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Abstract

Both radio-frequency (rf) and envelope-detected signal analyses have lead to successful tissue 

discrimination in medical ultrasound. The extrapolation from tissue discrimination to a description 

of the tissue structure requires an analysis of the statistics of complex signals. To that end, first- 

and second-order statistics of complex random signals are reviewed, and an example is taken from 

rf signal analysis of the backscattered echoes from diffuse scatterers. In this case the scattering 

form factor of small scatterers can be easily separated from long-range structure and corrected for 

the transducer characteristics, thereby yielding an instrument-independent tissue signature. The 

statistics of the more economical envelope- and square-law-detected signals are derived next and 

found to be almost identical when normalized autocorrelation functions are used. Of the two 

nonlinear methods of detection, the square-law or intensity scheme gives rise to statistics that are 

more transparent to physical insight. Moreover, an analysis of the intensity-correlation structure 

indicates that the contributions to the total echo signal from the diffuse scatter and from the steady 

and variable components of coherent scatter can still be separated and used for tissue 

characterization. However, this analysis is not system independent. Finally, the statistical methods 

of this paper may be applied directly to envelope signals in nuclear-magnetic-resonance imaging 

because of the approximate equivalence of second-order statistics for magnitude and intensity.

Introduction

Radio-frequency (rf) signals are the source of information in two major medical imaging 

modalities today, namely, ultrasonic imaging and magnetic resonance imaging (MRI). These 

signals have a random character that is due, in the first case, to the coherent interference at 

the detector of the backscattered signals from a diffuse collection of scatterers and, in the 

second case, to thermal currents in the body and the detection system. The details of the 

random character depend on whether one uses the complex rf signal, referred to here as the 

complex amplitude, or the envelope of this signal, referred to here as the magnitude signal. 

In the latter case one might alternatively use the square of the magnitude signal, referred to 

as the intensity signal.

The random signals may include a component with some long-range organization or order. 

In MRI this might be the presence of either a steady or an amplitude-modulated signal, and 

in ultrasound the presence of a regular scattering structure. Separation of the ordered from 

the random components is desirable in MRI to improve signal detectablity, and in ultrasound 
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to distinguish features of the scattering for the purpose of tissue characterization or 

discrimination.

In principle, this separation task is more straightforward when the rf signal is analyzed 

directly, and, in fact, tissue discrimination using this approach has been quite successful in 

the eye and in the liver.1–7 However, it is often more convenient or economical to work with 

the envelope-detected signal that may be obtained and stored with less sampling and 

memory. Also, it is the envelope-detected signal that is displayed in the conventional 

ultrasound B-scan image. Tissue discrimination using only envelope signals has also been 

successful in the liver.8-10 The purpose of the present paper is to examine the connection 

between the rf and envelope signals and the underlying tissue structure. In the course of this 

examination we shall uncover the stronger points of each approach.

The probability-density functions (pdf's) required to characterize the first-order properties of 

these random phenomena include the circular complex Gaussian pdf, the Ray-leigh and 

Rician pdf's, and their generalizations to the case of organized structure. There is already a 

wealth of literature on these first-order properties, but the material available on second-order 

properties is sparse, and the mathematics is generally not transparent to physical insight; 

also, in one important case reviewed in Appendix A, the previously published mathematics 

is typographically inaccurate. In this paper we concentrate on these second-order properties, 

beginning with the rf analysis and ending with the intensity analysis. Although our examples 

will be drawn entirely from ultrasonic imaging, the formalism contained here is immediately 

applicable to MRI.

Complex Gaussian Statistics

The random character of ultrasonic images of human tissue results from the phase-sensitive 

detection of the scatter from many sites randomly distributed in the resolution cell of the 

transducer, together with the scanning of this cell through the tissue. The process of 

interference can be described geometrically as a random walk of component phasors. When 

the number of scatterers within one resolution cell is large, and the phases of the scattered 

waves are independent and distributed uniformly betwen 0 and 2π, the phasor or complex 

field amplitude a, which is the result of the random walk, has real and imaginary 

components ar and ai whose joint pdf in the narrow-band approximation is11

(1)

This is simply the product of two independent Gaussian density functions with zero mean 

and variance σ2 and is referred to as a circular Gaussian pdf. Figure 1 gives a schematic 

representation of this pdf as a noise cloud,12 centered on the origin of the complex 

coordinates. The variance σ2 depends on the mean-square scattering amplitude of the 

particles in the scattering medium.11 The resultant mean (absolute) square of the complex 

amplitude of Eq. (1) is easily seen to be
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(2)

and will be referred to as the mean diffuse intensity Id. We shall consider this parameter to 

be the average value over the bandwidth and to be constant with position.

If we add a constant amplitude signal to this random accumulation, designated by a constant 

phasor of magnitude  and fixed phase (which can be taken to be 0 deg without loss of 

generality), this simply changes the mean value of the real part of the circular Gaussian 

statistics. This could represent a coherent signal in MRI or coherent scattering in ultrasound. 

