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Abstract

Recurrent neural networks (RNNs) process input text sequentially and model the conditional 

transition between word tokens. In contrast, the advantages of recursive networks include that they 

explicitly model the compositionality and the recursive structure of natural language. However, the 

current recursive architecture is limited by its dependence on syntactic tree. In this paper, we 

introduce a robust syntactic parsing-independent tree structured model, Neural Tree Indexers 

(NTI) that provides a middle ground between the sequential RNNs and the syntactic tree-based 

recursive models. NTI constructs a full n-ary tree by processing the input text with its node 

function in a bottom-up fashion. Attention mechanism can then be applied to both structure and 

node function. We implemented and evaluated a binary-tree model of NTI, showing the model 

achieved the state-of-the-art performance on three different NLP tasks: natural language inference, 

answer sentence selection, and sentence classification, outperforming state-of-the-art recurrent and 

recursive neural networks 1.

1 Introduction

Recurrent neural networks (RNNs) have been successful for modeling sequence data 

(Elman, 1990). RNNs equipped with gated hidden units and internal short-term memories, 

such as long short-term memories (LSTM) (Hochreiter and Schmidhuber, 1997) have 

achieved a notable success in several NLP tasks including named entity recognition (Lample 

et al., 2016), constituency parsing (Vinyals et al., 2015), textual entailment recognition 

(Rocktäschel et al., 2016), question answering (Hermann et al., 2015), and machine 

translation (Bahdanau et al., 2015). However, most LSTM models explored so far are 

sequential. It encodes text sequentially from left to right or vice versa and do not naturally 

support compositionality of language. Sequential LSTM models seem to learn syntactic 

structure from the natural language however their generalization on unseen text is relatively 

poor comparing with models that exploit syntactic tree structure (Bowman et al., 2015b).

Unlike sequential models, recursive neural networks compose word phrases over syntactic 

tree structure and have shown improved performance in sentiment analysis (Socher et al., 

2013). However its dependence on a syntactic tree architecture limits practical NLP 

applications. In this study, we introduce Neural Tree Indexers (NTI), a class of tree 

structured models for NLP tasks. NTI takes a sequence of tokens and produces its 

representation by constructing a full n-ary tree in a bottom-up fashion. Each node in NTI is 

1Code for the experiments and NTI is available at https://bitbucket.org/tsendeemts/nti
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associated with one of the node transformation functions: leaf node mapping and non-leaf 

node composition functions. Unlike previous recursive models, the tree structure for NTI is 

relaxed, i.e., NTI does not require the input sequences to be parsed syntactically; and 

therefore it is flexible and can be directly applied to a wide range of NLP tasks beyond 

sentence modeling.

Furthermore, we propose different variants of node composition function and attention over 

tree for our NTI models. When a sequential leaf node transformer such as LSTM is chosen, 

the NTI network forms a sequence-tree hybrid model taking advantage of both conditional 

and compositional powers of sequential and recursive models. Figure 1 shows a binary-tree 

model of NTI. Although the model does not follow the syntactic tree structure, we 

empirically show that it achieved the state-of-the-art performance on three different NLP 

applications: natural language inference, answer sentence selection, and sentence 

classification.

2 Related Work

2.1 Recurrent Neural Networks and Attention Mechanism

RNNs model input text sequentially by taking a single token at each time step and producing 

a corresponding hidden state. The hidden state is then passed along through the next time 

step to provide historical sequence information. Although a great success in a variety of 

tasks, RNNs have limitations (Bengio et al., 1994; Hochreiter, 1998). Among them, it is not 

efficient at memorizing long or distant sequence (Sutskever et al., 2014). This is frequently 

called as information flow bottleneck. Approaches have therefore been developed to 

overcome the limitations. For example, to mitigate the information flow bottleneck, 

Bahdanau et al. (2015) extended RNNs with a soft attention mechanism in the context of 

neural machine translation, leading to improved the results in translating longer sentences.

RNNs are linear chain-structured; this limits its potential for natural language which can be 

represented by complex structures including syntactic structure. In this study, we propose 

models to mitigate this limitation.

