess how the timed lick behavior
varies with the number of electrodes reporting an oscillation on a
given trial. Variability decreases systematically (Fig. 2e, top; p =
8.27¢-05, slope = —1.91e+04, r = 0.98) and the central tendency
increases systematically (p = 0.020, slope = 23.78 ms, r = 0.83)
as the number of electrodes reporting oscillations grows. These
effects translate into a systematic increase in the amount of water
obtained per trial (Fig. 2e, bottom; p = 4.9¢-04, slope = 3.43,r =
0.96). Therefore, the greater the spatial extent of cue-evoked os-
cillations within V1, the greater the precision and accuracy of
timed reward-seeking actions and the greater the obtained
reward.

These observations suggest that cue-evoked theta oscillatory
states observed in V1 may be effectors of timed behavior, but this
relationship might arise from other sources. Because there is a
random delay period between nose poke entry and visual stimu-
lus onset, this higher variability in lick precision on nonoscilla-
tion trials might arise from higher variability in time waited
before the stimulus (prestimulus wait time). Countering this hy-
pothesis, we found that the difference in lick variability between
oscillation and nonoscillation trials is considerably higher than
the difference in prestimulus wait time variability (Fig. 3a; p =
3.94e-30, z = 11.4, U = 201251, n, = 414, n, = 414, two-sided
Mann—Whitney U test) and that the lick variability is consistently
higher on nonoscillation trials when holding the time waited
since nose poke entry constant (Fig. 3¢c). The same is true when
controlling for intertrial interval duration and trial number
within session (Fig. 3d,e, respectively), indicating that these vari-
ables do not account for differences in timed licking. Although
the distribution of oscillation strength scores from a given elec-
trode are best described by a bimodal fit, oscillation and nonos-
cillation classified trials do not form fully separable distributions
within a session. The distribution for oscillation strength scores
for nonoscillation and oscillation classified trials are given in Fig-
ure 3b, showing the degree of overlap when collapsing across all
recordings. Given this overlap, it is not surprising that the median
difference in lick variance between nonoscillation and oscillation
trials across sessions consistently increases as trials with more
extreme strength scores are selected (p = 0.0021, r = 0.9625).



10414 - ). Neurosci., October 25, 2017 - 37(43):10408 —10420

a

puy
N

N
o

Sorted Trial #

Lick Time (s)

OO

Oscillation Duration (s)

O

1o #ofSessions

w

0
Slope of regression

N Concentrated Energy

Levy et al. ® Timed Actions Track Oscillations in V1

Correlation in naive and trained animals

'| -
>t
21
)]
'c L
2t
&}
gt -
S| , —— naive
O ! .
i . — trained
- o 5
Slope of regression
e
60 1 o |
I . . . ©
o Distribution 21
5 | for shuffled =
V)
data 21
@}
3 <
0 .05
p Mean slopes of regression
3
c
9
D
5 -2f
g
bS]
8 ar
o
(V2]
0 50 100

% strongest oscillations
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of oscillation strength are included) to 100% (in which all trials are included).

Timed reward-seeking action tracks oscillation duration on a
per-trial basis

Given these differences in behavior with respect to the presence
and spatial extent of cue-evoked theta oscillations within V1, we
next assessed whether the duration of these oscillations is directly
related to the timing of the reward-seeking action (lick initia-
tion). Figure 4a shows the first lick time (wait time) per trial (pink
squares) plotted over the concentrated energy values for an ex-
ample session, sorted by oscillation duration. Lick initiation
tends to follow the edge of the oscillations’ termination (black
circles). By transforming these data into a scatter plot (Fig. 4b), it
appears that there is a positive relationship between wait time and
oscillation duration (slope = 0.236, p = 1.49¢-04, r = 0.240).
Indeed, across all sessions from this electrode, the distribution of
regression slopes is significantly right shifted (Fig. 4¢, histogram;
P = 3.29¢-05, Wgo = 1902, z = 4.15, two-tailed Wilcoxon signed-
rank test against median = 0), meaning that there tends to be a
positive linear relationship between wait time and oscillation du-

