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Abstract

Membrane proteins present a challenge for structural biology. In this article, we review some of 

the recent developments that advance the application of NMR to membrane proteins, with 

emphasis on structural studies in detergent-free, lipid bilayer samples that resemble the native 

environment. NMR spectroscopy is not only ideally suited for structure determination of 

membrane proteins in hydrated lipid bilayer membranes, but also highly complementary to the 

other principal techniques based on X-ray and electron diffraction. Recent advances in NMR 

instrumentation, spectroscopic methods, computational methods, and sample preparations are 

driving exciting new efforts in membrane protein structural biology.

Graphical Abstract

Keywords

NMR; membrane protein; lipid; bilayer; solid-state NMR

Introduction

Membrane proteins are encoded by 30–40% of all expressed genes, and are essential for 

both cellular life and human health. Due to their importance, membrane proteins are major 
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targets of biomedical research and drug discovery efforts aimed at understanding their 

biological functions and harnessing their therapeutic potential. Molecular structure 

determination is essential for achieving both goals.

Structural biology of membrane proteins has advanced considerably in recent years. X-ray 

crystallography, electron microscopy (EM) and nuclear magnetic resonance (NMR) have all 

contributed important and complementary structural data [1–4], each with distinct 

advantages and unique challenges. X-ray crystallography has made important contributions 

to membrane protein structural biology, with notable recent successes in the area of G 

protein coupled receptors (GPCRs) [5–7]. EM has long been used to determine the 

structures of membrane proteins in proteolipid two-dimensional (2D) crystals [8], and the 

recent development of single-particle cryo-EM [9–11] is enabling higher resolution 

structures of membrane proteins to be obtained without the need to prepare large, well-

ordered crystalline samples [2,12]. NMR has a long history as a key technology in 

advancing our understanding of the structural, chemical, and dynamic properties of lipid 

bilayer membranes.

Early NMR studies provided fundamental information about the structures and dynamics of 

phospholipid assemblies, and the effects of membrane proteins and various other membrane 

components on lipid bilayer membranes [13–16]. NMR, however, also plays a central role in 

membrane protein structural biology, providing information that is both unique and 

complementary to that derived from X-ray diffraction and EM. NMR methods are available 

for studying membrane proteins in a wide variety of samples, including soluble detergent 

micelles, detergent-free lipid bilayer membranes, and native cell envelope preparations 

[4,17–20]. The range of sample types reflects the versatility of NMR as a tool for 

characterizing the structures, dynamics, and functional interactions of biomolecules. NMR is 

also adept at characterizing intrinsically disordered regions of proteins [21]. Moreover, since 

NMR signals are highly sensitive to the local environment, they are extremely useful for 

characterizing even weak ligand binding through chemical shift changes, enabling structure 

activity correlations to be made for binding events or conformational changes [22].

The principal advantage of NMR as a technique for structural analysis is that is compatible 

with detergent-free membrane samples that are similar to the physiological protein 

environment [23]. This is in contrast to X-ray and single particle cryo-EM studies, which 

typically require non-lipid amphiphiles, such as detergents or amphiphilic polymers, for 

protein solubilization, and often involve extensive sample engineering, such as antibody 

stabilization and protein mutations, truncations, insertions and modifications [2,12,24–28]. 

These factors, combined with the cryogenic temperatures of the samples, all work to 

stabilize a single molecular conformation, thus dampening the structural plasticity that is 

often integral to biological function. Furthermore, in the case of EM, three-dimensional (3D) 

reconstruction remains challenging for proteins smaller than ∼100 kDa, and while signals 

can be enhanced by binding antibody fragments [29], shape asymmetry and relatively small 

size [30] pose impediments for high-resolution structure characterization.

Recent advances in NMR structural studies of membrane proteins reflect exciting 

developments in the areas of recombinant protein expression, sample preparation, pulse 
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sequences for high-resolution spectroscopy, radio-frequency probes, high-field magnets and 

computational methods, which enable single atomic sites of membrane proteins to be probed 

with ever greater accuracy. Here we describe recent results with focus on studies in 

detergent-free lipid bilayers, where NMR is poised to make the most substantial 

contributions.

