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Abstract

Distributed Lag Models (DLMs) are used in environmental health studies to analyze the time-

delayed effect of an exposure on an outcome of interest. Given the increasing need for analytical 

tools for evaluation of the effects of exposure to multi-pollutant mixtures, this study attempts to 

extend the classical DLM framework to accommodate and evaluate multiple longitudinally 

observed exposures. We introduce 2 techniques for quantifying the time-varying mixture effect of 

multiple exposures on an outcome of interest. Lagged WQS, the first technique, is based on 

Weighted Quantile Sum (WQS) regression, a penalized regression method that estimates mixture 

effects using a weighted index. We also introduce Tree-based DLMs, a nonparametric alternative 

for assessment of lagged mixture effects. This technique is based on the Random Forest (RF) 

algorithm, a nonparametric, tree-based estimation technique that has shown excellent performance 

in a wide variety of domains. In a simulation study, we tested the feasibility of these techniques 

and evaluated their performance in comparison to standard methodology. Both methods exhibited 

relatively robust performance, accurately capturing pre-defined non-linear functional relationships 

in different simulation settings. Further, we applied these techniques to data on perinatal exposure 

to environmental metal toxicants, with the goal of evaluating the effects of exposure on 

neurodevelopment. Our methods identified critical neurodevelopmental windows showing 

significant sensitivity to metal mixtures.
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INTRODUCTION

Originally developed in the field of econometrics, distributed lag models (DLMs) have in 

recent years been applied extensively to environmental health research [1–7]. They are 

regression models for time series data in which the effects of some independent variables are 

distributed across time [1]. In environmental epidemiology, they are particularly useful to 

study the effect of an exposure at a certain time point while adjusting for all the past 

(lagged) values of that exposure. While useful, classical DLMs have a number of 

shortcomings; most importantly, the inability to model complex mixture effects of multiple 

exposures. Modeling of time-dependent chemical mixture effects is an increasingly relevant 

problem in environmental health. Most individuals are exposed to a complex cocktail of 

environmental pollutants which, over time, interact in elaborate ways to shape the trajectory 

of biological and health outcomes. To properly model these multivariate associations, it is 

essential that analytical approaches for time-lagged effects are extended to accommodate 

chemical mixtures.

In this paper, we introduce two novel approaches for modeling longitudinal chemical 

mixture effects. We emphasize one particular application: identifying time periods with the 

largest and most potentially biologically relevant mixture effects. One particular problem for 

which such an application could be useful is in identifying critical windows of development 

wherein exposure to multi-pollutant mixtures could increase risk of a health outcome at a 

later life stage. As a motivating example, we consider a study that uses teeth as a biomarker 

of past chemical exposure in children. For each child, biochemical analyses of baby teeth 

produce precise measures of intensity and timing of exposure to multiple metals (e.g. zinc, 

manganese, lead, barium, lithium) throughout the perinatal period. As the brain develops in 

utero and during the early years after birth, there are certain critical periods that are 

particularly sensitive to environmental insults [8]. Further, exposure to metals is known to 

influence neurodevelopment in children. At a physiological level, multiple metals may 

interact in unknown ways to shape neurodevelopment, so the goal is to identify critical 

periods where the cumulative mixture effect among a set of metals appears to significantly 

influence development. The spectrometric technique used for the biochemical analysis of 

teeth (Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry [LA-ICP-MS]) 

permits a high degree of temporal resolution in the metal exposure measurements. This 

produces a set of very fine-scale longitudinal exposure measurements (on the order of a few 

days apart) over a period of a few months before birth to a year or so after birth. However, 

the timing of the measurements is irregular, in the sense that they vary from subject to 

subject. Some subjects may also have missing measurements within a certain span of time 

(e.g. a few weeks), for reasons that will be discussed later. This heterogeneity in exposure 

measurement timing across subjects presents some analytical challenges. The techniques we 

propose for modeling longitudinal mixture effects deal with these challenges using different 

strategies.

While the 2 techniques we present here share a number of similarities, they utilize very 

different modeling paradigms and have distinct but partly complementary sets of strengths 

and weaknesses. The first approach is a flexible, parametric technique that is based on 

Weighted Quantile Sum (WQS) regression [9–12]. This is a penalized regression technique 
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similar to ridge regression [13] and Lasso [14]. Weighted Quantile Sum regression utilizes a 

non-negative, unit-sum constraint that groups variables into a unidimensional index. We 

extend this technique to handle lagged exposures and term the extension Lagged Weighted 

Quantile Sum Regression (henceforth referred to as Lagged WQS). As we will show, this 

method is particularly ideal for the motivating example described above, a data set where a 

large number of repeated measures are taken on multiple pollutants, and the timing of 

measurements is not necessary uniform across subjects. Lagged WQS attempts to model the 

complex longitudinal exposure trajectory as a continuous function of time. It is also robust to 

missing data in exposure measurements. The second approach is based on Random Forests 

[15]. This nonparametric approach uses the extensible framework of decision tree ensembles 

to model complex interactions among exposure variables with respect to their cumulative 

effect on an outcome of interest. We refer to this approach as Tree-based DLMs. Unlike 

Lagged WQS, it is more ideal for data where exposures are measured at discrete, well-

defined time points that are similar or identical across subjects. Therefore, for data with 

complex longitudinal exposure measurements and heterogeneity in the timing of 

measurements across individuals (such as the motivating example described above), the use 

of tree-based DLMs often requires a preprocessing step which bins the exposure 

measurements into a series of discrete time windows that are uniform across all subjects. As 

will be discussed, the tree-based DLM approach is also more sensitive to missing exposure 

measurements.

METHODS

DLMs yield an estimate of the effect of exposure incurred at specific time windows while 

adjusting for exposures at other times, under the assumption that the effect of exposure 

varies smoothly over time. Let Yi denote a quantitative outcome value for a subject i (where 

i = 1,…,n) at a fixed time. Here, Yi could represent some health outcome, e.g. forced 

expiratory volume in the span of 1 second (FEV1), a measure of lung function. Further, for 

each subject i, let Xi,t (t = 1,2,3,…,T) denote a series of measurements of a single 

environmental chemical/pollutant/risk factor at discrete time points prior to the measurement 

of Yi. In other words, the Xi,t represent subject i’s history of exposure to the chemical at 

discrete time points prior to the time at which Yi was measured. A brief point regarding 

notation: we have chosen not to index Yi by time since it is only measured once (at a time 

point subsequent to all the Xi,t measurements). Across all subjects, we assume that the 

timing of the measurements of Yi and Xi,t (t = 1,….,T) are roughly identical. The key idea 

underlying DLMs is that the value of outcome Yi taken at a fixed time point is influenced by 

prior exposure to the chemical at preceding time points t = 1, 2, 3,....,T. This functional 

relationship between the outcome and lagged exposure values can be expressed as:

(1)

In the above model, we have also adjusted for a covariate z (multiple covariates can be 

included but for ease of presentation we include only one here). The term λ represents the 
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coefficient of covariate z. Each of the coefficients αt (t=1,…,T) represents the effect of 

exposure at time point t on the subsequent outcome Y. The ei represent subject-specific error 

terms with distributions that depends on the nature of Yi. Here, we have assumed that Yi is a 

continuous measure following a normal distribution, therefore Equation (1) is a linear 

regression model and the ei are assumed to be normally distributed. Note, however, that 

DLMs can work with other outcome types (e.g. Bernoulli-, Poisson-distributed outcomes), 

as long as the appropriate model is used, e.g. if Yi is binary, then a logistic regression model 

can be used in lieu of the linear model in Equation (1). While DLMs are useful, parameter 

estimation is complicated by the fact that the Xi,t (t=1,…,T) are usually highly correlated. 