The noise cloud of Fig. 1 is then just shifted along the real axis, as shown in Fig. 2. The joint 

pdf then becomes

(3)

The squared magnitude of the constant phasor of Eq. (3), Is, is referred to as the specular 

intensity and will be allowed to vary with position in our examples below. Since this 

specular contribution is distributed over a region of the tissue or source of scattering, that is, 

it is not localized (as, e.g., at the surface of a mirror), we refer to it as “distributed 

specularity.” Examples will be given presently. A fundamental parameter in our analysis will 

be the ratio of the average specular intensity Īs to the diffuse intensity Id, i.e., r = Īs/Id. Other 

authors13 have used the parameter  for the analysis of envelope or magnitude 

signals. The relationship between r and k is then r = k2/2.

Second-Order Statistics for Complex Amplitude

We consider first a complex random process, e.g., a rf wave or a scattered pressure field. We 

are interested in the correlation between its values at two positions in the field, x1 and x2. At 

position x1, we write

(4)

The random process is taken to have zero mean and to have the variance of the real part 

equal to that of the imaginary part, σ2, as in the complex Gaussian case introduced above. 

The statistical character at position x2 is the same but may be correlated with that at position 

x1. At x2 we write

(5)

The autocorrelation of this process, e.g., the wave or field values, is given by
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(6)

If this field is simply read out or scanned by an imaging process with a point-spread function 

(psf) h(x), the resulting complex signal  is related to the original field a by14,15

(7)

where * is the convolution operator (see, e.g., Refs. 14 and 15). The autocorrelation of the 

resulting process  is then given directly by

(8)

where Δx = x2 − x1.

A commonly realized example is the acoustic scattering from a random collection of N point 

targets in a resolution cell or volume. Then

and

(9)

where |ai| is the magnitude of the scattering amplitude of the ith target and there is 

correlation neither among the target phases ϕi, in the first scattering volume nor among those 

in the second scattering volume ϕj nor between the scattering volumes. Then the 

autocorrelation of a is

(10)

since all phases average out unless they match up identically. Here δ(Δx) is the Dirac delta 

function.14 This condition is referred to as diffuse scattering, and the total diffuse intensity is 

N times as great as the average scattering intensity per particle. We shall consider these 
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average properties to be independent of position. The autocorrelation of the readout or 

scanned process is then simply

(11)

In practice, there is always a finite readout, as in this equation, and the infinite variance 

implied by Eq. (10) is not encountered.

In the frequency domain conjugate to x—in the conjugate coordinate k—Eq. (8) becomes

(12)

W  and Wa are the power spectra for the respective processes, and

(13)

are a Fourier-transform (FT) pair. For the uncorrelated limit,

(14)

The power spectral relationships are the well-known frequency-domain representations of 

the autocorrelation function relationships14,15 involving the transforms

(15)

They indicate that the power spectrum of the rf signal is given by the squared modulus of the 

system frequency response weighted by a factor proportional to the incoherent backscattered 

intensity Id in that channel. The latter, in turn, is given by the product of the number of 

scatterers and the average scattering intensity per particle [Eq. (10)].

We now consider a physical realization of ultrasound pulse echo or backscatter imaging, 

where the process a is a more general scattering mechanism to be characterized below and 

the psf is due to the readout mechanisms of the pulse used to probe the scatterers and the 

diffraction pattern of the beam. In the far field, to a good approximation, the psf can be 
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separated into the transverse component ht due to diffraction and the range component hr 

due to the pulse:

(16)

All psf's are functions of temporal frequency through the wave number k0 = 2π/λ0 = ω0/c, 

where λ0 is the corresponding wavelength, ω0 is the corresponding angular frequency, and c 
is the velocity of sound in the medium. Since ultrasonic images are generally scans in the x–

z plane, the diffraction pattern may be considered to be effectively one dimensional15:

In the range direction the psf is the pulse given by

(17)

that is, a carrier at a frequency corresponding to k0 and an overall Gaussian envelope 

characterized by rms radius σ0. In the frequency domain

(18)

The process a is described by the coupling of an incoming wave and a source of acoustic 

scattering, the coupling being governed by the acoustic wave equation for inhomogeneous 

media.5,6,16 We assume that we have a continuous medium or matrix with embedded 

discrete scatterers, i.e., changes in acoustic impedance (ρc) or compressibility κ. Since the 

contribution of changes in density ρ to the scattering is small,17 we have the following 

relations between the descriptors of the scattering16;

(19)

The fractional change in compressibility is referred to as γκ. The description of the coupling 

of the incident wave and the scattering targets depends on which of the following three 

conditions prevails:
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(1) Independent Scatterers Whose Structure Is on a Scale Smaller Than a Wavelength. At the 

focal plane of the source, an incident wave directed along the z direction— effectively a 

plane wave in the commonly encountered weak-focusing geometry—senses the change in 

compressibility κ or impedance ρc at the scattering site. The scattering site removes energy 

from the plane wave and reradiates spherical waves whose amplitude is a function of 

frequency and the size of the scatterer. For the weak-scattering condition13 the Born 

approximation is valid,16 and the amplitude Φb(2k) for scattering waves of wave number k 
in the backward direction is

(20)

where Γκ(2k) is the FT in the variable 2k of the distribution of fluctuation in compressibility 

γκ. The variable 2k is the difference in wave vector between incoming and backscattered 

waves. Assuming spherical symmetry,16

(21)

In the small-scatterer or long-wavelength limit this becomes

(22)

where a0 is the radius of the scatterer and γ̄κ is the average value of γκ over the scatterer. 