Solution NMR of membrane proteins in detergents

Solution NMR methods can be used for structure determination of membrane proteins in 

detergent micelles or detergent/lipid mixed micelles [17,18]. The protein data bank (PDB) 

structures of the outer mitochondrial voltage dependent anion channel VDAC-1 [31,32], the 

archaeal phototaxis receptor sensory rhodopsin II pSRII [33], and the bacterial inner 

membrane protein DsbB [34], illustrate the range of structural complexity that can be 

elucidated in atomic detail by solution NMR (Fig. 1). Human mitochondrial VDAC-1 forms 

a 19-stranded β-barrel held together by a network of hydrogen bonds (Fig. 1A). NMR 

chemical shift mapping experiments revealed several perturbations in the presence of protein 

and small molecule ligands, which were interpreted to reflect specific binding sites. 

Microbial pSRII, from Natronomonas pharaoni, forms a seven-transmembrane helix bundle, 

reminiscent of GPCRs (Fig. 1B). The structure, determined with excellent precision (0.48 Å 

backbone RMSD), represents the potential of solution NMR structure determination for 

other membrane proteins with this topology. Bacterial DsbB forms a four-helix bundle and a 

shorter fifth helix whose position suggests association with the membrane surface (Fig. 1C). 

The protein functions in disulfide bond formation and NMR analysis of its structure and 

dynamics helps explain how it mediates the flow of electrons together with its quinone 

cofactor. All three structures agree with their counterparts determined by x-ray 

crystallography, with no major conformational differences observed between crystalline and 

micelle samples.

Solution NMR has also made significant contributions to structure determination of 

membrane proteins with a single transmembrane helix [35–42]. These single-pass membrane 

proteins have important functions in biology. They often rely on intra-membrane, helix-helix 

interactions for establishing their functionalities, and are often too small to form the 

crystallographic contacts necessary for analysis by x-ray diffraction. NMR spectroscopy, 

however, is not limited by this constraint and can yield precise structural information, 

provided that sample conditions can be established to maintain structural integrity, as 

illustrated by several structures determined in micelles with solution NMR (Fig. 1D–G).

Solution NMR studies of GPCRs in detergents have also provided insights about receptor-

ligand binding [43–53]. Detergents, however, can perturb or disrupt receptor-ligand 

interactions [54,55] and influence conformational exchange between GPCR functional states 

[47]. Similar effects are also seen for other membrane proteins, where detergents can cause 

structural distortions, loss of native functionality, or gain of non-native activity due to the 

unmasking of adventitious ligand binding sites [23].

Amphiphilic polymers (amphipols) have been proposed as a membrane mimetic alternative 

to detergents [56]. Amphipol-solubilized membrane proteins can yield solution NMR 
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spectra that appear suitable for structural studies [57]. In one notable case, amphipols have 

been shown to stabilize the trimeric, Chlamydia native major outer membrane protein, 

nMOMP, and enhance its protective ability as a vaccine [58].

Solution NMR of membrane proteins in lipid bilayer nanodiscs

The long correlation times of large protein-lipid assemblies pose a limitation on the types of 

membrane proteins that can be studied by solution NMR. Nevertheless, advances are being 

made in the development of experimental methods [59] and the preparation of specialized 

detergent-free lipid bilayer nanodiscs [60–62] suitable for solution NMR studies. Nanodisc 

samples have been used very effectively for structure/activity correlation studies of a variety 

of membrane proteins [60–66].

The combined use of small nanodiscs, extensive 2H-labeling of both protein and lipids, 

TROSY (transverse relaxation-optimized spectroscopy) sequences [67] at high magnetic 

fields, and non-uniform sampling schemes for signal acquisition [68–71], has enabled 

solution NMR structure determination of the bacterial outer membrane proteins OmpX, 

OmpA, and Ail [60,63,72]. These eight-stranded β-barrel proteins fall in a class that is 

highly amenable to NMR studies since their 3D fold can be established by measuring 

distance restraints across the extensive, inter-strand network of amide backbone hydrogen 

bonds. By contrast, the hydrogen bonds of helical proteins are intra-helical, and, while 

valuable, do not provide information about 3D fold. Thus, structure determination of helical 

proteins relies much more significantly on distance restraints measured between side chain 

atoms, a task that requires side chain resonance assignments.