This is expected since they represent measurements of the same chemical/pollutant at 

different time points. Therefore in practice, different techniques are employed to reduce the 

effect of multicollinearity. One popular method introduced by Almon (1965) [16] imposes a 

constraint on the lag coefficients αt (t = 1,.., T) by assuming a functional relationship among 

them, i.e. αt = f(t). Here, f is typically a simple polynomial of degree q (q < T), but could 

also be modeled as a spline-based function.

Before introducing the first of our proposed methods (Lagged WQS), we begin by 

describing a useful reparameterization of the classic distributed lag modeling framework 

described above. First introduced by Chen et al (2015) [17], this reparameterization forms 

the basis for the Lagged WQS technique. It involves recasting Equation (1) by interchanging 

the role of the outcome and exposure as follows:

(2)

In the model above, Yi, which was the dependent variable in the DLM in Equation (1) is 

now an independent/explanatory variable, while the dependent variable is now the exposure 

Xi(t) (originally represented as Xi,t in Equation (1)). The model in Equation (2) has the form 

of a mixed model since the dependent variable Xi(t) is a time-varying longitudinally 

observed measure. Recall that the original DLM formulation (in Equation (1)) has a cross-

sectional (i.e. time-invariant) outcome Yi and a longitudinally-measured exposure, but by 

switching the roles of the latter and the former, we arrive at the more familiar mixed model 

structure given in Equation (2). Also, we use time-varying coefficients represented by 

smooth functions constructed using splines, which makes this a generalized additive mixed 

model (GAMM). The time-varying coefficients are: β0(t), the intercept term, β1(t), 
representing the time-varying correlation between X and Y, and γ(t), the covariate (zi) 

coefficient. The random effect term, u, permits the assumption of a specified correlation 

pattern for intra-subject observations. In our studies, we use a simple compound symmetry 

structure. The εi(t) is the error term and is assumed independent of the random effect term. 

The model in Equation (2) is fit using nonlinear mixed model estimation techniques with 

spline structure for the coefficients. Details on this are provided in the next section.

Chen et al (2015) [17] refer to the model in Equation (2) as a reverse temporal model. As 

they point out, the model is somewhat counterintuitive from a temporal standpoint, i.e. X(t), 
our dependent variable, is actually measured prior to the measurement of Y, the explanatory 

variable. However the coefficient β1(t) has a relatively straightforward interpretation. When 
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Y is a continuous variable, β1(t) simply represents the time-varying correlation/association 

between Y and the levels of exposure to X. Time points wherein β1(t) is significantly 

positive are seen as periods in which higher exposure to X predisposes individuals to higher 

levels of the outcome Y, and vice versa. Note that while the time-varying coefficient β1(t) in 

Equation (2) and the αt (t=1,…,T) coefficients in Equation (1) have somewhat analogous 

interpretations (generally representing the relationship between exposures and the outcome), 

a key difference in their formulations is worth highlighting here. In Equation (1), each αt 

coefficient represents the conditional association between exposure at a specific time and the 

outcome, adjusted for exposures at other time points. In Equation (2), β1(t) represents the 

time-varying association between the outcome and the lagged exposures.

To assess significance of β1(t) across time points (various values of t), time-varying Holm-

Bonferroni-adjusted [18] 95% confidence intervals are constructed for β1(t) assuming 

regularly timed comparisons. This procedure produces a series of evenly-spaced confidence 

intervals across the entire observation period. Portions of the observation period in which the 

confidence intervals are significant (i.e. do not include 0) are denoted as critical windows, 
i.e. time windows where the level of exposure X has a statistically significant impact on the 

level of the response variable Y observed at a later time.

As mentioned in the Introduction, the Lagged WQS technique works particularly well for 

complex longitudinal exposure data, i.e. where a large number of measurements are taken 

over time, and the timing of these measurements might be irregular within and/or across 

subjects. The reverse temporal model described above recasts the problem into a GAMM 

framework wherein the longitudinal exposure data is modeled as the dependent variable. 

With this setup, we can then estimate the time-varying effect of the pollutant on the 

outcome. We will now demonstrate how to extend this model to accommodate situations 

where densely sampled longitudinal exposure measurements are taken not just on one, but 

multiple chemicals/pollutants. The goal of the Lagged WQS technique is to be able 

construct a smoothly-varying (over time) function that represents the time-varying effect of 

the mixture of chemicals on the health outcome of interest.

1.1 Extension to mixtures–Lagged WQS

We now describe the extension of this methodology for evaluating chemical mixture 

concentrations and evaluating their effects on an outcome of interest. Assume we have a 

mixture of C chemicals, the levels of which are denoted by Xc (c=1,…,C). First, we define a 

time-varying weighted sum as:  with constraints 0 < wc (t) <1, 

where the weights are assumed to vary smoothly over time. The time-varying weights are 

modeled using a cubic spline regression function embedded within a nonlinear logistic 

function: , where Sc(t) is a cubic spline with knots, say, at K = (k1, 

k2, k3) for each of c = 1,…,C. Knots are typically chosen as quantiles of observation time, 

e.g. quartiles. Mutual independence across subjects is assumed.

The Lagged WQS technique is implemented via the following steps:
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STEP 1: Initialize WQS(t) with equal weights over time.

STEP 2: Conditional on WQS(t), use the reversed DLM in the equation below to 

estimate a time-varying association between WQS(t) and the variables Y and z, 

resulting in estimates for β0(t), β1(t), and γ(t):

(2b)

Note that in the case where we have just 1 exposure variable, WQSi(t) in Equation 

(2b) can simply be replaced by Xi(t), and this reduces to Equation (2) (a single 

exposure DLM).

STEP 3: Improve the working estimates for the weights in WQS(t) conditional on the 

current estimates for β0(t), β1(t), and γ(t); i.e., define Ri(t) = β̂0(t) + β̂1(t)Yi + γ̂(t)zi 

and then regress Ri(t) onto WQSi(t) via the following model: 

. Recall that the weighted sum on the right hand side is 

WQSi(t). Note that since the weights wc(t) are composite parameters constructed 

from splines (see above), the parameters estimated in this step are not actually the 

weights themselves, but rather the spline coefficients used to construct the weights. 

Note also that this step is conducted assuming independence over subjects and time.

STEP 4: Repeat step 2 conditional on the weights in step 3. This is the final step.