2.2 Recursive Neural Networks

Unlike RNNs, recursive neural networks explicitly model the compositionality and the 

recursive structure of natural language over tree. The tree structure can be predefined by a 

syntactic parser (Socher et al., 2013). Each non-leaf tree node is associated with a node 

composition function which combines its children nodes and produces its own 

representation. The model is then trained by back-propagating error through structures 

(Goller and Kuchler, 1996).

The node composition function can be varied. A single layer network with tanh non-linearity 

was adopted in recursive auto-associate memories (Pollack, 1990) and recursive 

autoencoders (Socher et al., 2011). Socher et al. (2012) extended this network with an 

additional matrix representation for each node to augment the expressive power of the 

model. Tensor networks have also been used as composition function for sentence-level 
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sentiment analysis task (Socher et al., 2013). Recently, Zhu et al. (2015) introduced S-LSTM 

which extends LSTM units to compose tree nodes in a recursive fashion.

In this paper, we introduce a novel attentive node composition function that is based on S-

LSTM. Our NTI model does not rely on either a parser output or a fine-grained supervision 

of non-leaf nodes, both required in previous work. In NTI, the supervision from the target 

labels is provided at the root node. As such, our NTI model is robust and applicable to a 

wide range of NLP tasks. We introduce attention over tree in NTI to overcome the 

vanishing/explode gradients challenges as shown in RNNs.

3 Methods

Our training set consists of N examples , where the input Xi is a sequence of 

word tokens  and the output Yi can be either a single target or a sequence. 

Each input word token wt is represented by its word embedding xt ∈ Rk.

NTI is a full n-ary tree (and the sub-trees can be overlapped). It has two types of 

transformation function: non-leaf node function fnode(h1, …, hc) and leaf node function fleaf 

(xt). fleaf (xt) computes a (possibly nonlinear) transformation of the input word embedding 

xt. fnode(h1, …, hc) is a function of its child nodes representation h1, …, hc, where c is the 

total number of child nodes of this non-leaf node.

NTI can be implemented with different tree structures. In this study we implemented and 

evaluated a binary tree form of NTI: a non-leaf node can take in only two direct child nodes 

(i.e., c = 2). Therefore, the function fnode(hl, hr) composes its left child node hl and right 

child node hr. Figure 1 illustrates our NTI model that is applied to question answering (a) 

and natural language inference tasks (b). Note that the node and leaf node functions are 

neural networks and are the only training parameters in NTI.

We explored two different approaches to compose node representations: an extended LSTM 

and attentive node composition functions, to be described below.

3.1 Non-Leaf Node Composition Functions

We define two different methods for non-leaf node function fnode(hl, hr).

LSTM-based Non-leaf Node Function (S-LSTM)—We initiate fnode(hl, hr) with 

LSTM. For non-leaf node, we adopt S-LSTM Zhu et al. (2015), an extension of LSTM to 

tree structures, to learn a node representation by its children nodes. Let  and  be 

vector representations and cell states for the left and right children. An S-LSTM computes a 

parent node representation  and a node cell state  as

(1)
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(2)

(3)

(4)

(5)

(6)

where  and biases (for brevity we eliminated the bias terms) are the 

training parameters. σ and ⊙ denote the element-wise sigmoid function and the element-

wise vector multiplication. Extension of S-LSTM non-leaf node function to compose more 

children is straightforward. However, the number of parameters increases quadratically in S-

LSTM as we add more child nodes.

Attentive Non-leaf Node Function (ANF)—Some NLP applications (e.g., QA and 

machine translation) would benefit from a dynamic query dependent composition function. 

We introduce ANF as a new non-leaf node function. Unlike S-LSTM, ANF composes the 

child nodes attentively in respect to another relevant input vector q ∈ Rk. The input vector q 
can be a learnable representation from a sequence representation. Given a matrix SANF ∈ 

Rk×2 resulted by concatenating the child node representations  and the third input 

vector q, ANF is defined as

(7)

(8)

(9)
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(10)

where  is a learnable matrix, m ∈ R2 the attention score and α ∈ R2 the 

attention weight vector for each child. fscore is an attention scoring function, which can be 

implemented as a multi-layer perceptron (MLP)

(11)

or a matrix-vector product m = q⊤SANF. The matrices  and  and the 

vector w ∈ Rk are training parameters. e ∈ R2 is a vector of ones and ⊗ the outer product. 

We use ReLU function for non-linear transformation.