ration. This relationship holds across all sessions and channels
(Fig. 4d, blue line; p = 3.43e-25, W,,, = 65641,z = 10.28) and is
more pronounced in well trained compared with naive animals
(Fig. 4d, blue vs red line; p = 3.72e-10, U = 196120,z = 6.27,n, =
414, n, = 486; two-sided Mann—Whitney U test). The same is
also true when collapsing across channels per session (p =
0.0029, U = 5999, z = 2.98, n, = 69, n, = 81) and using a variety
of other metrics/filters (using unrewarded trials only: p = 6.61e-
08, U = 174568, z = 5.40, n; = 414, n, = 486) and using the
correlation coefficient instead (p = 5.65e-07, U = 191575, z =
5.00, n, = 414, n, = 486). Moreover, the mean slope across
sessions is significantly higher (p << 0.05) than the distribution
of mean slopes for shuffled wait time data (Fig. 4e; black dotted
line is actual mean slope). Finally, as described previously (Zold
and Hussain Shuler, 2015), the amplitude of the VEP (Fig. 5a),
the acute response to the visual stimulus, is also related to the
duration of the oscillation, but is a considerably worse predictor
of wait time than oscillation duration (Fig. 5b).
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with a stimulus) suggest that this neuron
primarily responds acutely to the visual
stimulus (presented at time 0). However,
separating each trial by whether an oscil-
lation was detected in the LFP (for a given
electrode within the same hemisphere) re-
veals that there are quite different re-
sponse patterns during oscillation and
nonoscillation trials (Fig. 6b,c). In partic-
ular, there is a long-duration oscillatory
firing pattern on the oscillation trials,

Cumulative Density &
(9

o
o

50

% of variance explained by
given variable relative to both

Figure 5.

Given these observations, we investigated whether the
strength of the oscillation influences the relationship between
wait time and oscillation duration. Because the oscillation would
likely exert less influence over behavior the weaker it is, we hy-
pothesized that the relationship between wait time and oscilla-
tion duration would degrade with oscillation strength (as appears
to be the case in Fig. 4a). Indeed, filtering by trials with the stron-
gest oscillations (i.e., taking the x percentage strongest oscilla-
tions, as defined by the mean concentrated energy in a 200—700
ms window poststimulus in a given session) yields the strongest
correlations (Fig. 4f). Note that, whereas the largest drop occurs
from the top 5% to the top 10% strongest oscillations (which may
be due to nonlinear control over behavior by these strongest
oscillations or to relatively low statistical power inherent in se-
lecting a small subgroup), there is a consistent downward trend.
Coupled with the observations above, this indicates that the du-
ration of cue-evoked oscillations relates to the timing of reward-
seeking actions.

Cue-evoked single unit oscillations are predictive of

timing performance

Having observed this timing-related activity at the level of the
LEP, we sought to investigate the response patterns of single neu-
rons recorded during this task. An example response is shown in
Figure 6a. The spike raster (Fig. 6, top) and peristimulus time
histogram (Fig. 6, bottom) across the whole session (i.e., all trials

o '~ Osc Duration
— ——— VEP Amplitude

Wait time correlates with oscillation duration across a wide range of metrics and parameters. a, LFP trace from a
single trial with a 250 ms gray bar overlaid to highlight the VEP. b, Percentage of variance explained by a regression of wait time
against oscillation duration (brown) or VEP amplitude (green) relative to a model containing both variables.

whereas there is predominantly an acute
stimulus response on nonoscillation tri-
als. Indeed, many neurons (~66%) show
a significant difference in their responses
on oscillation and nonoscillation trials
(Fig. 7a; see Materials and Methods). This
difference is quantified as the ADI (see
Materials and Methods; Fig. 7b), for
which positive scores indicate more oscil-
latory spiking activity on LFP-identified
oscillation trials. The ADI for this exam-
ple neuron is ~1.46 and the distribution
of ADT’s across all neurons is positively
shifted (Fig. 7¢, histogram; p = 5.27e-
34, Wy = 32152, z = 12.16, two-tailed
Wilcoxon signed-rank test against me-
dian = 0).