Note that this procedure is not iterative; Steps 1–4 only need to be carried out once to derive 

β1(t) estimates of the time-varying mixture effect. Confidence intervals are constructed for 

β1(t) in the final STEP 2. At time points where the estimate of β1(t) is positive and 

significant, we claim that the mixture is associated with an increase in the response variable; 

when the estimate of β1(t) is negative and significant, we claim the mixture is associated 

with a decrease in the response variable, i.e. the overall mixture effect leads to a decrease in 

levels of the response variable. As per our definition, both significant positive and negative 

associations are deemed exposure-related critical windows for the health outcome (denoted 

here by Y). The contributions of individual components relative to the time-varying overall 

mixture effect are demonstrated graphically by multiplying the time-varying weights 

byβ̂1(t). The approach is thus limited to either an overall negative or positive association and 

is not able to detect opposing effects at a given time point.

The model in Step 2 is fitted as a mixed model with spline structure for coefficients. In Step 

3, model estimates were also obtained using this approach. We carried out these 

computations using the SAS (Cary, NC) procedure NLMIXED [19].

1.2 Tree-based DLM

Unlike the Lagged WQS approach, this technique is based on the traditional formulation of 

classical DLMs given in Equation (1), which examines the effect of the exposure at a set of 

discrete time points (presumably identically timed across subjects). The key innovation of 

this method is the use of random forests (RF) in place of regression models. RF offers a fully 
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non-parametric tree-based approach that has multiple strengths which will be discussed 

below.

We revert to the classical DLM formulation given in Equation (1). But we extend this linear 

model to a more general functional form that can accommodate multiple chemicals in 

addition to multiple time points of exposure, and is fully non-parametric:

(3)

Here,  represents the measured exposure level of chemical c (c=1,…,C) at time t (t = 1,

…,T). Note the slight switch in notation from Section 1.1, where we denoted exposures by 

Xc(t) since the Lagged WQS method treats exposures and model parameters as smooth 

functions of time. The new notation is more suited to the current method which, like the 

classical DLM formulation, uses a discrete time structure where exposures are indexed by 

lag indices. Note also that X in the expectation expression in Equation (3) above is a vector 

of all the exposure values across all lags and all chemicals, i.e. . The term 

z represents a covariate (note that more than one covariate can be included). Similar to 

Equation (1), Equation (3) expresses a general form for the underlying functional 

relationship existing between the outcome at a certain time (Y) and measured values of the 

C chemicals at various time windows prior to (and potentially leading up to) the time at 

which Y is measured. What we propose herein is approximating the function f using random 

forests (RF). Note that the classical DLM formulation (shown in Equation (1)) assumes a 

linear functional form for f. RF is a simple, effective, non-parametric tree-based learning 

algorithm that is generally considered to be one of the most powerful statistical modeling 

and prediction methods [20]. It is particularly effective for modeling complex, nonlinear 

relationships in high dimensional settings [21]. Trying to model such complex relationships 

using parametric modeling techniques is often difficult since a functional form has to be 

assumed, in the face of little prior knowledge. Due to its appealing characteristics, RF is a 

promising methodology for use in estimating f above. It allows flexible modeling of the joint 

effect of chemical mixtures at each time point on the outcome.

1.2.1 Random Forest Algorithm—Assume that we have data on n subjects: 𝓓n = 

{(Xi,Yi)}1≤ i ≤ n. For each subject i, . The data on each subject i consists 

of the longitudinal (lagged) exposure measures for each of the C chemicals, and a single 

outcome Yi measured subsequently. Here, just as in Equation (1), we have chosen not to 

index Yi by time since it is only measured once (at a time point subsequent to all the 

exposure measurements).

The random forest (RF) algorithm involves generating M bootstrap samples (each of size n) 

of this data and recursively partitioning each bootstrap sample using a series of binary splits 

determined by values of the individual predictor variables. The predictor variables chosen at 

each split (and the corresponding split points) are determined by optimization of loss 
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functions related to the outcome. By recursively bisecting the predictor space in this manner, 

a hierarchical tree-like structure is formed which functions as a piecewise approximation of 

the underlying relationship between the predictors and the outcome.

Let the M bootstrap samples be denoted by . We represent the trees built on 

each of these samples by f̂1,......, f̂M. These can be seen as individual functional estimators of 

the outcome Y. If the outcome is continuous, the final step of the RF algorithm involves 

averaging these estimators. Therefore in equation (3) above, we can estimate f (X) by:

(4)

Since RF is non-parametric, there is no inherent mechanism for formal inference on the 

strength of association of each predictor variable with the outcome. However, the RF 

approach allows us to obtain heuristic measures of the ‘importance’ of individual variables 

[22]. Likewise, the importance of arbitrarily defined groups of variables can be estimated. 

The distribution of these Variable Importance (VI) measures is not easily determined, which 

means attaching statistical significance to them is not straightforward. However, 

nonparametric estimates of p-value can be obtained by using permutation tests to estimate 

the null distribution of the VI measures. Below, we show how to estimate the VI for a single 

variable, i.e. the measured exposure for a particular chemical c at a particular time t. We then 

show how to estimate the VI for a set of C chemicals all measured at a particular time t.

VI measures require the use of what are referred to as ‘out-of-bag’ samples. As mentioned 

above, the RF algorithm generates M bootstrap samples (each of size n, the total number of 

unique subjects/observations in the dataset) and fits separate trees on each of these bootstrap 

samples. Each bootstrap sample m (m ∈{1,..., M}) is generated by taking n random draws 

(with replacement) from the original data. This approach guarantees that in almost all 

bootstrap samples taken from the data, some observations will not make it into the bootstrap 

sample. It can be shown mathematically that on average, ~37 % of the observations from the 

original data will not make it into the bootstrap sample. These leftover observations are 

referred to as out-of-bag (OOB). The OOB subset from each bootstrap sample m can be 

used as an independent validation set for testing the generalization error of the tree 

constructed on m. Let  represent the OOB samples corresponding to the 

bootstrap samples m=1,…,M. Then for each bootstrap sample m, we can estimate the 

generalization error of the tree built on m by using its corresponding OOB sample. The form 

of the generalization error will differ depending on the type of outcome. For continuous 

outcomes, a popular metric is the Mean Squared Error (MSE). Therefore,

(5)
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As the equation shows, for each observation/individual i in the OOB sample, we compute 

the squared difference between i’s observed outcome Yi and their predicted outcome f̂m(Xi) 

(recall that ). We then average these squared residuals over all the subjects 

to obtain the MSE for the tree built using the mth bootstrap sample. To estimate the VI for a 

single variable , we randomly permute the variable in each OOB sample. Note that all 

other variables in the dataset (including the outcome) are left intact–only  is randomly 

permuted. The random permutation breaks any association that may exist between  and 

the outcome Y. We then re-estimate the MSE of these permuted datasets and compare to the 

MSE computed from the original data (equation (5)). If variable  has a strong 

association with Y, then the new MSE should be substantially greater than that of the 

original MSE (in the original unpermuted data). To express this difference symbolically, let 

 be the modified version of OOB sample  that is obtained by randomly 

permuting  within the sample. Then the VI of variable  can then be expressed as:

(6)