3.2 Attention Over Tree

Comparing with sequential LSTM models, NTI has less recurrence, which is defined by the 

tree depth, log(n) for binary tree where n is the length of the input sequence. However, NTI 

still needs to compress all the input information into a single representation vector of the 

root. This imposes practical difficulties when processing long sequences. We address this 

issue with attention mechanism over tree. In addition, the attention mechanism can be used 

for matching trees (described in Section 4 as Tree matching NTI) that carry different 

sequence information. We first define a global attention and then introduce a tree attention 

which considers the parent-child dependency for calculation of the attention weights.

Global Attention—An attention neural network for the global attention takes all node 

representations as input and produces an attentively blended vector for the whole tree. This 

neural net is similar to ANF. Particularly, given a matrix SGA ∈ Rk×2n−1 resulted by 

concatenating the node representations h1, …, h2n−1 and the relevant input representation q, 

the global attention is defined as

(12)

(13)

(14)
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(15)

where  and  are training parameters and α ∈ R2n−1 the attention weight 

vector for each node. This attention mechanism is robust as it globally normalizes the 

attention score m with softmax to obtain the weights α. However, it does not consider the 

tree structure when producing the final representation htree.

Tree Attention—We modify the global attention network to the tree attention mechanism. 

The resulting tree attention network performs almost the same computation as ANF for each 

node. It compares the parent and children nodes to produce a new representation assuming 

that all node representations are constructed. Given a matrix STA ∈ Rk×3 resulted by 

concatenating the parent node representation , the left child  and the right child  and 

the relevant input representation q, every non-leaf node  simply updates its own 

representation by using the following equation in a bottom-up manner.

(16)

(17)

(18)

(19)

and this equation is similarity to the global attention. However, now each non-leaf node 

attentively collects its own and children representations and passes towards the root which 

finally constructs the attentively blended tree representation. Note that unlike the global 

attention, the tree attention locally normalizes the attention scores with softmax.

4 Experiments

We describe in this section experiments on three different NLP tasks, natural language 

inference, question answering and sentence classification to demonstrate the flexibility and 

the effectiveness of NTI in the different settings.

We trained NTI using Adam (Kingma and Ba, 2014) with hyperparameters selected on 

development set. The pre-trained 300-D Glove 840B vectors (Pennington et al., 2014) were 

obtained for the word embeddings2. The word embeddings are fixed during training. The 
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embeddings for out-of-vocabulary words were set to zero vector. We pad the input sequence 

to form a full binary tree. A padding vector was inserted when padding. We analyzed the 

effects of the padding size and found out that it has no influence on the performance (see 

Appendix 5.3). The size of hidden units of the NTI modules were set to 300. The models 

were regularized by using dropouts and an l2 weight decay.3

4.1 Natural Language Inference

We conducted experiments on the Stanford Natural Language Inference (SNLI) dataset 

(Bowman et al., 2015a), which consists of 549,367/9,842/9,824 premise-hypothesis pairs for 

train/dev/test sets and target label indicating their relation. Unless otherwise noted, we 

follow the setting in the previous work (Mou et al., 2016; Bowman et al., 2016) and use an 

MLP for classification which takes in NTI outputs and computes the concatenation 

[ ], absolute difference  and elementwise product  of 

the two sentence representations. The MLP has also an input layer with 1024 units with 

ReLU activation and a softmax output layer. We explored nine different task-oriented NTI 

models with varying complexity, to be described below. For each model, we set the batch 

size to 32. The initial learning, the regularization strength and the number of epoch to be 

trained are varied for each model.

NTI-SLSTM—This model does not rely on fleaf transformer but uses the S-LSTM units for 

the non-leaf node function. We set the initial learning rate to 1e-3 and l2 regularizer strength 

to 3e–5, and train the model for 90 epochs. The neural net was regularized by 10% input 

dropouts and the 20% output dropouts.

NTI-SLSTM-LSTM—We use LSTM for the leaf node function fleaf. Concretely, the LSTM 

output vectors are given to NTI-SLSTM and the memory cells of the lowest level S-LSTM 

were initialized with the LSTM memory states. The hyper-parameters are the same as the 

previous

NTI-SLSTM node-by-node global attention—This model learns inter-sentence 

relation with the global attention over premise-indexed tree, which is similar to word-by-

word attention model of Rocktäschel et al. (2016) in that it attends over the premise tree 

nodes at every time step of hypothesis encoding. We tie the weight parameters of the two 

NTI-SLSTMs for premise and hypothesis and no fleaf transformer used. We set the initial 

learning rate to 3e–4 and l2 regularizer strength to 1e–5, and train the model for 40 epochs. 