The differential scattering cross section in the backward direction is just

(23)

and this limit is referred to as Rayleigh scattering.

The function Γ is often referred to as the form factor in studies of scattering phenomena.18 

The negative of the second derivative of the form factor at the origin (the inverse of the 

radius of curvature) is equal to the rms radius of the scattering distribution γκ, That is,

(24)
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Therefore, if only the effect of size or scale—as opposed to structure—is important, then it 

is reasonable to model Γκ as any originally zero-slope function with the correct curvature 

corresponding to the characteristic or rms radius. That is, any simple low-pass filter function 

will be adequate. Gaussian and other elementary functions have been used,1–7 and the details 

are unimportant until 2ka0 ∼ 1, where a more elaborate understanding and description are 

required. More on this presently.

The autocorrelation of the scattering process is

(25)

By Eq. (8), then, the autocorrelation of the scanned pulse-echo process becomes

(26)

The transverse or diffraction-pattern psf may be absorbed into the normalization A in this 

small-scatterer regime and be calibrated out by measurement of a signal scattered from a 

perfectly reflecting surface5,6,19 or a strong point reflector. In these applications there is no 

scanning in the transverse or diffraction direction. For imaging applications in which 

transverse scanning is used, or for the large-scatterer case, the diffraction psf must be 

included.

The expected measured power spectrum corresponding to Eq. (26) is

(27)

and is proportional to the product of k4a0
6, the system response |Hr(k)|2, and a normalized 

form factor

(28)

again in the variable 2k corresponding to the forward-and-back trip of the probing waves in 

backscatter measurements.

In practice, this expression [Eq. (27)] is further simplified by measuring |Hr(k)|2, here 

modeled or approximated by expressions (18) and dividing it out from the measured 

spectrum, thus leaving the simple expression dσ0Γ0
2. This means that the form factor for 
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scatterers with small-scale structure can be deduced by dividing out k4 from the normalized 

rf power spectra. When there is acoustic attenuation, an additional factor must be 

considered. This will be included in the examples to be given presently.

(2) Structure on a Scale Larger Than a Wavelength. A realization of this is a collection of 

small targets that are organized into a quasi-periodic structure on a scale greater than the 

wavelength, i.e., about one millimeter or greater. A number of investigators have reported 

observing such structure in abdominal organ tissue.20–23 The pulse in diagnostic ultrasound 

is usually about three wavelengths long—about 1–2 mm. This means that these regular 

structures are partially resolved and therefore produce a line spectrum corresponding to this 

spacing (scaled by c/2) that will be directly superimposed upon the measured diffuse-

scatterer rf power spectrum. It may be difficult to detect in the low-frequency region (just 

below 1 MHz in the case of several abdominal organs) but can stand out after some signal 

processing, as we indicate later. A near-zero-frequency component is also possible since the 

pulse can embrace several scatterers and return a coherent or distributed specular scatter. We 

refer to this as the unresolvable component, which—being a specular scatter—will vary 

more slowly with frequency and have significant power only at low frequencies.5

If the structure is due to large-scale scattering targets, the resolvable component is a more 

complex function of k. For ka ≫ 1, the scattered intensity is mirrorlike or specular and 

approximately independent of k. Examples of large scattering targets in ultrasound imaging 

are major blood vessels and organ surfaces. In our analysis such structures are eliminated by 

preprocessing the data.23

(3) Structure on a Scale Comparable with a Wavelength. In this regime there are just a few 

scatterers per resolution cell, and both the physics and the statistics are much less transparent 

to a straightforward analysis. Since there are many common examples of structure from 

categories (1) and (2) in the body, most work has concentrated on these regimes, and 

category (3) has been neglected. Also, for most applications in this category the statistics are 

non-Gaussian (the few-scatterer case). While we have been developing the formalism for 

this case, we have attempted to screen out this category in the second-order statistics of 

intensity, as mentioned below. Again, for the case of isolated blood vessels and other 

specular scatterers, we have used a straightforward cross-correlation or matched-filter 

technique to identify such structures and eliminate them from the data before further 

analysis.23

Examples of Radio-Frequency Spectra

In Fig. 3 we include a set of examples of expected power spectra for category (1) and 

category (2) scales of structure in the ultrasound rf case. In Fig. 3(a) we show typical 

Gaussian form factors for particle diameters 20–500 μm (4 standard deviations), the k4 

weighting factor, and a Gaussian probing pulse with a 3-MHz center frequency. In Fig. 3(b) 

the squared normalized form factor Γ0
2 (2k) has been multiplied by the k4a0

6 weighting to 

give theoretical rf power spectra from such fuzzy spherical scatterers. Figure 3(c) is a 

modification of the spectra in Fig. 3(b) to include attenuation. Typical values for liver tissue 

have been used: α0 = 0.5 dB/cm MHz and a depth z = 8 cm. Finally, Fig. 3(d) shows the 
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expected measured rf power spectra in this model using a 3-MHz Gaussian pulse with a 2-

MHz FWHM bandwidth. Resolvable semiperiodic structure of dimension 1.15 mm, such as 

that found for normal liver,20,21,23 will be seen as superimposed narrow-band spectra. The 

resolvable and nonresolvable components are indicated by arrows in Figs. 3(b)–3(d).