In a similar fashion to the single-variable case, we can define the VI for a group of variables, 

as outlined in Gregorutti et al. (2014) [23]. Let XJ represent a subset of the vector of 

exposure variables . So XJ could, for example, be the subset of variables 

representing exposure to all the chemicals (c=1,…,C) at one specific time/lag t=t′. As in the 

single-variable case, we randomly permute group XJ by jointly permuting every individual 

variable  in the group. This is done by using the same permutation pattern for each 

variable, i.e. we do not permute each variable separately but rather, as a group. This 

groupwise permutation approach preserves the empirical joint distribution among the 

variables comprising XJ but abolishes any associations that these variables have with the 

outcome Y. If the joint effect of these variables on the outcome is substantial, then it can be 

surmised that the MSE of a sample produced by jointly permuting these variables will 

increase (compared to the original, unpermuted data). Similar to equation (6), we can 

express the joint VI for group XJ as:

(7)

In Equation (7), J represents the index set for XJ. And  is the modified version of 

OOB sample  that is obtained by joint random permutation of the group of variables XJ 

within the sample. Note that the group VI is normalized via division by |J| (the cardinality of 

index set J), to account for differing group sizes.
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1.2.2 Evaluating mixture effects using Tree-based DLMs—Having described the 

random forests algorithm, we now demonstrate how it can be adapted for use in multi-

exposure DLMs.

To illustrate, we restate the original extended, generalized DLM given in Equation (3):

The RF algorithm estimates f, thereby producing a model-free approximation of the 

functional relationship between the multiple pollutants/chemicals (c = 1,…,C) measured at 

multiple time points (t = 1, 2, …., T). As described in the prior section, the RF framework 

also includes a mechanism for computing variable importance (VI) measures for single 

variables and, more importantly, groups of variables. For example, to determine the time-

dependent joint effect of chemicals c = 1,…,C at a certain time t = t′ we compute the group 

VI for the corresponding set of variables, i.e. the set { }. This set 

represents the measurements of the levels of exposure to each of the C chemicals at one 

specific, fixed time point t = t′. We may be interested in assessing how exposure to this set 

of chemicals at this specific time point influences values of the outcome Y at a later time. 

The group VI measure provided by random forests allows estimation of the group/

cumulative effect of these C chemicals (at a fixed time point) on the outcome. For each time 

point (t = 1, 2, ….,T), group VI can be computed. Together, these group VI measures 

provide a way of delineating the time-varying effect of the mixture of chemicals on the 

outcome.

Additionally, the statistical significance of the VI measures can be estimated through a 

permutation testing procedure described below:

1. Compute the VI of the variable(s) of interest in the current dataset

2. In the original data, randomly permute the outcome to produce a new dataset

3. Carry out Step 1 on the new dataset from Step 2 and record the new VI

4. Repeat Steps 2–3 H times (where H is typically a large number, e.g. 500).

5. Estimate the empirical p-value of the VI as the number of iterations in which the 

VI derived from permuted data exceeded the VI computed from the original 

(unpermuted) data:

(8)

1.2.3 Interpretation of importance measures produced by Tree-based DLMs—
For a combination of chemicals/pollutants measured at a specific time point, the group VI 

measure defined above quantifies the overall mixture effect at that time point. Note that this 

measure conveys no information about the directionality of the mixture effect. Group VI 
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measures only quantify the combined explanatory power of the chemical mixtures for the 

outcome. In other words, each component of the mixture might have positive or negative 

effects, and the overall effect might have a complex response surface, but the group VI only 

measures the cumulative magnitude of this effect. Note that this limitation is shared also by 

the Lagged WQS approach. Both techniques proposed in this paper are designed primarily 

to quantify the magnitude of the time-varying joint effect of multiple exposures on an 

outcome. They characterize the overall, combined effect of multiple exposures on the 

outcome, but neither is able to provide a more nuanced delineation of the mixture effect, e.g. 

disentangling which exposure alters the effect of other exposure(s) on the outcome. This 

level of detail likely requires mapping out the multidimensional exposure-response surface, a 

challenging undertaking particularly in light of the time-varying nature of the mixture 

effects.

Note that unlike Lagged WQS which attempts to model a series of longitudinal exposure 

measurements using a smooth function of time, tree-based DLM approach requires a series 

of measurements at discrete time points that are the same (or roughly so) across all subjects. 

Many environmental exposure designs adhere to this discrete time structure. However, for 

the application of tree-based DLMs to exposure measurements with complex and/or 

irregular timing patterns (such as the motivating example described in the Introduction), 

binning the measurements into a series time windows (that are identical across subjects) is a 

prerequisite step. This allows conversion from a continuous time structure to a discrete time 

structure more suitable for the tree-based DLM approach.

1.3 Simulation studies

Using simulated datasets, we demonstrate the application of each technique and we compare 

their performance with respect to the ability to identify time windows harboring significant 

mixture effects. Simulations were based on a relatively simple scenario with 3 exposure 

variables and 5 time windows. In this scenario, no effects (additive or otherwise) exist at the 

1st, 2nd and 5th time windows. But at the 3rd and 4th time windows, non-zero mixture effects 

exist that are nonlinear. Also, we do not include any covariates, although either technique 

naturally accommodates auxiliary variables of this sort. So overall, our simulation scenario 

describes a simple setting wherein the 3 exposure variables (e.g. chemicals) have no effect at 

the 1st and 2nd time windows, exhibit a non-zero and nonlinear mixture effect at the 3rd and 

4th time windows, and have no effect at the 5th. A real-life situation similar in spirit to this 

simulation scenario could easily be conceived, e.g. during fetal development, exposure to a 

group of 3 chemicals throughout the prenatal period might shape neurodevelopment. 

Further, the cumulative neurobiological effects of this 3-chemical mixture might vary over 

the prenatal period. Say we divide this period into 5 epochs (time windows), one can 

imagine a scenario where neurological development is particularly vulnerable to the 

deleterious effects of these chemicals at the 3rd and 4th epochs, but significantly less so at the 

others.

In our simulation scenario, we assume that the effects at the 3rd and 4th epochs are non-

additive, i.e. they involve synergistic relationships among the chemicals that cannot be 

adequately modeled by approaches assuming additivity (e.g. the classical DLM 

Bello et al. Page 11

Environ Res. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



formulation). The relationship between the exposure levels of the 3 chemicals at the 5 time 

windows was assumed to follow the model below:

(9)

Equation (9) shows the basic generative model for our simulations. Here,  represents the 

measured level of chemical c (c=1,2,3) at time window t (t=1,..,5). For each of the 5 time 

windows, we define a function representing the mixture effect within that window. These 

functions are given by f1, f2,…, f5 in Equation (9) and their functional forms are explicitly 

specified. So in our simulation setup, we are modeling Y (the outcome of interest) as a 

function of exposure to chemicals c = 1,2,3 over the 5 time points, and a residual component 

ε due to random individual variation (noise).