The neural net was regularized by 15% input dropouts and the 15% output dropouts.

NTI-SLSTM node-by-node tree attention—This is a variation of the previous model 

with the tree attention. The hyper-parameters are the same as the previous model.

NTI-SLSTM-LSTM node-by-node global attention—In this model we include LSTM 

as the leaf node function fleaf. Here we initialize the memory cell of S-LSTM with LSTM 

2http://nlp.stanford.edu/projects/glove/
3More detail on hyper-parameters can be found in code. model.
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memory and hidden/memory state of hypothesis LSTM with premise LSTM (the later 

follows the work of (Rocktäschel et al., 2016)). We set the initial learning rate to 3e–4 and l2 

regularizer strength to 1e–5, and train the model for 10 epochs. The neural net was 

regularized by 10% input dropouts and the 15% output dropouts.

NTI-SLSTM-LSTM node-by-node tree attention—This is a variation of the previous 

model with the tree attention. The hyper-parameters are the same as the previous model.

Tree matching NTI-SLSTM-LSTM global attention—This model first constructs the 

premise and hypothesis trees simultaneously with the NTI-SLSTM-LSTM model and then 

computes their matching vector by using the global attention and an additional LSTM. The 

attention vectors are produced at each hypothesis tree node and then are given to the LSTM 

model sequentially. The LSTM model compress the attention vectors and outputs a single 

matching vector, which is passed to an MLP for classification. The MLP for this tree 

matching setting has an input layer with 1024 units with ReLU activation and a softmax 
output layer.

Unlike Wang and Jiang (2016)’s matching LSTM model which is specific to matching 

sequences, we use the standard LSTM units and match trees. We set the initial learning rate 

to 3e–4 and l2 regularizer strength to 3e–5, and train the model for 20 epochs. The neural net 

was regularized by 20% input dropouts and the 20% output dropouts.

Tree matching NTI-SLSTM-LSTM tree attention—We replace the global attention 

with the tree attention. The hyper-parameters are the same as the previous model.

Full tree matching NTI-SLSTM-LSTM global attention—This model produces two 

sets of the attention vectors, one by attending over the premise tree regarding each 

hypothesis tree node and another by attending over the hypothesis tree regarding each 

premise tree node. Each set of the attention vectors is given to a LSTM model to achieve full 

tree matching. The last hidden states of the two LSTM models (i.e. one for each attention 

vector set) are concatenated for classification. The training weights are shared among the 

LSTM models The hyper-parameters are the same as the previous model.4

Table 1 shows the results of our models. For comparison, we include the results from the 

published state-of-the-art systems. While most of the sentence encoder models rely solely on 

word embeddings, the dependency tree CNN and the SPINN-PI models make use of 

sentence parser output; which present strong baseline systems. The last set of methods 

designs inter-sentence relation with soft attention (Bahdanau et al., 2015). Our best score on 

this task is 87.3% accuracy obtained with the full tree matching NTI model. The previous 

best performing model on the task performs phrase matching by using the attention 

mechanism.

Our results show that NTI-SLSTM improved the performance of the sequential LSTM 

encoder by approximately 2%. Not surprisingly, using LSTM as leaf node function helps in 

4Computational constraint prevented us from experimenting the tree attention variant of this model
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learning better representations. Our NTI-SLSTM-LSTM is a hybrid model which encodes a 

sequence sequentially through its leaf node function and then hierarchically composes the 

output representations. The node-by-node attention models improve the performance, 

indicating that modeling inter-sentence interaction is an important element in NLI. 

Aggregating matching vector between trees or sequences with a separate LSTM model is 

effective. The global attention seems to be robust on this task. The tree attention were not 

helpful as it normalizes the attention scores locally in parent-child relationship.

4.2 Answer Sentence Selection

For this task, a model is trained to identify the correct sentences that answer a factual 

question, from a set of candidate sentences. We experiment on WikiQA dataset constructed 

from Wikipedia (Yang et al., 2015). The dataset contains 20,360/2,733/6,165 QA pairs for 

train/dev/test sets.