This model, in which scattering is described as the product of dσ0 and the square of a simple 

form factor, has been formulated for small ka0. In Figs. 4(a) and 4(b) we compare this 

simple treatment with an exact scattering theory from Faran24 to see when the 

approximation breaks down. The solid curve is the simple Gaussian model, the dotted line is 

the simple hard-sphere model, and the dashed line is the theory of Faran. The last-named 

model was calculated for a scattering phantom composed of spherical glass targets 

embedded in gelatin. Relevant physical properties of the scatterers and the surrounding 

gelatin are, respectively, longitudinal speed of sound, 5571.9 and 1540.0 m/sec; densities, 

2.38 and 1.00 g/cm3; and Poisson's ratio, 0.21.25 This example clearly pushes the limits of 

the simple model because of the density difference.

Figure 4(a) shows that the Gaussian and spherical models are good approximations to the 

exact calculation for values of ka0 < 1. Figure 4(b) illustrates the same point for the 

Gaussian model and target sizes of interest in the diagnostic ultrasound frequency range. For 

100-μm particles the model works well up to 6 MHz, where the disagreement with the exact 

calculation is 2 dB. The agreement is quite good, even though γκ and γρ are relatively large: 

γκ = 0.97 and γρ = 0.68. The resonances in the calculated curve will not be present in soft-

tissue scattering.26

This has been a summary outline of the simple model that has been evolving for ultrasound 

rf analysis over the past 5–10 years. Evidence for the applicability of the model has been 

offerred by Lizzi et al.,5 Feleppa et al.,7 Sommer et al.,20 Fellingham and Sommer,21 and 

Waag,6 among others. It has been speculated that difficulties in applying the model are due 

to isolated large scatterers with the structure discussed in class (3) above, namely, the 

intermediate-size domain in the order of a few wavelengths.2,27 However, this is just the 

kind of structure that can be detected and deleted from the signal by matched filtering,23 

leaving the possibility that class (1) (diffuse scatterers) and class (2) (resolvable and 

nonresolvable distributed specular scattering) may lead to unambiguous tissue signatures. 

This does not rule out the possibility that class (3) scatterers may also be calibrated and used 

as a tissue signature. In fact, we shall see in the next section that the presence of just a few 

scatterers per resolution cell—the class (3) regime—manifests itself through non-Gaussian 

intensity statistics. The latter raises a flag that may itself be used as a tissue signature.

In the second half of this paper, then, we show how the rf signals that we have been 

discussing get mixed together when the envelope or intensity signal is used and to what 

extent the mixing may be undone.

Second-Order Statistics of Intensity

The autocovariance of a process a is defined by analogy with the variance as

Wagner et al. Page 10

J Opt Soc Am A. Author manuscript; available in PMC 2017 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(29)

where 〈a〉2 is the square of the mean of the process. The normalized autocovariance of a 

complex field is referred to as the complex coherence factor ρ(Δx)11,12:

(30)

The autocorrelation of detected signal intensities or their magnitudes can be expressed in 

terms of ρ. In the magnitude case the results are found as generalized hypergeometric 

functions in ρ. This treatment is relegated to Appendix A since it is not so transparent to 

intuition as is the intensity case and is not so directly useful. In the intensity case the results 

are found to be simple algebraic expressions in ρ, which—when reduced to autocovariance 

functions and normalized to their value at the origin—are good approximations to the results 

for magnitude. We shall comment further on this point after deriving the autocorrelation 

function for intensities.

The autocorrelation of intensities for the purely random case—e.g., the diffusely scattering 

case—can be derived from the autocorrelation of the rf signals by using straightforward 

algebra and a well-known theorem for higher-order statistics of Gaussian signals. We shall 

first derive the well-known result for the diffuse case and expand the treatment to include 

specular scatter or long-range order. We seek the autocorrelation 〈I1I2〉, where

(31)

So

(32)

This can be simplified by using the moment theorem for jointly normal, zero-mean, 

Gaussian random variables X1,X2,X3,X4 (Ref. 28)

(33)

since the real and imaginary parts of a are zero-mean Gaussian random variables. The 

variances of a1r and a1i were given above as 〈a1r
2〉 = σ2 and 〈a1i

2〉 = σ2. Assuming that the 

real and imaginary parts of a are uncorrelated,

Wagner et al. Page 11

J Opt Soc Am A. Author manuscript; available in PMC 2017 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



we may write

(34)

and use the symmetry of ρ,

(35)

to obtain simply

(36)

(When there are phase errors it cannot be assumed that ρ is real as we have done here. In that 

case the result is given in terms of the squared magnitude of ρ. cf. also Appendix A.)