In nanodiscs, the absence of detergent ensures that structural studies are conducted for 

functional protein states. Interestingly, even though a number of membrane proteins have 

been shown to adopt the same overall structure in lipid micelles, detergent-free nanodiscs, 

and 3D crystalline samples [42,60,62–64,73], the presence of detergent can have a dramatic 

effect on activity. For example, the solution NMR structure of the Yersinia pestis outer 

membrane protein Ail, has been determined in decyl-phosphocholine (DePC) detergent 

micelles [74] and agrees very well with its crystal structure [75]. Ail forms an eight-stranded 

β-barrel with four extracellular loops and three intracellular turns (Fig. 2A). The same 

structure is also observed in nanodiscs [72], and the NMR spectra of the protein in micelles 

and nanodiscs are very similar (Fig. 2B). Nevertheless, the ligand binding activity of the 

protein is abolished in detergent (Fig. 2C) [73], precluding structure-activity studies. 

Interestingly, NMR analysis indicates that the addition of DePC to Ail nanodiscs perturbs 

signals from the extracellular loops, suggesting that detergent molecules associating with 

these key sites affect activity.

Notably, while the solution NMR spectra of native GPCRs in detergents are typically 

dominated by broad, overlapped resonances, except for a few narrow signals from the 

disordered termini [76,77], selective truncations and mutagenesis based on directed 

evolution techniques [78,79] have been shown to generate GPCR sequences with 

conformational and dynamic properties amenable to solution NMR structural studies. For 

example, high resolution 1H/15N spectra were reported, recently [62], for a direct-evolved 
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and truncated sequence of the neurotensin receptor NTR1, reconstituted in lipid nanodiscs 

prepared with a short and covalently circularized version of the membrane scaffold protein. 

These circularized nanodiscs have greater stability and size homogeneity than the non-

circularized versions, and thus help enhance NMR spectral resolution.

Solid-state NMR of membrane proteins in lipids

Solid-state NMR methods are compatible with detergent-free lipid samples and are not 

limited by molecular size. In recent years, the structures of a number of membrane proteins 

have been determined in phospholipids using oriented sample (OS) and magic angle 

spinning (MAS) solid-state NMR approaches. Structural studies have relied primarily on 

experiments based on detection of dilute nuclei (15N, 13C), which can be readily introduced 

in a protein's amino acid sequence by growing the expression vector in isotopically defined 

minimal media. A wide range of experiments [4,80–83] can be performed to obtain site-

specific resonance assignments and to measure restraints for structure determination. These 

are facilitated by the use of high magnetic fields and efficient radiofrequency probes that do 

not dissipate heat energy [84–86]. Isotropic chemical shifts and spin exchange signals, 

measured in MAS experiments, can be converted to torsion angles and inter-atomic 

distances, while dipolar couplings and anisotropic chemical shifts, measured using either 

MAS or static probes with uniaxially ordered samples, can be converted to bond orientation 

restraints or used to obtain information about protein dynamics [87,88].

In addition to structures, solid-state NMR studies are providing fundamental insights about 

the molecular mechanisms underpinning membrane protein functionalities, including: ion 

channel conduction [89–92], multidrug resistance [93]; antimicrobial peptide activity at 

membranes [94–96]; bioenergetics [97]; as well as conformation, dynamics and ligand 

binding of intact GPCRs [76,98–105]. The ability to examine structure, dynamics, and 

ligand binding in native-like samples similar to those used to assay biological functions is an 

important advantage of NMR spectroscopy. Solid-state NMR is making particularly exciting 

advances as a tool for examining the structural and dynamic properties of membrane 

proteins, peptides and cytoskeletal envelope components in native cell preparations [20,106–

110].

Structures of membrane proteins determined by solid-state NMR (Fig. 3) include: sensory 

rhodopsin from Anabaena [111]; the human chemokine receptor, CXCR1 [112]; the M2 1H 

channel from influenza virus [113,114]; the bacterial inner membrane protein DsbB 

[115,116]; the Mycobacterium tuberculosis cell division protein, CrgA [117]; the 

membrane-inserted form of the fd bacteriophage major coat protein [118]; the bacterial 

mercury transporter, MerF [119]; the bacterial trimeric autotransporter YadA [120]; and the 

human PLB pentamer [121]. The structures of DsbB and PLB were determined with hybrid 

refinement approaches based on restraints from solid-state NMR and crystallography 

(DsbB), or on solid-state NMR and solution NMR (PLB), to enhance structural precision. 