We used the same setup in the language inference task except that we replace the softmax 
layer with a sigmoid layer and model the following conditional probability distribution.

(20)

where  and  are the question and the answer encoded vectors and oQA denotes the 

output of the hidden layer of the MLP. For this task, we use NTI-SLSTM-LSTM to encode 

answer candidate sentences and NTI-ANF-LSTM to encode the question sentences. Note 

that NTI-ANF-LSTM is relied on ANF as the non-leaf node function. q vector for NTI-

ANF-LSTM is the answer representation produced by the answer encoding NTI-SLSTM-

LSTM model. We set the batch size to 4 and the initial learning rate to 1e–3, and train the 

model for 10 epochs. We used 20% input dropouts and no l2 weight decay. Following 

previous work, we adopt MAP and MRR as the evaluation metrics for this task.5

Table 2 presents the results of our model and the previous models for the task.6 The 

classifier with handcrafted features is a SVM model trained with a set of features. The 

Bigram-CNN model is a simple convolutional neural net. The Deep LSTM and LSTM 

attention models outperform the previous best result by a large margin, nearly 5–6%. NASM 

improves the result further and sets a strong baseline by combining variational autoencoder 

(Kingma and Welling, 2014) with the soft attention. In NASM, they adopt a deep three-layer 

LSTM and introduced a latent stochastic attention mechanism over the answer sentence. Our 

NTI model exceeds NASM by approximately 0.4% on MAP for this task.

4.3 Sentence Classification

Lastly, we evaluated NTI on the Stanford Sentiment Treebank (SST) (Socher et al., 2013). 

This dataset comes with standard train/dev/test sets and two subtasks: binary sentence 

classification or fine-grained classification of five classes. We trained our model on the text 

5We used trec eval script to calculate the evaluation metrics
6Inclusion of simple word count feature improves the performance by around 0.15–0.3 across the board

Munkhdalai and Yu Page 9

Proc Conf Assoc Comput Linguist Meet. Author manuscript; available in PMC 2017 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



spans corresponding to labeled phrases in the training set and evaluated the model on the full 

sentences.

We use NTI-SLSTM and NTI-SLSTM-LSTM models to learn sentence representations for 

the task. The sentence representations were passed to a two-layer MLP for classification. We 

set the batch size to 64, the initial learning rate to 1e–3 and l2 regularizer strength to 3e–5, 

and train each model for 10 epochs. The NTI-SLSTM model was regularized by 10%/20% 

of input/output and 20%/30% of input/output dropouts and the NTI-SLSTM-LSTM model 

20% of input and 20%/30% of input/output dropouts for binary and fine-grained settings.

NTI-SLSTM-LSTM (as shown in Table 5) set the state-of-the-art results on both subtasks. 

Our NTI-SLSTM model performed slightly worse than its constituency tree-based counter 

part, CT-LSTM model. The CT-LSTM model composes phrases according to the output of a 

sentence parser and uses a node composition function similar to S-LSTM. After we 

transformed the input with the LSTM leaf node function, we achieved the best performance 

on this task.

5 Qualitative Analysis

5.1 Attention and Compositionality

To help analyzing the results, we output attention weights by our NTI-SLSTM node-by-node 

global attention model. Figure 2 shows the attention heatmaps for two sentences in the SNLI 

test set. It shows that our model semantically aligns single or multiword expressions (“little 
child” and “toddler”; “rock wall” and “stone”). In addition, our model is able to re-orient its 

attention over different parts of the hypothesis when the expression is more complex. For 

example, for (c) “rock wall in autumn”, NTI mostly focuses on the nodes in depth 1, 2 and 3 

representing contexts related to “a stone”, “leaves.” and “a stone wall surrounded”. 

Surprisingly, attention degree for the single word expression like “stone”, “wall” and 

“leaves” is lower to compare with multiword phrases. Sequence models lack this property as 

they have no explicit composition module to produce such mutiword phrases.

