Skip to main content
. 2017 Oct 16;18(Suppl 7):756. doi: 10.1186/s12864-017-4130-7

Fig. 1.

Fig. 1

An overview of the EBEN algorithm. 1) Initialize model parameters and the statistical model. The unknown parameters μ denotes the mean of phenotype, y~ denotes the initial dependent variable and σ02 denotes the variance of the model, obtain the initial features satisfying k=argixiTy~i. Here, k denotes the subscripts of features, x i denotes the vector of feature i, y~ denotes the dependent variable in the statistical model, and α k is a variable calculated from σk2, 2) Update the parameters in the model during iterations, 3) Use t-test to perform hypothesis test on the estimated value, and 4) Output β that denotes the significant results and the covariance matrix