Given this rhythmic discharge pattern,
we characterized how oscillatory single-
unit activity was synchronized with the
LFP signal. To assess this, we converted
the LFP voltage into a phase angle at every
point in time and investigated how well
the spikes aligned to a particular phase of
the signal (see Materials and Methods).
For this example, the spikes (Fig. 7d, white
squares) appear to be concentrated before the peak of the oscil-
latory envelope (Fig. 7d,e, left; p = 1.50e-88, z = 182.33, Ray-
leigh’s test for nonuniformity). Indeed, the spikes from most
neurons across the population cluster around this phase (Fig. 7e,
right), indicating that these single units tend to be part of ensem-
bles of neurons that are locked with one another.

Given that the LFP oscillations are related to timing behavior
and that single-unit activity is related to the LFP signal, we next
assessed whether, and in what way, single-unit oscillatory activity
could be related to timing behavior. We addressed this issue by
restricting our analysis to the spiking activity for each recorded
neuron, setting the categorization of trials on the basis of the LFP
aside. For each neuron in a recording session, we categorized each
trial as oscillatory or nonoscillatory on the basis of its spike train
(see Materials and Methods) and then quantified the difference in
first lick variance between these categories. As with categorizing
trials on the basis of oscillations detected in the LFP, we found
that sessions tended to have higher lick variance on nonoscilla-
tory trials, which in this case corresponds to leftward-shifted
scores (Fig. 8a, blue line; p = 6.49¢-05, W,5, = 11812, z =
—3.99). Further, given that neurons tended to be phase-locked to
a particular phase of the LFP theta oscillation, we assessed
whether aggregating evidence from multiple spike trains re-
corded simultaneously might boost the signal, improve classifi-
cation, and consequently accentuate these behavioral differences.
Indeed, by categorizing a trial based on the activity of multiple

100
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Figure 6.  Neural oscillations occur during LFP oscillations. Spike rasters (top) for an example neuron on all trials (a), oscillation trials (b), and nonoscillation trials (c) of a session are shown. The
PSTH for each group is shown below.
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units, we found an even greater average difference in lick variance
on oscillation and nonoscillation trials (Fig. 8b, red line; p =
4.06e-05, W5 = 416,z = —4.05). In addition, the performance of
timed reward-seeking behavior on oscillating trials improves
with the size of the ensemble, as indexed by an increase in the
difference of lick variance between oscillation and nonoscillation
trials (Fig. 8b, sessions in gray, session averages in pink; p = 0.03,
slope = —276, r = 0.28).

Oscillation prevalence covaries with reward rate

Because timing is more precise and accurate during oscillatory
states in V1, we wondered what behavioral variable(s) might in-
fluence the likelihood of observing an oscillation on a given trial.
To assess this, we created a logistic regression model with several
candidate explanatory variables, in which the dependent variable
was the fraction of channels detecting an oscillation (out of six).
Of the variables tested, the intertrial interval (i.e., the time from
nose poke exit to subsequent trial initiation) was consistently the
most informative (i.e., the distribution of its t-statistic across
sessions was shifted farthest from zero; Fig. 9a). Because the re-
gression statistics can be influenced by extreme values, we probed
this relationship further by plotting the likelihood of oscillation
with respect to intertrial interval alone (Fig. 9b). It can be seen
from this plot that longer intertrial intervals decrease the proba-
bility of evoking an oscillation. Such a relationship may arise if
the cortical state was tracking some behavioral rate, such as the
trial rate, photic rate (i.e., the rate of visual stimulation), or re-
ward rate experienced by the animal. Therefore, we sought to
dissociate these possibilities. Specifically, we compared the ROC
values, a measure of the discriminability between two distribu-
tions (in this case the rates on oscillation versus nonoscillation
trials), across all sessions. For the filter parameter (which sets the
integration dynamics for calculating the behavioral rates) associ-
ated with the maximal mean ROC (see Materials and Methods),
all three variables are good predictors of oscillation likelihood,
but the experienced reward rate is the best predictor of the three
(Fig. 9¢). In fact, the reward rate was consistently the best predic-
tor over the full range of time windows analyzed (i.e., the win-
dows over which the rates were calculated; Fig. 9d). This suggests
that oscillations are most prevalent during periods of high expe-
rienced reward rate in this behavioral timing task.