Finally, the most interesting pattern is that the model attends over higher level (low depth) 

tree nodes with rich semantics when considering a (c) longer phrase or (d) full sentence. As 

shown in (d), the NTI model aligns the root node representing the whole hypothesis sentence 

to the higher level tree nodes covering larger sub-trees in the premise. It certainly ignores the 

lower level single word expressions and only starts to attend when the words are collectively 

to form rich semantics.

5.2 Learned Representations of Phrases and Sentences

Using cosine similarity between their representations produced by the NTI-SLSTM model, 

we show that NTI is able to capture paraphrases on SNLI test data. As shown in Table 4, 

NTI seems to distinguish plural from singular forms (similar phrases to “a person”). In 

addition, NTI captures non-surface knowledge. For example, the phrases similar to “park for 
fun” tend to align to the semantic content of fun and park, including “people play frisbee 
outdoors”. The NTI model was able to relate “Santa Claus” to christmas and snow. 

Interestingly, the learned representations were also able to connect implicit semantics. For 
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example, NTI found that “sad, depressed, and hatred” is close to the phrases like “an Obama 
supporter is upset”. Overall the NTI model is robust to the length of the phrases being 

matched. Given a short phrase, NTI can retrieve longer yet semantically coherent sequences 

from the SNLI test set.

In Table 5, we show nearest-neighbor sentences from SNLI test set. Note that the sentences 

listed in the first two columns sound semantically coherent but not the ones in the last 

column. The query sentence “A dog sells a women a hat” does not actually represent a 

common-sense knowledge and this sentence now seem to confuse the NTI model. As a 

result, the retrieved sentence are arbitrary and not coherent.

5.3 Effects of Padding Size

We introduced a special padding character in order to construct full binary tree. Does this 

padding character influence the performance of the NTI models? In Figure 3, we show 

relationship between the padding size and the accuracy on Stanford sentiment analysis data. 

Each sentence was padded to form a full binary tree. The x-axis represents the number of 

padding characters introduced. When the padding size is less (up to 10), the NTI-SLSTM-

LSTM model performs better. However, this model tends to perform poorly or equally when 

the padding size is large. Overall we do not observe any significant performance drop for 

both models as the padding size increases. This suggests that NTI learns to ignore the 

special padding character while processing padded sentences. The same scenario was also 

observed while analyzing attention weights. The attention over the padded nodes was nearly 

zero.

6 Discussion and Conclusion

We introduced Neural Tree Indexers, a class of tree structured recursive neural network. The 

NTI models achieved state-of-the-art performance on different NLP tasks. Most of the NTI 

models form deep neural networks and we think this is one reason that NTI works well even 

if it lacks direct linguistic motivations followed by other syntactic-tree-structured recursive 

models (Socher et al., 2013).

CNN and NTI are topologically related (Kalchbrenner and Blunsom, 2013). Both NTI and 

CNNs are hierarchical. However, current implementation of NTI only operates on non-

overlapping sub-trees while CNNs can slide over the input to produce higher-level 

representations. NTI is flexible in selecting the node function and the attention mechanism. 

Like CNN, the computation in the same tree-depth can be parallelized effectively; and 

therefore NTI is scalable and suitable for large-scale sequence processing. Note that NTI can 

be seen as a generalization of LSTM. If we construct left-branching trees in a bottom-up 

fashion, the model acts just like sequential LSTM. Different branching factors for the 

underlying tree structure have yet to be explored. NTI can be extended so it learns to select 

and compose dynamic number of nodes for efficiency, essentially discovering intrinsic 

hierarchical structure in the input.
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Figure 1. 
A binary tree form of Neural Tree Indexers (NTI) in the context of question answering and 

natural language inference. We insert empty tokens (denoted by –) to the input text to form a 

full binary tree. (a) NTI produces answer representation at the root node. This representation 

along with the question is used to find the answer. (b) NTI learns representations for the 

premise and hypothesis sentences and then attentively combines them for classification. 

Dotted lines indicate attention over premise-indexed tree.
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Figure 2. 
Node-by-node attention visualizations. The phrases shown on the top are nodes from 

hypothesis-indexed tree and the premise tokens are listed along the x-axis. The adjacent cells 

are composed in the top cell representing a binary tree and resulting a longer attention span.
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Figure 3. 
Fine-grained sentiment classification accuracy vs. padding size on test set of SST data.
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Table 1

Training and test accuracy on natural language inference task. d is the word embedding size and |θ|M the 

number of model parameters.