We proceed next to the case of diffuse scattering with intensity Id, in the presence of a 

constant level of distributed specular scattering Īs, which is analogous to a carrier with 

additive thermal noise in the rf case. This may also be the steady, dc, or unresolved average 

component of the more general case to be considered presently. Then, as above,

(37)

where ℛ = (Īs)1/2. We then have for the autocorrelation function

(38)

where

(39)
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The first terms in each set of parentheses generate the Rayleigh- or diffuse-scattering 

autocorrelation function as just given in Eq. (36). The remaining terms are simple to average 

since ℛ is constant. We get the final result by using the properties of the a's that are 

distributed according to the complex Gaussian pdf given above together with

(40)

which follows from the random phase of the a's, obtaining

(41)

We shall use I′d to refer to the measured value of the diffusely scattered intensity. It is the 

area under the power spectrum, considered as the average value over the band, Id, weighted 

and summed over the pulse response [Eqs. (14)]:

(42)

We show examples of the autocorrelation function of Eq. (41) in Fig. 5 for various values of 

the ratio r = Īs/I′d, on an absolute scale, and in Fig. 6 on a scale normalized to unity after 

removing the squared mean, i.e., the conventional correlation function. We have taken ρ to 

be the coherence factor corresponding to a Gaussian psf, as in Eq. (17) above (envelope 

only),

(43)

The squared mean-intensity level is the value of this function [Eq. (41)] at infinity, where ρ 
= 0, and the mean-square level is the value at the origin, where ρ = 1,

(44)

from which the variance is seen to be

(45)
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in agreement with Middleton.29 We refer to this as the Rician variance, σR
2, after Rice,30 

who was one of the first to study this problem (as was North31). When Īs ⇒ 0, we recover 

the result for Rayleigh scattering given above. The Rician variance therefore contains the 

Rayleigh variance plus an interaction term that couples the diffuse and specular scattering. 

Notice that the total scattered intensity is the sum of the average diffuse-scattering intensity 

and the average specular-scattering intensity. As the ratio r increases, the average total 

intensity increases faster than its standard deviation, with the result that the point signal-to-

noise ratio SNR0 = 〈I〉/σI > 1, increasing monotonically with r.

In Appendix A we derive the autocorrelation functions for the envelope-detected or 

magnitude signal. The results are sums of hypergeometric functions and, in general, are not 

transparent to intuition. However, when these functions have their squared mean values 

subtracted off and the reamining autocovariance portion is normalized to unity at the origin, 

the results as a function of r are almost identical to the results for the intensity signal given 

in Fig. 6. For r = 0 the greatest difference between the normalized magnitude and 

normalized intensity functions is about 0.03–0.04. As r increases, this difference decreases. 

This means that if one keeps track of the overall normalization, the intensity and the 

magnitude autocovariance functions may be used interchangeably for most practical 

purposes.

Finally, if the distributed specular scattering is a function of position, we may obtain the 

general case by letting

(46)

where (a1r, a1i) represents the diffuse scattering, constant with position, and (ℛ1, ℐ1) the 

specular scattering, a function of position. Again, as above, we obtain

(47)

If we now set position x2 = x1 + Δx and average the result for a fixed Δx over position x1, we 

obtain

(48)

Here we use the symbol ⊗ for the conventional correlation operation, and we now adopt the 

symbol ⊗′ to mean that this operation is averaged over the record length X of the position 

of the x1 variable:
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(49)

It is the average autocorrelation function that is measured in practice, and some of its 

properties are discussed in Ref. 32.

It is straightforward to write Eq. (48) in the frequency domain. We first separate out the 

steady or dc contributions by writing

(50)

Then we have

(51)

If we write

(52)

where f′ means all f ≠ 0, we obtain for the Fourier-domain equivalent of Eq. (48)

(53)

We note that the actual level of the power spectrum of a sinusoidal component with a fixed 

reference phase increases with the record length studied,33 whereas the power spectrum of a 

random phase process is independent of record length. This ambiguity is removed, however, 

if the area under the power spectrum or variance is measured; as the height of the 

corresponding line spectrum increases, its width decreases. We shall see this effect below. 

These expressions suggest, then, a method for obtaining a tissue scattering signature that we 

present in the next section.
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Analysis of the Intensity Variance

If one were to work only with the first-order statistics of the intensity signal to estimate the 

value of r = Īs/I′d, without accounting for the variable part of the ordered or coherent 

component, the result would suggest non-Gaussian statistics. This can be seen from the 

following considerations. In the non-Gaussian case there are few diffuse scatterers per 

resolution cell. When this number is a random variable, one finds that the variance is greater 

than the squared mean34

(54)

often, referred to as enhanced fluctuations. This condition can be taken as a cue that 

scattering structure (3) listed above is present and may serve as a tissue signature. In the 

Gaussian case—many scatterers per resolution cell—when there is no variable component, 

the inequality is always

(55)

as indicated above in Eqs. (44) and (45). This may be seen graphically in Fig. 5. The 

presence of a variable component will inflate the variance, driving it in the direction of the 

inequality described in Eq. (54). If one then attempts to solve Eqs. (44) for Īs and I′d or, in 

effect, r, the result will be imaginary solutions. This might be interpreted as the few-scatterer 

or non-Gaussian case if the variable component is ignored—as might happen if only first-

order statistics are considered. We next indicate a simple procedure for avoiding this 

ambiguity through the use of the second-order expressions given above.