Discussion

Appropriately timing actions in response to sensory stimuli is
necessary for survival. Here, we show that oscillatory states
evoked by reward-predicting cues in V1 may contribute to this
ability. Specifically, we show that there is an enhancement of
precision and accuracy of timed reward-seeking responses after a
visual cue when that cue evokes theta oscillations in V1. The more
widespread this theta oscillation across V1, the greater the im-
provement in timing performance. An appealing hypothesis to
explain the difference in timed lick behavior between oscillatory
and nonoscillatory states is that an ongoing oscillation in V1
exerts an influence on the animal’s decision to lick (perhaps via a
downstream motor region) by suppressing licking throughout its
duration. Under this hypothesis, we would expect the time of the
first lick to covary with the duration of the oscillation. Indeed,
this relationship was stronger for well trained compared with
naive animals, suggesting that the association between the oscil-
latory state and the timed behavior is learned. Furthermore, we
found evidence for this oscillatory state in the spiking data of
simultaneously recorded neurons. These oscillatory firing signals
are related to enhanced timing precision, apparently acting in
concert to boost the predictive signal. Together, these data sug-
gest that there is a distinct oscillatory state in V1 that is related to
the performance of visually timed actions.

An alternative to this interpretation is that lick initiation itself
shuts down ongoing oscillations. If this were the case, then non-
oscillation trials would appear to have earlier (and perhaps more
variable) wait times because a lick during the scoring window
would increase the likelihood of being categorized as a nonoscil-
lation trial. However, this explanation is not satisfactory for a
number of reasons. First, a prior study (Zold and Hussain Shuler,
2015) in which animals could lick freely poststimulus did not
detect a suppression in ongoing oscillatory power. Consistent
with this observation, we find that the first lick after a visual
stimulus does not acutely suppress an ongoing oscillation (p =
0.90, by random shuffling; see Materials and Methods). Second,
as shown previously (Zold and Hussain Shuler, 2015), we did not
find any phase relationship between licking and oscillations, sug-
gesting that the oscillation was not being driven by motor output
(p > 0.05, Rayleigh’s test for nonuniformity; see Materials and



10418 - J. Neurosci., October 25, 2017 - 37(43):10408 —10420

Levy et al. ® Timed Actions Track Oscillations in V1

a b
1r = 9r
B c [e
0
2 | &
a | S o %00 ¢ % o ]
g 5h S 6L (] ®® o 0 .
= g\ e oo® (X
5 | £ i *
> = e® o .
IS . 'r% i i ° 0' o & *
= | e POKeE tO stimulus time Ne) °
Y L e Xt tO pOke time o L S L4
a [ ]
lick time in previous trial B .
- = Water obtained in previous trial o °
0 L L L L J 3 L L L L L )
-8 -4 0 4 8 0 1 2 3
Regression t-statistic Exit to poke time (s)
c d
1 r | .6 r 'I‘ -I-
- | - T o ° o e reward
I | t o o e trial
¢ ° e photic
| gl t
L o) .
@) | &
[ L L ° e
25 | sl .
© | v |
S S
g | | reward | ®
= .
O | trial |
- photic 4
O _—""‘-u.-: | L 1 L L L ) ‘5 L 1 1 L 1 ]
4 5 .6 7 8 0 2 4 6 8 10 12
ROC (oscillation vs non-oscillation) log[mean of exponential distribution(s)]
Figure 9.  Oscillation prevalence is related to experienced reward rate. a, Distributions of t-statistics across sessions for several variables in a logistic regression model in which the dependent