Such hybrid approaches can be very valuable but should be used with caution as they may be 

complicated by sample-specific structural differences. Notably, the structures of influenza 

M2 and PLB illustrate the importance of the membrane environment. The solid-state NMR 

structures determined in detergent-free lipid samples are distinctly different from those 
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determined using solution NMR or crystallography, where detergents caused distortions 

incompatible with membrane insertion and protein functionality [23].

OS Solid-state NMR

At present, the majority of solid-state NMR structures of membrane proteins available in the 

PDB are based on bond orientation restraints, measured in the NMR spectra of proteins in 

uniaxially aligned lipid bilayers. Orientation restraints are very valuable because they 

contain information about protein 3D structure, protein orientation in the membrane, and 

protein dynamics [122]. Moreover, they provide a powerful, independent method for 

validating structural accuracy [123]. Experimental approaches are available for obtaining 

resonance assignments in the NMR spectra of oriented samples, including, methods based 

on the direct relationship between the global membrane-integrated structure and the 

frequencies of the NMR signals [118,124–128], and spectroscopic methods based on spin 

diffusion between atomic sites [83,129–131].

Uniaxially aligned samples of membrane proteins in bilayers can yield high resolution NMR 

spectra that directly reflect the protein's conformational properties. For example, the 1H/15N 

PISEMA (polarization inversion with spin exchange and the magic angle) spectra of the 

human Na,K-ATPase regulatory protein FXYD2 in oriented bilayers [132] show signals 

from amide sites in a wheel-like pattern that reflects the ∼20° orientation of the 

transmembrane helix axis relative to the membrane normal (Fig. 4A, C). Spectra from 

bilayers aligned perpendicular to magnetic field have 15N frequencies in the range of 150–

200 ppm (Fig. 4A, B), while the spectra from parallel bilayers have 15N frequencies in the 

range of 85–100 ppm (Fig. 4C, D). For both bilayer orientations, 15N signals at 100–130 

ppm are from sites with sufficient mobility to cause isotropic averaging of the 15N chemical 

shift and 1H-15N dipolar coupling, as might be expected for the non-helical regions of the 

protein. Measureable dipolar couplings from the Arg side chains are also observed, 

indicating that these sites, positioned at the lipid-water interface, do not undergo rapid 

isotropic reorientation. Notably, the 1H-15N dipolar couplings and the 15N chemical shift 

frequencies of the Arg peaks also depend on the alignment of the lipid bilayer membrane in 

the magnetic field, indicating that these side chains have specific orientations in the context 

of the lipid bilayer.

Accurate orientation restraints can also be extracted from the powder patterns measured for, 

unoriented liposome samples [87,112,119]; in this case, rapid rotational diffusion of the 

protein around the axis perpendicular to the lipid bilayer plane is exploited to generate 

uniaxial order. Furthermore, chemical shift tensors themselves can provide effective 

restraints for structure determination and refinement [133].

MAS Solid-state NMR

High resolution MAS solid-state NMR spectra have been reported for membrane proteins in 

proteolipid 2D crystals, precipitates, and microcrystals [114,134–139]. These samples have 

the advantage of maximizing protein concentration in the NMR spectrometer, but they also 

have lipid to protein ratios that are lower than most biological membranes [140,141]. Low 
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lipid content can compromise protein stability and induce the formation of non-native 

contacts between protein molecules with opposite transmembrane orientations 

[114,142,143]. Moreover, 2D crystals can be structurally heterogeneous [143], a factor that 

poses a unique challenge for NMR, where signals reflect ensemble properties of the bulk 

sample, and heterogeneity manifests as broader line widths and diminished spectral 

resolution. Fortunately, the only requirement for reducing inhomogeneous line broadening 

and obtaining single, narrow NMR lines, is that the protein adopts a homogeneous 

conformational ensemble state on the timescale determined by the frequency span of spin 

interactions. For solid-state NMR studies of membrane proteins, this can often be achieved 

with proteoliposomes prepared with sufficient lipid to prevent the formation of non-native 

conformations.