The mixture effect functions ft (t = 1,…,5) are given below:

(10)

(11)

(12)

As the equations show (and as noted earlier), time windows t = 1, 2 and 5 have zero/null 

effects. And at time windows 3 and 4, the non-additive, nonlinear mixture effects are defined 

using the logistic and arctangent functions, respectively. A close inspection of the above 

definitions for f3 and f4 reveal that these functions involve only two of the three chemicals 

(though not the same two), i.e. f3 involves only chemicals 1 and 2, while f4 involves only 

chemicals 2 and 3. This was assumed for simplicity and ease of visualization. The figures 

below show a visual depiction of functions f3 and f4 :

Below, we show how the exposure variables ( ) were randomly generated. The goal was 

to simulate 100 datasets each with a sample size of 200. Each exposure-time variable (i.e. 
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 representing the measured level of chemical c (c=1,2,3) at time window t (t=1,..,5)), 

was generated from a standard normal distribution, i.e.

(13)

For each of the 100 datasets, values of  (c=1 to 3; t=1 to 5) were generated for each of 

the 200 individuals/samples. Since, in practice, exposure levels are generally nonnegative, in 

each of the 100 datasets, we added a constant offset value to each  to produce exposure 

measures that were, at minimum, zero. Note that a viable alternative approach would be to 

generate the  from a log-normal distribution, which various pollutant exposures have 

been observed to follow [24]. However, taking the natural logarithm of log-normally 

distributed exposure values will simply yield the normally-distributed variables used in our 

simulation scenario. Also, in practice, correlations are expected to exist among the exposure 

variables , therefore our simulations incorporated a correlation structure among these 

variables. For the sake of simplicity, we specified a very simple correlation structure wherein 

correlations exist only within lagged measures of each chemical, but not between lagged 

measures of different chemicals, i.e.:

(13a)

The above is the formulation of a block-diagonal first order autoregressive (AR(1)) 

correlation structure, with ρ = 0.2 in our simulations. As is evident from the definition, for 

any pair of lagged values of different chemicals (c ≠ c′), the correlation is zero. However, 

among any pair of lagged exposure values of the same chemical (c = c′), a correlation exists 

which decays exponentially as a function of lag difference, i.e. exposure levels closer in time 

tend to be more correlated than those measured further apart. To impose this correlation 

structure on the simulated exposure values, we use a Cholesky decomposition (see Appendix 

for full details). This transformation is carried out on the lagged exposure values for each 

individual/case across the 100 datasets. Having generated exposures with the desired 

correlation structure, we use these values to generate Y (outcome) values. This was done by 

plugging the  values into the simulation model given in Equation (9) (reproduced 

below):

(14)

As discussed earlier, in our simulation setup, we are modeling Y (the outcome of interest) as 

an explicitly defined function of exposure to chemicals c = 1,2,3 over the 5 time points, and 
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a residual component ε due to random individual variation (noise). In each of the 100 

simulated datasets, the residual ε is independently and identically distributed across the 200 

individuals, with a common standard deviation σ. It is straightforward to see that the 

magnitude of σ controls the signal-to-noise ratio in our simulated data, e.g. a very high value 

of σ (relative to the variation in the signal [the summation term in Equation (14)]) will make 

it more difficult to detect the true underlying exposure-response relationship. The value of σ 
can be chosen by pre-selecting a desired signal-to-noise ratio (SNR) and using the following 

relationship:

(15)

We carried out simulations for two SNR values: 0.5 and 1.

To summarize, we simulated data corresponding to a simple exposure-response scenario 

wherein longitudinal exposure to a 3-chemical mixture affects an outcome Y (Equation (9)). 

Among the exposure values, we defined the simple correlation structure given in (13a) using 

a value of ρ = 0.2. We carried out simulations for two settings of the signal-to-noise ratio: 

SNR = 0.5 and SNR=1.

Data structure—The simulation steps outlined above result in a simple, discrete-time data 

structure, i.e. in each of the 100 simulated datasets, each row represents a unique individual/

subject, with columns representing the outcome and also the exposure levels of each 

chemical at each time point. Specifically, each row represents data for individual i, given by 

{Yi, Xi}, where . As discussed earlier, this discrete time structure is ideal 

for tree-based DLMs. Because the Lagged WQS method is based on a mixed modeling 

framework, the simulated data had to be transformed from the ‘wide’ data format shown 

above (1 row per subject) into a longitudinal data structure (i.e. ‘long’ format). In this 

format, rows are indexed by time and subject, i.e. each row takes the form of: {t, Yi, 

}. Here, t denotes time (t=1,2,3,4 or 5), Yi is the outcome for subject i, and 

the X variables represents levels of the 3 chemicals for subject i at time t. Since there are 5 

time points, this ‘long’ format represents each individual’s data as 5 rows. Next, to mimic 

the continuous time structure seen in longitudinal exposure measurements such as in the 

motivating study described in the Introduction, we made simple modifications to the time 

value across subjects (described below). As discussed earlier, Lagged WQS is especially 

suitable for scenarios where the timing of measurements is not necessary uniform across 

subjects, such as the motivating example described in the Introduction. This is because the 

technique models the longitudinal exposure trajectory as a continuous function of time. 

Therefore, to accommodate this feature, we modified the time measures in our simulated 

data from a discrete time structure to a continuous time structure. For each time point t ∈ {1, 

2,3, 4,5}, let τ ~ Uniform[t −0.5, t + 0.5]. For each individual, we replace each of the integer 

time points t ∈{1, 2,3, 4,5} with a real number time point τ randomly generated from a 
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uniform distribution centered at each t. For example, for time point t=1, we replace this with 

a real number τ that is randomly sampled from a uniform distribution with range 0.5 to 1.5; 

for time point t=2, we replace this with a real number τ randomly sampled from a uniform 

distribution with range 1.5 to 2.5, and so on. These modifications produce an irregular 

timing pattern across subjects, resulting in a temporal distribution akin to a continuous time 

structure. Note that each subject would still have 5 measurements of the 3 chemicals, but the 

timing of each measurement will vary across all subjects.

Comparison of techniques—The performance of Lagged WQS and Tree-based DLMs 

were compared for these simulations. For the purpose of comparison, we also used 

Generalized Additive Models (GAM) with multivariate thin-plate splines [25] (implemented 

in the R package mgcv [26]). This is one of the few established techniques for testing the 

statistical significance of mixture effects. It allows modeling of mixture effects among 

multiple variables using multivariate (high-dimensional) smooth splines. Statistical 

significance of these smooth terms can also be derived. Therefore, just like Lagged WQS 

and Tree-based DLMs, this implementation of GAM also has the capability to produce 

significance measures for mixture effects. For Tree-based DLM and GAM, we used the raw 

simulated data in wide format (i.e. each row represents data for individual i and is given by 

{Yi, Xi}, where the vector ). On the other hand, for Lagged WQS, we used 

the long format (with continuous time structure) described in the previous paragraph. With 

these simulations, we evaluated the performance of Lagged WQS, Tree-based DLMs and 

GAMs in terms of their ability to correctly detect the pre-defined association patterns across 

the 100 simulated datasets. For each of the simulated datasets, we obtained p-values 

representing the significance of the mixture effect at the 5 time windows. Across all 100 

simulated datasets, we recorded, for each time window, the proportion of datasets wherein 

the mixture effect was statistically significant. The goal of this approach is to assess the 

extent to which each method is able to correctly detect (and attribute statistical significance 

to) important mixture effects within critical time windows. Based on our simulation model 

(Equation (9)), we know that mixture effects exist only at time points 3 and 4, and at the 

other time points the effect is zero. We compared the 3 methods on their ability to correctly 

identify these predefined effect patterns.