We consider the autocorrelation function and power spectrum from a region of tissue with 

diffuse-scattering intensity I′d, mean specular intensity Īs, and a sinusoidally varying 

component of specular intensity to be characterized by its total contribution to the variance 

of Is. We label this last contribution Σs
2. The effect on the noise cloud is shown in Fig. 7. We 

may deduce the form of the autocorrelation function from Eq. (48), and this is shown 

schematically in the top panel of Fig. 8; the corresponding theoretical power spectrum is 

shown in the middle panel of Fig. 8; a sample of a measured intensity power spectrum from 

a normal liver is shown in the bottom panel. From three values labeled t, b, and p that can be 

read from the autocorrelation function, we are able to calculate the values of I′d, Īs, and Σs. 

This requires calculating the autocorrelation function at Δx = 0, where ρ = 1 (i.e., the mean 

square); at Δx = ∞, where ρ = 0 (i.e., the squared mean); and at Δx, where the sinusoidal 

structure has been shifted one cycle. In practice, the square of the measured mean intensity 

is used rather than a value of b read from the autocorrelation function. From Eq. (48) we 

have, for a sufficiently low-frequency sinusoid with wavelength greater than the range of ρ,
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(56)

which combine to yield

(57)

The first and third of these relations combine to give a simple quadratic for Īs (or I′d) and a 

trivial expression for I′d (or Īs). This procedure may also be illustrated in the frequency 

domain by using the middle panel of Fig. 8, and we have found this to be more robust in 

practice.23 In this case the lengths along the autocorrelation ordinate become areas under 

portions of the power spectrum. The variance due to the structure is stripped from the Rician 

noise cloud by fitting the latter with a Gaussian function.23 A typical example of the 

application of this algorithm to measurements on normal human liver is given in the bottom 

panel of Fig. 8.

If the structure is not exactly periodic, i.e., if it is irregular, the above procedure will still 

properly yield the variance of this structure. The success of this procedure may, however, be 

extremely sensitive to the curve fitting that is used to strip out the Rician variance from the 

structured variance. In practice, it has been found to be essential to preprocess the intensity 

image: (1) to remove the low-frequency trends from the image and (2) to remove large 

isolated specular scatterers such as blood vessels by matched filtering.23 Otherwise the 

sample heterogeneity leads to an ambiguous interpretation.

As an example of the working of Eq. (53), we consider the case in which the specular 

scattering has a steady or dc component and a single sinusoidal component at frequency f0. 

That is, we take ℐ(f) = 0 and

(58)

where δ(f) is the Dirac delta function. Now, since Is = ℛ2, we shall require Ĩs(f) = ℛ̃ * ℛ̃, |
Ĩs(f)|2 = |ℛ̃ * ℛ̃|2, and, for the decomposition of variance, their integrals over frequency.

First,
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(59)

and so the first required integral over frequency is

(60)

where the first three terms are the contribution from f = 0, the fourth from f = ±f0, and the 

fifth from f = ±2f, and we have used the identity under integration, δ2(f) = Xδ(f).35

Note that since

(61)

and

(62)

we have

(63)

or

(64)

This can be identified with p – b in Eqs. (57) above, i.e., the variance in the structure or the 

area under the line portions of the power spectrum.

For the final step we also require |ℛ̃(f)|2 and its integral over frequency. Using the 

expression from Eq. (58), we find immediately, as above, that
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(65)

Now, since the integral of a convolution is the product of the individual integrals

(66)

we obtain for the cross term

(67)

since the integral under P is the value of ρ at the origin, unity.

We see from the last two results that, if one takes the intensity signal to be a tissue signature, 

with features I′d, Īs, and Σs, these features can be determined according to the paradigm just 

presented and perhaps with less ambiguity than available in the pure rf signal. However, if 

one thinks of the rf signal as the fundamental tissue signature, with features A0, A1, and I′d, 

where I′d is approximately the average diffuse power in the backscattered rf sampled by the 

pulse [see Fig. 3 and Eq. (42)], the intensity signal mixes together the A0 and the A1 

contributions to this signature. Furthermore, the quantities ℛ, ℐ, A0, A1 here refer to signals 

after the detection stage, i.e., after degradation by the system psf or transfer function. A0 and 

A1 are degraded differently by this function, and, since the analysis does not yield them 

separately, corrections for the system cannot be applied unambiguously. The problem is even 

more difficult in practice since there may be components present at other frequencies. 

Moreover, recalling that [Eqs. (11) and (30)]

(68)

for the diffuse-scattering case, for example, one sees that the correction for the system 

transfer function |H(f)|2 is different for each term of Eq. (53). One needs to have solved the 

decomposition of the variance, as indicated above—but free of system effects—in order to 

correct for the system effects: so the best that can be hoped for is an iterative solution to 

obtain results that are independent of the system. Finally, it would be possible to invert Eqs 

(61) to obtain A0 and A1 if one had a calibration or a priori information on the correct 

branch of the solution to choose.

The diffuse contribution is separated from the specular contribution unambiguously in this 

scheme if the diffuse scatterers are point scatterers. If they have a nontrivial form factor, this 

will narrow the shaded region of Fig. 8 [see expressions (27) and (68)]. In principle, this 
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bandwidth can be compared with the bandwidth expected from the calculated value of r = 

Īs/I′d and the curves of Fig. 6. The difference can then be ascribed to the nontrivial form 

factor. In general, however, this will be a small effect that, in practice, will be harder to see 

in the intensity power spectrum than in the rf analysis since the system transfer function 

enters to four powers in the former and only to two in the latter [formulas (27), (53), and 

(68)].