The 2D 13C/13C correlation spectrum of Ail in liposomes (Fig. 5) illustrates the spectral 

resolution attainable for homogeneous liposome preparations [144]. In this sample, the 

protein was uniformly labeled with 15N and 13C, and fractionally (∼70%) 2H labeled, with 

amides back exchanged to 1H during protein purification, to enable NMR detection. 

Deuteration dilutes the 1H concentration and suppresses the strong homonuclear 1H-1H 

dipolar couplings, resulting in longer lifetimes of the 13C and 15N coherences, and leading to 

enhanced sensitivity and resolution.

The 13C/13C correlation spectrum together with additional 2D and 3D spectra that correlate 

N, CA, CO and side chain atomic sites [145–148], enable resonance assignments and the 

measurement of distance restraints for structure determination. Signals from Thr, Ser, Ile and 

Ala sites can be readily identified based on their characteristic chemical shifts, which reflect 

β-strand conformation. Moreover, several cross peaks observed in the 13C-13C spectrum 

(Fig. 5B) reflect intra-residue (Fig. 5B, blue) or inter-residue (Fig. 5B, green, red) 

connections, including long-range (Fig. 5B, red) connections between neighboring β-strands 

(Fig. 5C) that are essential for structure determination.

Recently, NMR experiments based on 1H-detection have become an important technique for 

enhancing sensitivity and resolution in solid-state NMR spectroscopy. These experiments are 

facilitated by very fast spinning rates (>40 kHz), high static magnetic fields, and 2H-labeling 

of the protein, to reduce homogeneous line broadening by suppressing and diluting the large 

network of strong homonuclear 1H-1H dipolar couplings [114,135,138,149–156]. NMR 

experiments of 2H-labeled proteins, based on 1H detection, require back exchange of 

backbone amides from 2H to 1H. Back exchange is very readily obtained for proteins that 

are refolded from inclusion bodies, like many b-barrels, but can be less efficient for proteins 

that are purified as folded entities, where strong hydrogen bond networks are established 

before purification. Thus, extensive deuteration may not always be a feasible approach. 

Nevertheless, the availability of radiofrequency probes with spinning rates greater than 100 

kHz [157] is removing this obstacle by enabling NMR studies of fully protonated samples, 

including membrane proteins.

Solid-state NMR experiments based on 1H detection with fast spinning rates are enabling 

high resolution NMR spectroscopy of membrane proteins in lipids. A number of structural 

studies have been reported for both β-barrel and α-helical membrane proteins in liposomes 
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and 2D crystal preparations [138,139,144,155,158,159]. For example, the 1H 

detected 1H/15N CP-HSQC (Cross Polarization - Heteronuclear Single Quantum 

Correlation) spectrum (Fig. 6A) of the Y. pestis outer membrane protein Ail, in liposomes, 

displays high resolution [144]. The spectrum was obtained at a magnetic field of 900 MHz, 

and a temperature, 30°C, where the lipid bilayer is fully liquid crystalline. Resonance line 

widths are in the range of 0.11–0.15 ppm (107–138 Hz) for 1H, and 0.46–0.64 ppm (42–58 

Hz) for 15N, consistent with a high level of sample homogeneity, and comparable with those 

observed in the 1H-detected spectra of membrane proteins in 2D crystals [138,155]. Notably, 

the solid-state NMR spectrum overlaps significantly with the solution NMR 1H/15N TROSY 

spectrum (Fig. 6B) measured for Ail in nanodiscs with the same lipid composition [73], 

illustrating the potential of performing structural studies on essentially the same, detergent-

free sample, over the wider, combined experimental time scale of solution and solid-state 

NMR spectroscopy.

NMR structure calculations of membrane proteins

The quality of NMR structures depends on both the accuracy and quantity of the 

experimental data as well as on the computational methods used in the structure 

calculations. Methods that facilitate NMR-restrained protein structure calculations in a 

physically realistic energy landscape, significantly improve structure precision, accuracy and 

quality.