Note that due to the nonlinear mixture effects in our simulations (specified in Equations (11) 

and (12)), using the classical DLM formulation would be inadequate since it assumes a 

simple linear (additive) association model between lagged exposures and response. Further, 

it does not provide a method for evaluating the joint (mixture) effect of multiple chemicals 

(or other types of exposure). The 3 methods tested in our simulations (Lagged WQS, Tree-

based DLMs, and GAM) all provide a means for assessing the significance of the mixture 

effect of a group of chemicals at multiple time points. On the other hand, using classical 

DLMs, we would only be able to assess significance for individual chemicals (at various 

lags), but not for groups of chemicals. Therefore, classical DLMs are not ideal for the 

current application because they do not have an in-built feature for assessing the statistical 

significance of joint/combined effects from a group of pollutants/chemicals at various time 

points.
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1.4 Real data application

We assessed the performance of Lagged WQS and Tree-based DLMs on data from the Early 

Life Exposures in Mexico to ENvironmental Toxicants (ELEMENT) study. Detailed 

information on the study (including study design and data collection) has been published 

previously [27, 28]. To demonstrate the feasibility of our statistical methods, we used time-

series measures of perinatal (pre-birth and post-birth) exposure to manganese, lead and zinc, 

and a standardized validated childhood neurobehavioral measure. The methods we describe 

here can be readily applied to a larger set of exposures (> 3) as well. Our goal was to test for 

the existence of windows of vulnerability–phases during the perinatal period wherein 

neurological development of children is strongly influenced by levels of exposure to 

manganese, lead and zinc. The key assumption here is that exposure to this multi-pollutant 

mixture during these crucial developmental phases leads to alterations in behavioral and 

emotional functioning that is different to the effect of any single metal exposure alone. We 

used both Lagged WQS and Tree-based DLMs to analyze metal mixture and behavioral 

assessment data, with the aim of identifying putative neurodevelopmental critical windows. 

These models were adjusted for covariates believed to influence childhood behavior: sex of 

child and total schooling of child’s mother, a measure of maternal education level. Metal 

level exposure levels in the children were estimated using a recently developed and validated 

spectrometric technique that analyzes teeth collected from children in the study cohort.

Analysis was carried out using SAS (Cary, NC) [19] and R [29]. Lagged WQS models were 

fit using PROC NLMIXED in SAS, and tree-based DLMs were constructed using the R 

packages randomForest and RFgroove.

RESULTS

2.1 Simulation results

We examined the rate at which each technique reported statistically significant mixture 

effects in each time window. As outlined in the Methods section, we carried out this 

evaluation by summarizing, for each time window, the proportion of the 100 simulated 

datasets in which a statistically significant mixture effect was identified (at the α = 0.05 

significance level). Recall that, based on the simulation configuration, the expectation is that 

the 3rd and 4th time windows harbor statistically significant mixture effects, while the 1st, 

2nd and 5th do not. As discussed in the Methods section, the tree-based DLM and GAM 

techniques were applied to the raw simulated data, which had a discrete time structure (i.e. 

discrete time points t=1,2,3,4 & 5). These methods were used to estimate the mixture effects 

(and corresponding statistical significance) of the 3 pollutants at these 5 time points. For 

these methods, we summarized, for each time window, the proportion of the 100 simulated 

datasets in which a statistically significant mixture effect was identified. On the other hand, 

the Lagged WQS was fitted on the longitudinal version of the simulated data, which had a 

continuous time structure generated from uniform distributions. Recall that Lagged WQS 

technique models the longitudinal mixture effect as a smooth function of time. Specifically, 

it estimates a time-varying regression coefficient representing the mixture effect. Confidence 

intervals for this time-varying coefficient are constructed and the significance of the mixture 
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effect at various time points can be evaluated. This was carried out across the 100 simulated 

datasets.

Results are summarized in Figures 2A and 2B. Note that the plot for Lagged WQS (denoted 

in brown) extends from time 0.5 to 5.5 because of the way the raw simulation data was 

transformed to a continuous time structure (see Methods section). On the other hand, for 

Tree-based DLMs and GAM which used the raw simulation data (which had a discrete, 

uniform time structure), the plots (denoted in yellow and black, respectively) are line 

segments connecting summary estimates at each of the 5 time points. Overall, the results for 

the 3 methods show good mutual agreement, with weak mixture effects at time windows 1,2 

& 5, and overwhelmingly significant mixture effects at time windows 3 & 4.

In Figure 2A (SNR=0.5), we see that all 3 techniques perform reasonably well across the 5 

time points. At the 3rd and 4th time windows, all 3 techniques identified significant effects 

in a majority of the 100 simulated datasets, though Lagged WQS showed lower success rates 

for these periods than the other techniques. At the other time windows, the proportion of the 

100 simulated datasets in which significant effects were (incorrectly) found is generally low, 

with the highest rate observed for GAM at time points 1 & 2.

In Figure 2B (SNR =1), all 3 techniques show higher success rates (relative to the SNR=0.5 

case) at identifying significant mixture effects for time points 3 and 4. For the other time 

points, the rate at which significant effects are (erroneously) found is overall lower 

(compared with the SNR=0.5 case). However, for Lagged WQS, the error rates appear to be 

higher for the last time point.

2.2 Results for analysis of ELEMENT Data

In total, n=133 children had non-missing values for the behavioral measure used as an 

outcome in our analysis. This outcome (a neurobehavioral assessment score) was measured 

once in each child roughly around age 8. Exposures, on the other hand, were measured 

longitudinally. Collectively, measures of manganese, lead and zinc levels spanned the pre- 

and post-natal period, from 4 months pre-birth up to 12 months post-birth. The exposure 

measures are not evenly distributed throughout this period. Certain periods were more 

densely sampled (particularly the last trimester and first 3 months after birth) across the 

cohort. Time periods at the extremes (early in the second trimester and after the first year 

postnatally) have missing values because only certain teeth type undergo primary dentinal 

mineralization during this period. We had mostly incisors analyzed, which capture the period 

of approximately 3 months postnatally – this led to a drop in sample size around this period. 

The plot below (Figure 3) provides a visual summary of the longitudinal variation in 

missingness rates.

As discussed earlier, Lagged WQS uses a mixed model framework, a versatile methodology 

that is relatively robust to missing values in the observations, i.e. inference can proceed and 

estimates can be produced without having to explicitly account for the missing values (e.g. 

through imputation). As a result, Lagged WQS can provide reliable and largely bias-free 

estimates of the longitudinal mixture effect across the entire perinatal period despite the fact 

that not all subjects in the data have complete measurements throughout this period. The 
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Tree-based DLM methodology, on the other hand, utilizes the familiar classical DLM 

framework, wherein the entire observation period is divided into a sequence of discrete 

segments (lags) at which measurements of the exposure variable(s) are taken (see Equation 

(3)). For this analysis, we chose time windows/bins of 2 weeks, averaging measurements of 

each metal within each bin. This produced a data structure where each row represented an 

individual and each column contained the 2-week average exposure level of a specific metal 

(manganese, lead or zinc). Every subject in the sample must have a complete set of 

measurements across all columns since this modeling framework does not naturally 

accommodate missing values. So due to the missing values in our data, inference via Tree-

based DLMs could only proceed via imputation or complete-case analysis. The low number 

of subjects with complete data across the entire observation period precluded the use of 

complete-case analysis. Therefore, we chose the strategy of confining our analysis to the 

most densely sampled span of time within the perinatal period (depicted in Figure 3 as the 

region bounded by the dashed red lines [126 days pre-birth to 112 days post-birth]). For 

individuals with at least some measurements within this restricted time frame, we carried out 

imputations of missing measurements using kernel regression [30] with bandwidth 

specification via the method of Racine and Li (2004) [31].