Model d |θ|M Train Test

Classifier with handcrafted features (Bowman et al., 2015a) - - 99.7 78.2

LSTMs encoders (Bowman et al., 2015a) 300 3.0M 83.9 80.6

Dependency Tree CNN encoders (Mou et al., 2016) 300 3.5M 83.3 82.1

NTI-SLSTM (Ours) 300 3.3M 83.9 82.4

SPINN-PI encoders (Bowman et al., 2016) 300 3.7M 89.2 83.2

NTI-SLSTM-LSTM (Ours) 300 4.0M 82.5 83.4

LSTMs attention (Rocktäschel et al., 2016) 100 242K 85.4 82.3

LSTMs word-by-word attention (Rocktäschel et al., 2016) 100 250K 85.3 83.5

NTI-SLSTM node-by-node global attention (Ours) 300 3.5M 85.0 84.2

NTI-SLSTM node-by-node tree attention (Ours) 300 3.5M 86.0 84.3

NTI-SLSTM-LSTM node-by-node tree attention (Ours) 300 4.2M 88.1 85.7

NTI-SLSTM-LSTM node-by-node global attention (Ours) 300 4.2M 87.6 85.9

mLSTM word-by-word attention (Wang and Jiang, 2016) 300 1.9M 92.0 86.1

LSTMN with deep attention fusion (Cheng et al., 2016) 450 3.4M 88.5 86.3

Tree matching NTI-SLSTM-LSTM tree attention (Ours) 300 3.2M 87.3 86.4

Decomposable Attention Model (Parikh et al., 2016) 200 580K 90.5 86.8

Tree matching NTI-SLSTM-LSTM global attention (Ours) 300 3.2M 87.6 87.1

Full tree matching NTI-SLSTM-LSTM global attention (Ours) 300 3.2M 88.5 87.3
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Table 2

Test set performance on answer sentence selection.

Model MAP MRR

Classifier with features (2013) 0.5993 0.6068

Paragraph Vector (2014) 0.5110 0.5160

Bigram-CNN (2014) 0.6190 0.6281

3-layer LSTM (2016) 0.6552 0.6747

3-layer LSTM attention (2016) 0.6639 0.6828

NASM (2016) 0.6705 0.6914

NTI (Ours) 0.6742 0.6884
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Table 3

Test accuracy for sentence classification. Bin: binary, FG: fine-grained 5 classes.

Model Bin FG

RNTN (Socher et al., 2013) 85.4 45.7

CNN-MC (Kim, 2014) 88.1 47.4

DRNN (Irsoy and Cardie, 2015) 86.6 49.8

2-layer LSTM (Tai et al., 2015) 86.3 46.0

Bi-LSTM (Tai et al., 2015) 87.5 49.1

NTI-SLSTM (Ours) 87.8 50.5

CT-LSTM (Tai et al., 2015) 88.0 51.0

DMN (Kumar et al., 2016) 88.6 52.1

NTI-SLSTM-LSTM (Ours) 89.3 53.1
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Table 4

Nearest-neighbor phrases based on cosine similarity between learned representations.

a person park for fun Santa Claus sad, depressed, and hatred

single person an outdoor concert at the park a snowmobile in a blizzard an Obama supporter is upset

a woman kids playing at a park outside a Skier ski - jumping but doesn’t have any money

a young person a mom takes a break in a park A skier preparing a trick crying because he didn’t get cake

a guy people play frisbee outdoors a child is playing on christmas trying his hardest to not fall off

a single human takes his lunch break in the park two men play with a snowman is upset and crying on the ground
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Table 5

Nearest-neighbor sentences based on cosine similarity between learned representations.

A dog mouth holds a retrieved ball. A cat nurses puppies. A dog sells a woman a hat.

A brown and white dog holds a tennis ball in his 
mouth.

A golden retriever nurses some other dogs 
puppies.

The dog is a labrador retriever.

The dog has a ball. A golden retriever nurses puppies. A girl is petting her dog.

The dogs are chasing a ball. A mother dog checking up on her baby puppy. The dog is a shitzu.

A small dog runs to catch a ball. A girl is petting her dog. A husband and wife making pizza.

The puppy is chasing a ball. The hat wearing girl is petting a cat. The dog is a chihuahua.
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