All atom force fields, with complete chemical energy functions and explicit atomic 

representation of the protein, water, and lipid molecules, can be used in NMR-restrained 

molecular dynamics (MD) simulations of membrane proteins [113,160–162]. Recent 

advances are providing optimized force fields [163,164] and are enabling long MD 

simulations. Nevertheless, because these simulations rely on a reasonably accurate input 

structure, they are best suited for the final stages of refinement and remain impractical for 

routine de novo calculations that start from fully extended polypeptides.

Geometric restraining terms [38,165] or empirical models of membrane insertion depth 

[166] can be used to impose virtual water-membrane boundaries during NMR-restrained 

simulated annealing calculations of membrane proteins, but do not provide realistic atomic-

level representations of the protein in its environment. In addition, implicit solvation models 

have been developed specifically for NMR-restrained MD [167–170] or simulated annealing 

[171–173] protocols. Among these, the implicit solvation potential EEFx (effective energy 

function for Xplor-NIH) is highly effective for NMR-restrained, simulated annealing 

calculations of both soluble and membrane proteins from unfolded templates [74,171–176]. 

EEFx is based on the implicit solvation energy functions developed for CHARMM 

[177,178] and is available with the Xplor-NIH package [179,180]. It includes an implicit 

membrane model that provides a physically realistic, anisotropic water-lipid environment 

and supports the native structures of membrane proteins.

EEFx is designed to work with NMR restraints measured in detergent-free lipid bilayer 

samples, but is also compatible with restraints measured in micelles [74], and with a wide 

range of experimental restraints measured by techniques other than NMR, to impose 
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boundaries between hydrophobic and polar environments, establish proper protein topology 

and prevent water-exposed loops of side chains from folding back against protein regions 

that are membrane-embedded. EEFx is very effective at guiding structure calculations 

towards the native state, even in the absence of large numbers of experimental 

measurements, and yields significant improvements in structural quality, accuracy and 

precision, as illustrated for the structure of Anabaena sensory rhodopsin (Fig. 7).

Conclusions

Recent technological advances in NMR spectroscopy are opening a new chapter in 

membrane protein structural biology. The studies reviewed in this article, and the many other 

exciting efforts in laboratories around the world, reflect the breadth of capabilities of modern 

NMR. The ability to probe membrane proteins in detergent-free membranes, ever closer in 

composition to the native environment, is particularly exciting. The high resolution and high 

sensitivity seen in the NMR spectra reported in recent studies will significantly benefit from 

the additional enhancements made possible through the use of high magnetic fields, non-

uniform sampling schemes that reduce experimental times or increase signal, efficient 

radiofrequency probes that do not dissipate heat energy, and fast MAS probes that enable 1H 

detection experiments.
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HIGHLIGHTS

• Membrane proteins are major targets of biomedical research and drug 

discovery.

• Molecular structure determination is essential for achieving both of these 

goals.

• NMR is ideally suited for structural studies of membrane proteins in hydrated 

lipid bilayers.

• Recent advances in NMR are opening a new chapter in membrane protein 

structural biology.

• Exciting new efforts in this area reflect the breadth of capabilities of modern 

NMR.
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Figure 1. Examples of membrane protein structures determined in detergent micelles by solution 
NMR
The PDB file numbers are listed below each structure. (A) Mitochondrial voltage dependent 

anion channel VDAC [31]. (B) Archaeal photo sensory rhodopsin pSRII with bound retinal 

(orange) [33]. (C) Bacterial inner membrane protein DsbB with bound quinone (orange) 

[34]. (D) Channel domain of influenza BM2, showing His, Trp and Ser side chains (sticks) 

lining the pore [40]. (E) Transmembrane domain ζ-ζ dimer of the T cell receptor CD3, 

showing side chains (sticks) that mediate dimerization [37]. (F) Mitochondrial stannin 

showing the metal-binding Cys-Trp-Cys motif (sticks) at the membrane surface [36] (G) 

Human Na,K-ATPase regulator FXYD1 showing side chains (sticks) and Gly CA atoms 

(spheres) that mediate intra-membrane association with the Na,K-ATPase α subunit [38].
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Figure 2. Structure of Y. pestis outer membrane protein Ail and effect of detergent on its ligand 
binding activity
(A) Solution NMR structure of Ail, determined in DePC micelles, showing Arg and Lys side 

chains (yellow) at the membrane surface [74]. (B) Solution NMR 1H/15N TROSY spectra of 