Using this scheme, we were able to retain a large proportion of the original sample of 

subjects (n=130) for the tree-based DLM analysis. This scheme was not needed for the 

Lagged WQS, i.e. we were able to implement this technique on the raw (unimputed) data 

across the full observation period (4 months pre-birth to 12 months post-birth).

To get a sense of the correlation structure among the 3 metals, we computed Spearman 

correlations between each pair and averaged over time. The highest correlation was observed 

between lead and zinc (mean=0.47, SD=0.039). The correlation between manganese and 

zinc was 0.34 (SD=0.057), while the manganese-lead correlation was 0.17 (SD=0.051).

Both Lagged WQS and Tree-based DLM techniques were able to identify time windows/

bins wherein mixture effects (of manganese, lead and zinc) where significantly associated 

with the neurobehavioral outcome. The results are summarized in Figures 4A (for Lagged 

WQS) and 4B (for Tree-based DLM).

For Lagged WQS, the first plot in Figure 4A shows the time-varying mixture effects. The 

second plot in Figure 4A shows the contributions of the individual metals to the observed 

mixture effect in the first plot. We observe significant mixture effects from 0–6 months post 

birth, and then again after the 8-month mark. From the second plot in Figure 4A, it can be 

surmised that the effect at the first critical window (0–6 months) appears to be largely driven 

by manganese while both lead and manganese are dominant drivers after the 8-month point.

For the Tree-based DLM approach, the upper panel of Figure 4B summarizes the 

longitudinal joint effect within the restricted time frame chosen for this method (4 months 

pre-birth to nearly 4 months post-birth). We see significant mixture effects at/around birth, 

and also at 2 and 3–4 months post-birth. This shows some agreement with the Lagged WQS 

results, despite the different time frames in each analysis. The lower panel in Figure 4B 

shows the effects of each individual metal, revealing the greater contribution of Mn to the 
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effect detected at the critical periods. Note that the units on the y-axis in both plots are 

arbitrary units of single and group Variable Importance measures produced by the RF 

algorithm–they do not have any particular interpretation.

DISCUSSION

While useful, classical DLMs have a number of shortcomings, one of which is that they 

assume linear associations between lagged exposure measures and the outcome of interest; 

this may not accurately represent the true underlying association structure. This shortcoming 

also means that the complex, potentially non-linear effects of multi-chemical mixtures on an 

outcome of interest cannot be properly estimated. Further, as we mention in the Methods 

section, classical DLMs do not have a built-in feature for assessing the statistical 

significance of joint/combined effects of a group of variables (representing pollutants/

chemicals) at various time points. One standard method that does is based on generalized 

additive models (GAMs) that allow construction of multi-dimensional splines. In this study, 

we compared our 2 novel techniques to this standard methodology. GAMs were used to 

model the mixture effect of 3 chemicals (at discrete time points) using thin-plate splines. 

Thin-plate splines result from the extension of one-dimensional smoothing splines to 

multivariate settings. This allows modeling of non-linear, high-dimensional surfaces, such as 

those estimating the multi-pollutant mixture effects. We found that our 2 novel techniques 

showed comparable performance to GAMs for the 3-chemical, 5 time-point simulations. 

However, we found that GAMs break down when we attempted to model mixture effects for 

more than 3 chemicals (or for several time points) – most models failed to converge due to 

issues with overparameterization. Because of the curse of dimensionality, the computational 

complexity of estimating parameters associated with multivariate thin-plate splines increases 

substantially with each additional dimension. In our studies, we have found that both Lagged 

WQS and tree-based DLM techniques are able to handle larger sets of pollutants. Lagged 

WQS constructs a weighted sum of chemical exposure levels (see Equation (2b)) which it 

uses as an index, thereby reducing the dimensionality of the pollutant/chemical mixture. 

This makes it relatively more robust to the curse of dimensionality. Tree-based DLMs utilize 

random forests, a nonparametric approach that is well-known for its ability to handle high-

dimensional data. Another issue with the GAM approach is that, in addition to being limited 

by the number of pollutants, its feasibility is also constrained by number of time points. For 

example, for the ELEMENT study analysis described earlier, we found that GAM was 

overparameterized when applied to the binned version of the data (consisting of averaged 

measures of manganese, lead and zinc over seventeen 2-week time windows, for 130 

children). Recall that this version of the data resulted from binning the irregular, fine-scale 

longitudinal metal exposure measurements into a series of seventeen 2-week time windows. 

The tree-based DLM approach was applied to this data, and the significance of the multi-

pollutant effect at each of the 17 time points was readily estimated (see Figure 4B). 

However, this was not feasible using GAMs, as our attempt to construct 17 separate three-

dimensional thin-plate splines (each one estimating the multi-pollutant effect among the 3 

chemicals at each time point) failed due to overparameterization. One solution would be to 

decrease the number of time points by using larger time windows, however since the goal of 
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our analysis was to identify perinatal periods of vulnerability, using larger time windows 

would likely reduce the power to detect such periods.

A key motivation underlying the decision to present these 2 techniques in the same 

communication is their complementary nature. The main strength of the Lagged WQS 

approach is its reliance on the mixed modeling framework, which makes it ideal for analysis 

of longitudinal mixture effects. Moreover, missing values in the exposure data do not need to 

be explicitly accounted for. The use of the WQS index allows the mixture effect to be 

summarized via a unidimensional construct and enables the variation of this effect over time 

to be quantified. These features facilitate the identification of critical periods wherein the 

mixture effect size is significant. In addition, the method provides information about which 

individual exposure components are driving this effect. The contribution of each exposure 

variable to the overall mixture effect size can be delineated by using the time-varying WQS 

weight estimates. An important consideration here is the direction of effect for each 

exposure, i.e. whether each exposure is positively or negatively correlated with the outcome. 

Because of the way the WQS method aggregates exposure variables to form an index [32], 

individual exposure effects should be homogeneous with respect to directionality of the 

relationship with the outcome. A degree of signal attenuation is expected at time points 

wherein some exposure variables are positively associated with the outcome and others are 

negatively associated.