In spite of the limitations to the approach of analyzing the intensity correlations instead of 

the rf correlations or power spectra, the intensity analysis has been shown to yield excellent 

tissue discrimination in liver scans. It allows for the separation of the diffuse- from the 

specular-scattering contributions and yields the period of the regular specular structure. It 

might also be calibrated to give a measure of the diffuse-scatterer form factor, but this 

remains to be seen. Since this analysis can be achieved with less sampling and data storage, 

it remains an attractive approach.

Finally, we point out that the problem addressed in this paper is the analog of many 

important problems in statistical optics.12 The approximate equivalence of the magnitude 

and the intensity statistics means that the analysis of intensity variance given here is also 

directly applicable to MRI when the magnitude is the quantity of interest.

Summary

The fundamental properties of second-order statistical measures, namely, the autocorrelation 

function and the signal power spectrum, have been presented for the case of coherent 

detection of rf signals. Direct analysis of the rf suggests the possibility of separating the 

diffuse-scattering strength from the distributed specular-scattering strength., However, the rf 

power spectrum as conventionally used does not directly yield this information.

A principal benefit of rf analysis is the opportunity to study the backscatter as a function of 

frequency and thereby to identify the form factor that characterizes the size of the diffuse 

scatterers. An exact calculation indicates that a simple low-pass function works well as an 

approximate form factor for values of ka0 up to the neighborhood of about 2.

Analysis of the envelope or magnitude of the rf is equivalent, to a good approximation, to 

analysis of the intensity of the rf. The latter is preferred for its mathematical simplicity and 

physical transparency. A straightforward procedure for separating the specular- from the 

diffuse-scattering intensities based on second-order statistics was presented. Any method 

based on first-order statistics will be biased toward inferring non-Gaussian statistics, i.e., few 

scatterers per resolution cell. The intensity analysis may require calibration techniques, 

however, to get to the form factor of the diffuse scatterers and also requires much larger 

correction factors than with the rf analysis. It also mixes together components of the 

distributed specular-scattering strength at different frequencies. Nevertheless, the features 

that result from intensity autocorrelation analysis have offerred good to excellent 

discriminating power in abdominal organ scans.

The results obtained here are summarized in Tables 1 and 2.
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Many analogs of this problem exist in the field of statistical optics and MRI when magnitude 

or intensity signals are detected.
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Appendix A: Gaussian Statistics

When there are a large number of scatterers contributing magnitude ai and phase ϕi to the 

resultant field a,

(A1)

and the magnitudes and phases of the individual scatterers are statistically independent of 

one another and among scatterers, then the field has real and imaginary parts ar, ai that are 

distributed according to circular Gaussian statistics

(A2)

by the central limit theorem.11 We shall write p1 whenever we refer to a pdf that has a one-

dimensional argument and p2 when referring to a pdf that has a two-dimensional argument. 

The two-dimensional Gaussian function is simply the product of two independent one-

dimensional Gaussian pdf's with zero mean and variance σ2. The laws of conservation of 

probability then yield a two-dimensional pdf in magnitude V = (ar
2 + ai

2)1/2 and phase ϑ, 

which when integrated over ϑ yields the one-dimensional pdf

(A3)

This is referred to as the Rayleigh distribution. Similarly, for the intensity I = V2, the pdf

(A4)

is obtained. This is the exponential or χ2
2 pdf. The parameter σ2, written often as ψ = σ2 in 

the papers by Middleton,29,36 depends on the mean-square magnitude or mean intensity of 

the scattering strength of the particles in the scattering medium.11

The second-order statistics will require the joint pdf at two positions x1, x2 in the field. We 

can construct this as a four-dimensional Gaussian pdf in the variable a = (a1r, a1i, a2r, a2i):
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(A5)

if we have the covariance matrix K0. When the power spectrum of the underlying process is 

symmetric about its center frequency, the covariance matrix K0 can be written as

(A6)

(Unsymmetric spectra generate additional off-diagonal contributions,29 but we have not 

detected these in experiments.15) Thus the real and imaginary parts remain independent 

normal processes but are individually correlated according to the complex coherence factor 

ρ:

(A7)

The first equality is the definition of ρ, and the remaining equalities hold under the 

assumption of symmetry between the real and imaginary parts.

As above, when this expression for p4 is written in terms of magnitudes and phase and 

integrated over phase, the joint pdf in magnitudes becomes

(A8)

where Vi = (air
2 + aii

2)1/2 and I0 is the modified Bessel function of the first kind, zeroth 

order.

The autocorrelation function that arises in the analysis of physical systems is the joint 

second moment of the second-order pdf. That is,

(A9)

where Δx = x2 − x1; in the magnitude case ν = 1, and in the intensity case ν = 2.
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The integration may be carried out, using p2(V1, V2) of Eq. (A8), by expanding the Bessel 

function, as indicated by Middleton,29 with the result

(A10)

The hypergeometric functions 2F1 are defined according to common convention (see, e.g., 

Middleton36 and Abramowitz and Stegun37), and the alternative results are a consequence of 

Kummer's theorem.36,37 For the intensity case ν = 2, the hypergeometric series terminates, 

giving the simple result

(A11)

which is obtained more directly in the text by using the Gaussian moment theorem.