Ail in 170 mM DePC (black) or nanodiscs (red). (C) Fibronectin binding activity of Ail 

analyzed by enzyme linked immunosorbent assay, where increasing concentrations of Ail 

are added to fibronectin-coated plates. Adapted from [73].
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Figure 3. Examples of membrane protein structures determined in detergent-free phospholipids 
by solid-state NMR
The PDB file numbers are listed below each structure. (A) Anabaena sensory rhodopsin with 

bound retinal (yellow) [111]. (B) human chemokine receptor, CXCR1 [112]. (C) M2 1H 

channel from influenza virus showing His and Trp side chains (sticks) lining the channel 

pore [113]. (D) Bacterial inner membrane protein DsbB [115,116]. (E) Mycobacterium cell 

division protein, CrgA showing side chains (sticks) that mediate intra-membrane helix-helix 

association [117]. (F) Membrane-inserted form of the fd bacteriophage coat protein showing 

polar side chains (sticks) in the N-terminal helix exposed to bulk water [118].
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Figure 4. Solid-state NMR spectra of uniformly 15N labeled FXYD2 in magnetically oriented 
phospholipid bilayers
(A–D) 2D 1H/15N PISEMA) and 1D 15N OS solid-state NMR spectra of FXYD2 in lipid 

bilayers aligned with the membrane perpendicular (A, B) or parallel (C, D) to the magnetic 

field. Peaks from the transmembrane helix (TM) trace wheel-like patterns (red circles). 

Peaks assigned to Arg guanidinium NH groups are prominent (blue boxes). (E) Solution 

NMR structure of FXYD2 determined in micelles, showing the bundle of ten lowest energy 

structures. The positions of amide N atoms (blue spheres) were restricted by experimental 

plane distance restraints as described [132]. Adapted from [132].
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Figure 5. 2D 13C-13C spectrum of (15N, 13C, 2H) Ail in liposomes
(A) Fingerprint region of the DARR (Dipolar Assisted Rotational Resonance) spectrum 

showing examples of resolved signals from Ala, Ile, Ser, Thr, Val residues (yellow boxes). 

(B) Expanded spectral region showing examples of short-range intra-residue correlations 

(blue), short-range inter-residue correlations (green), and long-range inter-residue 

correlations (red). (C) Structure of Ail in micelles (PDB: 2N2L) showing inter-strand 

connections (red) assigned in the DARR spectrum. The spectrum was obtained at 900 MHz, 

at 10°C, with 200 ms DARR mixing time, and 144 scans per increment. Adapted from 

[144].
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Figure 6. 2D 1H-15N correlation spectra of Ail in phospholipid bilayers
(A) Solid-state NMR 1H-detected CP-HSQC spectrum of (15N, 13C, 2H) labeled Ail in 

liposomes, recorded at 900 MHz, 30°C, with 160 scans and a MAS rate of 60 kHz. (B) 

Solution NMR 1H-detected TROSY spectrum of (15N,13C,2H) labeled Ail in nanodiscs 

prepared with 2H labeled lipids, recorded at 800 MHz, 45°C, with 128 scans. Adapted from 

[144].
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Figure 7. The EEFx potential improves structure calculations of Anabaena sensory rhodopsin in 
lipid bilayers
Structures of monomeric ASR were calculated using solid-state NMR distance and dihedral 

angle restraints. Bar plots represent results for: the crystal structure (PDB 1xio; pink) [181]; 

the average for ten models in the ensembles of the deposited solid-state NMR structure 

(PDB 2m3g; red) [111]; the ensemble calculated with the standard simple repulsive potential 

of Xplor-NIH (gray); or the ensemble calculated with the EEFx potential of Xplor-NIH 

(blue) [173]. (A) Agreement with the PDB crystal structure (PDB 1xio) evaluated as average 

pairwise RMSD of atomic coordinates. (B) Precision evaluated as average pairwise RMSD 

of atomic coordinates in each ensemble. (C) MolProbity score evaluation of the four 

structures; note this is a cost: the lower the better. (D) Comparisons of the crystal structure 

(PDB 1zxio, pink) with the lowest energy structure generated with EEFx (blue). The 

horizontal lines depict the boundaries of the 25 Å thick EEFx membrane. Adapted from 

[173].
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