variable is the fraction of electrodes displaying an oscillation on a given trial (of six). Of the variables considered here, the distribution of ¢-statistics for the intertrial interval (red line), the time
between exit on the previous trial to subsequent trial initiation, is the farthest shifted from zero. b, Relationship between the probability of oscillation and the intertrial interval (exit to poke time).
Probabilities are calculated by taking the number of oscillations divided by the total number of observations (i.e., all analyzed channels and trials) falling within a range of intertrial intervals 500 ms
wide, sweeping from 0.5 to 30s. ¢, Empirical cumulative distribution functions (CDFs) for the ROC values across sessions associated with the difference in various behavioral rates (reward, trial, and
photic between oscillation and nonoscillation trials). These CDFs correspond to the exponential filter (used to calculate the rates) yielding the maximal mean ROC (see Materials and Methods).
d, Mean ROC values for each rate variable across sessions for each exponential filter size tested. Daggers denote where the mean ROC value associated with reward rate is significantly different from

that associated with trial rate.

Methods). Third, we found that the distribution of oscillation
strengths is already much lower for nonoscillation than oscilla-
tion trials before a lick (Fig. 3b; p < 0.001, U = 2.89e09, z =
—261.86, 1, = 59466, n, = 143514, two-sided Mann—Whitney U
test; see Materials and Methods), indicating that these differences
exist before the action. In sum, these observations suggest that the
timing activity in V1 is not merely a consequence of the behav-
ioral action itself.

Another interpretation of these data is that the oscillatory state
is driven by some nonspecific variable such as arousal or motiva-
tion. Although this is plausible, it seems that the duration of the
oscillation is specifically related to the wait times in the task and
even when controlling for variables related to motivation, we still
observe wait time differences between oscillation and nonoscilla-
tion trials. Specifically, the wait time differences are maintained
when controlling for the time waited since nose poke entry, in-
tertrial interval duration, and trial number within the session

(Fig. 3d—f). Together, these results suggest that the theta oscilla-
tions in V1 carry timing information that is not explained by
broad changes in behavioral state. Still, it is possible that this
signal carries information about motivation or arousal (as ad-
dressed by the oscillation prevalence analysis and discussion
below).

Our findings thus further our understanding of V1 ’s involve-
ment during stimulus-driven behaviors. Traditionally, V1 was
thought to contribute only to the first stage of such behaviors:
sensation. Along these lines, V1 has been regarded as a feature
detector that relays faithful representations of the visual world to
downstream regions. This view has been challenged by recent
work suggesting that V1 can actively generate predictions about
visual input (Murray et al., 2002; Summerfield et al., 2008; den
Ouden et al., 2009; Alink et al., 2010; Kok et al., 2012) and can be
influenced by behavioral variables such as attentional states
(Ahissar and Hochstein, 1993; Roelfsema et al., 1998; Gandhi et
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al., 1999; Somers et al., 1999; Fahle, 2004) and reinforcement
(Serences, 2008; Seitz et al., 2009; Stanisor et al., 2013; e.g., water
reward). Whereas these findings pertain to influences on percep-
tion, our findings provide evidence that V1 relates to the timing
of behaviorally relevant actions. Specifically, we find that, after
the acute visual response, V1 exhibits long-lasting theta oscilla-
tions that subtend the interval between stimulus and action dur-
ing a timing task. Therefore, these oscillations in V1 may be a
signature of V1’s involvement beyond perception and into the
decision-making phase of a timed, stimulus-driven behavior.