The tree-based DLM technique provides an extension to the classical DLM framework by 

using random forests in lieu of parametric regression methodology. This provides a flexible 

nonparametric alternative that can model nonlinear exposure-response relationships and 

handle high-dimensional data (e.g. where the number of lagged exposure variables exceeds 

the sample size [the p > n case]). Just like in classic DLMs, each independent variable in the 

model represents the measured level of an exposure at a certain time point/window [33]. The 

key improvement over classic DLMs that is offered by Tree-based DLMs is that they can 

evaluate the statistical significance of the joint effect of a group of variables on the outcome, 

at various time points. Tree-based DLMs estimate the mixture effect size at each time 

window by assessing the ‘group importance’ of the variables representing measured levels of 

all chemicals under consideration at that time window. As discussed earlier, this group 

importance measure at each time window quantifies the joint explanatory power of the 

chemicals/exposures measured in that period. Recall that the group importance of a set of 

variables is derived by measuring the loss of predictive/explanatory power (for the outcome) 

incurred by the removal (via permutation) of those variables from the random forest model. 

The inherent benefit of this approach is that it does not require all exposure variables to have 

the same direction of association (all positive or all negative) with the outcome, unlike the 

Lagged WQS approach. Since the focus is on explanatory power, a chemical/exposure that is 

strongly predictive of the outcome (in a certain time window) will contribute to the overall 

group importance measure regardless of whether the direction of association is positive or 

negative. This mode of mixture effect size assessment is, however, limited. In any 

conceivable application of multi-exposure DLMs, the direction of effect for each exposure 

would be a highly important piece of information. Another limiting feature of tree-based 

DLM is that it cannot handle missing values in exposure levels. Its implementation requires 

that all observations have complete data within all time windows. This makes tree-based 
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DLMs less tenable for exposure data with incomplete measurements in certain time 

windows. In the real data application described in this study (ELEMENT data), we handled 

this issue by restricting our analysis to the largest contiguous block of time containing 

complete exposure measurements across all the chemicals.

Here, we provide a few recommendations for researchers interested in implementing these 

methods. The first issue is the type of data and the longitudinal lag structure. The tree-based 

DLM technique uses a discrete-time modeling structure, so it requires exposure data to be 

structured as a series of lagged exposure measures, each one representing a discrete time 

point or window. Further, the lag times should be identical (or close to identical) for all 

subjects. This means that for datasets with irregularly-timed exposure measures distributed 

non-uniformly across subjects (such as the ELEMENT data used in this study), the use of 

Tree-based DLM requires binning of irregularly timed exposure measurements into a series 

of discrete time windows that are uniform across all subjects. If there are multiple measures 

within a time window/bin, the average (or another suitable summary statistic) of these 

measures can be taken. Each subject’s exposure data is thus represented as a series of 

variables, each one of which represents the mean level of exposure to a specific pollutant/

chemical within a specific time window. A potential downside of this approach is that 

depending on the chosen size of these time bins/windows and the number of pollutants/

chemicals in the mixture, the dimensionality of the data could increase due to the large 

number of variables. However, random forests are well-suited to handle high-dimensional 

problems, so this does not pose a serious limitation in most practical scenarios. Another 

potential limitation of this approach is that missing values are not permitted in any of the 

time windows/bins. The Random Forest algorithm by default does not permit missing 

values, so subjects with one or more missing values typically cannot be included in the 

analysis. Hence tree-based DLM approach is not well-suited for data with missing values of 

lagged exposures. We note, however, that the classical DLM approach is also not equipped 

to handle data with missingness in the lagged exposure measures. Such data could, however, 

be analyzed using Lagged WQS. Unlike Tree-based DLM which uses a discrete lag structure 

and requires continuous, non-uniform measures to be binned, Lagged WQS is more flexible. 

Because Lagged WQS is based on the mixed model framework, it is more robust to missing 

values at certain time points. Therefore, Lagged WQS is a particularly attractive option for 

datasets with irregularly-timed exposure measures, i.e. where the timing of the lagged 

measures varies from subject to subject. One additional consideration, in the choice of which 

approach to use, is computational expense. Tree-based DLM, compared to Lagged WQS, is 

a computationally intensive technique. It relies on random forests, which use a heuristic/

greedy top-down recursive partitioning approach with thousands of iterations. In addition, to 

determine significance of mixture effects within each time window/bin, the tree-based DLM 

approach relies on permutation tests, and this further increases the computational burden.

In this study, we have introduced two techniques for evaluating the effect of longitudinal 

multi-pollutant exposure on a health outcome. We examined the feasibility and performance 

of both proposed techniques using simulated data generated from a simple 3-pollutant model 

with non-additive, time-varying mixture effects. Based on encouraging results from these 

simulations, and also from the ELEMENT study analysis, future work will focus on further 

assessment of the performance of our multi-exposure DLM techniques in more complex 
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settings featuring a larger set of chemicals/exposures and more elaborate longitudinal 

patterns of non-additive mixture effects. The work presented herein represents a crucial first 

step towards characterization, validation and refinement of these techniques.
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APPENDIX

In the simulation studies described in Section 1.3, we impose a block-diagonal first order 

autoregressive on the simulated exposure data. Below, we outline each step in this 

procedure:

(13b)
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(13c)

(13d)

The 1 × 15 matrix X represents a vector of exposure values for 1 individual/case. The 5 × 5 

matrix A represents the desired correlation structure among lagged values of each chemical 

over the 5 time points. The full correlation matrix across all 3 chemicals and all 5 time 

points is given by Q, a 15 × 15 correlation matrix. Next, we carry out a Cholesky 

decomposition of Q to produce the 15 × 15 lower-triangular matrix L which has the 

following relationship with Q:

(13e)

L is known as the Cholesky factor of correlation matrix Q, and may be interpreted as the 

‘square root’ of Q. Note that this decomposition is possible because Q, as defined above, is 

positive-definite. L is then used to transform X so that it exhibits the desired correlation 

structure:

(13f)
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Figure 1. 
Figure 1A. 3D plots of functions f3 and f4 in the simulation model (Equation 9). These plots 

show the response surfaces of the mixture effects within time windows 3 and 4
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Figure 2. 
Figure 2A: Summary of simulation results for SNR=0.5. The plot shows, for each time 

point, the proportion of simulated datasets wherein significant mixture effects were found.

Figure 2B. Summary of simulation results for SNR=1.0. The plot shows, for each time point, 

the proportion of simulated datasets wherein significant mixture effects were found.
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Figure 3. 
ELEMENT Study -The entire perinatal period was divided into a series of contiguous 2-

week bins, and the percentage of children with at least one Mn/Pb/Zn exposure measurement 

within each bin is depicted below. The dashed red lines demarcate the restricted time frame 
used in the Tree-based DLMs
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Figure 4. 
Figure 4A. Lagged WQS: Time-varying joint/mixture and individual effects of Mn, Pb and 

Zn on behavioral outcome. On the first plot, the y-axis represents the time-varying 

coefficient of the mixture effect. Yellow: 95% CIs unadjusted for multiple testing, adjusted 

for intra-subject correlations; bars: Holm-Bonferroni adjustment for multiple testing

Figure 4B. Tree-based DLMs - Time-varying individual and joint/mixture effects of Mn, Pb 

and Zn on neuro-behavioral outcome. In the upper panel, time windows with significant 

mixture/joint effects are denoted by red circles. Orange circles denote marginally significant 

(at the 10% significance level) mixture effects. The lower panel plot shows the contributions 

of each chemical over time.
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