We next allow for the presence of a coherent background signal that adds to the random 

fluctuations of the Gaussian-distributed components. That is, we consider there to be a 

constant level of spatially distributed specular scattering Is = ℛ2 added to the previous 

constant level of diffuse scattering. This simply moves the origin of the circular Gaussian 

statistics of Eq. (A2):

(A12)

The joint pdf in magnitude can now be found by using the multidimensional Gaussian and 

integrating over angles29

(A13)

where ε0 = 1, εm = 2, m ≥ 1, and all orders, m, of modified Bessel functions of the first kind 

are required. This reduces to Eq. (A8) when ℛ → 0 since I0(0) = 1 and Im(0) =0, m ≥ 1.

The integration required for the autocorrelation function [Eq. (A9)] is somewhat more 

involved than for the ℛ = 0 case. Several routes have been indicated by Middleton36; we 

have used the direct power-series expansion of the Bessel functions and termwise integration 

to obtain
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(A14)

where p = ℛ2/2ψ. The exponential factor represents a correction to the result given by 

Middleton.36 When ℛ = 0, only the m = 0 term will contribute, the confluent 

hypergeometric functions 1F1 reduce to unity, the sum over n can be identified as a 

hypergeometric function, and the first form of Eq. (A10) is recovered.
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Fig. 1. 
Schematic representation of the noise cloud that results from the random walk in the 

complex plane (from Goodman12).
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Fig. 2. 
Schematic representation of the noise cloud that results from a constant phasor (or coherent 

signal) plus a random walk in the complex plane (from Goodman12).
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Fig. 3. 
(a) Rayleigh backscattered intensity as a function of frequency (dotted curve, f4); normalized 

squared form factors for Gaussian shapes with diameters (four standard deviations) shown 

(solid curve); typical 3-MHz pulse with PWHM equal to 2 MHz (dashed curve), (b) Product 

of f4 and squared form factors from (a); vertical arrows indicate location of specular 

scattering strength, (c) Product of functions from (b) and attenuation factor (see text), (d) 

Product of functions from (c) and pulse from (a).
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Fig. 4. 
(a) Solid curve, f4 weighted by squared Gaussian form factor; dotted curve, f4 weighted by 

squared hard-sphere form factor; dashed curve, expected backscattered intensity for 

scattering from glass spheres in gelatin, using the exact method of calculation derived by 

Faran24 (see text for parameters). All results are plotted as a function of the product of wave 

number k and particle radius a. (b) Solid curves, same as (a) with particle diameter as a 

parameter; dashed curves, same as (a) with particle diameter as a parameter.
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Fig. 5. 
Autocorrelation functions for intensity as a function of distance, in units of the standard 

deviation of the underlying Gaussian spread function. The curve parameter, from bottom to 

top, is r = Īs/I′d = 0, 1, 2, 8, 18. The absolute units are determined by the value of I′d = 2 

[cf.Eq. (2)].
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Fig. 6. 
Normalized autocovariance functions for intensity corresponding to absolute curves of Fig. 

5. When the autocovariance functions for magnitude (derived in Appendix A) are plotted on 

the same scale, they are almost indistinguishable from these functions, except for the case r 
= 0 in which the greatest difference is between 0.03 and 0.04 (see Ref. 15).

Wagner et al. Page 31

J Opt Soc Am A. Author manuscript; available in PMC 2017 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Effect of a sinusoidal variation in coherent signal strength on the noise cloud of Fig. 2 (cf. 

Goodman12).
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Fig. 8. 
Top panel, autocorrelation function in intensity for simulated Rician speckle with single-

frequency structured specularity of period d (other parameters defined in text). Middle panel, 

corresponding speckle power spectrum showing Gaussian fit to Rician noise, which 

integrates to the Rician variance, and peak corresponding to structured specularity, which 

integrates to var (Is) = ΣS
2. Bottom panel, measured power spectrum for human liver in vivo. 

Error bars are ±1 standard error. Darkened area is Rician variance. (After Refs. 22 and 23.)
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Table 1
Rf Tissue Signature

Scattering Regime Scatterer Size Particle-Size Signature

Rayleigh ka ≪ 1 (small) None/weak

ka ∼ 1 (intermediate) Form factor: low-f curvature (rms size only)

Mie ka > 1 (large) Form factor: higher frequencies (size and shape)
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Table 2

Intensity Tissue Structure Signaturea

Distribution Function First-Order Signature (Ambiguous) First- and Second-Order Structure Analysis

Sub-Rayleigh σI
2 > 〈I〉2 Non-Gaussian/few diffuse scatterers

Rayleigh σI
2 = 〈I〉2 Gaussian/many diffuse scatterers

Rician σI
2 ≤ 〈I〉2 Unresolved coherent component (spacing < pulse width)

Generalized Rician σI
2 > 〈I〉2 Resolved coherent component (spacing > pulse width)

a
Trends and heterogeneities (e.g., large vessels) must be removed.
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