Nevertheless, it is likely that V1 does not act in isolation. In-
deed, several studies have pointed to a top-down influence on
intrinsic dynamics and expectancy signals in visual cortex (Engel
etal., 2001). Given the breadth of evidence suggesting that timing
emerges from interaction across multiple brain regions, it is likely
that the contribution from V1 is part of a broader cortico-
thalamic-basal ganglia (CTBG) loop (Merchant et al., 2013). In
this view, the core CTBG-timing circuit, which is engaged across
a broad range of behavioral contexts, interacts with a distributed
network of local timing circuits that are involved in timing in a
task- and modality-dependent manner. One influential model of
timing in this vein, the striatal beat frequency model, posits that
the striatum recognizes an interval of time by detecting that pat-
tern of activation from a bank of cortical oscillators (Matell and
Meck, 2004). In addition to top-down influence, V1 may also
receive bottom-up expectation signals. Nonprimary thalamic
neurons have been implicated in reward expectation in a
modality-specific manner (Komura et al., 2001). In the future, it
would be informative to make specific manipulations of the os-
cillatory activity in V1 and other regions implicated in timing to
observe their influence on each other and their effect on timing
behavior.

These observations also extend our knowledge about the role
and behavioral significance of theta oscillations. In the hip-
pocampus, theta oscillations have been implicated in several cog-
nitive functions, including voluntary movement, learning, and
memory processes (Hasselmo, 2005). This rhythm is believed to
contribute to these processes partly through facilitation of infor-
mation transfer with prefrontal cortex (Hyman et al., 2005;
Siapas et al., 2005). Indeed, oscillatory synchrony is a common
mechanism for interregional communication that has been
shown in a number of circuits (Fries, 2005), including those in-
volving visual cortex (Roelfsema et al., 1997; Bernasconi et al.,
2000; von Stein et al., 2000; Siebenhuhner et al., 2016). In our
visuomotor task, this mechanism may allow the output from V1
to be more effectively read out by a motor region that ultimately
initiates the action. Within visual cortex itself, oscillations are
often studied from a perceptual perspective and have been found
to enhance responding to particular stimuli (Fries et al., 2001,
2002; Schroeder and Lakatos, 2009) and enable feature binding
(Eckhorn et al., 1988, 1990). However, recent work has found
that theta oscillations in V4 cortex may be important for the
maintenance of information during the delay period of a working
memory task (Lee et al., 2005) and that, in V1, LFP oscillations
may be related to expectancy of future outcomes (Lima et al.,
2011; Zold and Hussain Shuler, 2015). We extend these findings
by showing that theta oscillations in V1 are related to the precise
timing of visually cued behaviors. Although theoretical accounts
of timing often implicate oscillatory processes in such timed be-
haviors (Buhusi and Meck, 2005), evidence supporting these the-
ories has been lacking (Kononowicz and Wassenhove, 2016).
Finding this kind of signal at as the earliest stage of cortical visual
processing is particularly surprising and may suggest that such a
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mechanism is a common feature of local circuits. This view is
supported by evidence that disruption of MT/V5 selectively im-
pairs visual, but not auditory, timing (Bueti et al., 2008).

These findings also raise the question of why there are oscilla-
tory and nonoscillatory states in V1 given that one appears to be
behaviorally superior to the other. One straightforward possi-
bility is that maintenance of an oscillatory response pattern is
energetically taxing and therefore must be limited. Another,
compatible possibility given the relationship between reward rate
and oscillation prevalence (Fig. 9) is that animals performing the
timing task are seeking to balance knowledge accumulation with
reward accumulation (i.e., the exploration vs exploitation trade-
off; Cohen et al., 2007). Under this construction, it may be
advantageous for an agent to exploit its knowledge of the envi-
ronment by tracking a theta oscillation and waiting a precise
amount of time when the reward rate is high, but explore the
environment otherwise. In support of this hypothesis, a prior
study found that increasing the reward rate experimentally in-
creased the likelihood of evoking an oscillation (Zold and Hus-
sain Shuler, 2015). Future studies that manipulate reward rate
precisely during a behavioral timing task will help to elucidate the
role that this factor plays in governing cortical state and temporal
decision making.
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