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Introduction

Since the initial prototype of a resting functional magnetic resonance (fMR) imaging 

analysis pipeline by Biswal and colleagues1 in 1995, it has been known that fMR imaging 

data capture spontaneous fluctuations that have an interesting structure (eg, lateralization 

that closely corresponds with functionally known regions such as motor cortex) representing 

brain activity. Extant approaches typically assume little about the temporal evolution of the 

signal or causal circuits, primarily looking only for evidence of coupling between time 

courses, instantiated in statistical correlations. In this realm, data-driven approaches are 

greatly needed to enabling the identification of novel relationships that were not predicted a 

priori. This article discusses 3 different domains: a spatial domain, a temporal domain, and a 

group (subject) domain, considering a spectrum of data-drivenness along temporal and 

spatial domains (Fig. 1). In the spatial domain, models at the most deterministic end of the 

spectrum define a specific region of interest or use a predetermined atlas to investigate 

activation. A more flexible approach is to start with an atlas and perform a constrained 

clustering to allow the data at hand to inform parcellation of activations. In addition, at the 

least predetermined end of the spectrum, fully data-driven discovery of activation patterns 

can be performed. In the temporal domain, a fixed time course can be assumed (as in seed-

based connectivity) that is driven by the data at hand but takes a rigid approach by assuming 

the time course has a specific shape. Alternatively, the focus can be on an indirect measure 
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such as amplitude of low-frequency fluctuation.2 The most flexible approach is to perform 

data-driven discovery of underlying temporal covariance between brain locations. At the 

subject domain, assumptions can be made about subject labels (eg, diagnosis) to create a 

priori groups, but these may be challenged by instability within qualitative criteria,3 poor 

segregation between features of interest (eg, genetic and neuropsychiatric characteristics), or 

subjects with overlapping phenotypes (eg, diagnostic comorbidity). Alternatively, 

investigators can allow for outliers by examining subjects for whom the data suggest that a 

different category may be more appropriate, by using available information to constrain the 

interpretation.4 In addition, fully data-driven discovery of subject groups can be 

performed.5,6

One of the most widely used data-driven approaches applied to fMR imaging data is 

independent component analysis (ICA), which enables fully data-driven discovery of spatial 

patterns, temporal covariance, and even groups, as discussed in this article. ICA is 

exceptionally well suited to fMR imaging analysis given its robustness to artifacts, minimal 

assumptions on the shape of the time course or the spatial patterns, and ease of estimation.

The Basics of Independent Component Analysis Applied to Functional 

Magnetic Resonance Imaging Data

ICA of fMR imaging is most commonly implemented as spatial ICA, in which fMR imaging 

data are separated into a set of maximally spatially independent maps and their associated 

time courses. Here, “map” denotes the collective signal associated with neuronal masses 

with a similar activation pattern, although they may be spatially distant, and the time course 

of the signal from their aggregated voxels over the course of the scan. ICA is a type of 

matrix decomposition.

Here, the fMR imaging data organized as time by voxels are represented as a matrix X, and 

the ICA decomposition is represented as X = A, where A is the unmixing matrix containing 

the time courses, and the rows of S contain the sources (spatial maps). There are several key 

benefits to this approach that have led to the widespread use of ICA. First, it does not require 

an assumption about the shape or nature of the time course for each component. Second, 

each spatial map has a value at each voxel, thus it provides a spatial filtering aspect that can 

be used to1 separate artifactual signal from good signal, or2 separate overlapping but distinct 

patterns arising from the same voxel,3 identify multiple networks that may have overlapping 

nodes. Third, it provides a data-driven, functional parcellation of the brain, thereby reducing 

bias and allowing more flexibility in the consideration of subjects who may vary from 

standard atlases.

The multisubject extension of ICA (group ICA) was first proposed at the turn of the century7 

and has since become the dominant ICA approach for fMR imaging data.8 Group ICA uses 

the fMR imaging data from all subjects to estimate aggregate components (maps that are 

present in all subjects), then subsequently performs an approach called back-reconstruction 

to estimate single-subject maps and time courses. There are multiple ways to perform back-

reconstruction, ranging from regression-based approaches (eg, spatiotemporal or dual 

regression) to inversion-based approaches, which are discussed and compared in detail in a 
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previous work.9 A newer approach to back-reconstruction called group information-guided 

ICA (GIG-ICA), is a fully automated approach that estimates ICA first on the group level, 

then reoptimizes the ICA for each subject. It has been shown to be more sensitive to group 

differences and is better able to capture artifacts.10,11

There have been several more general reviews of ICA of fMR imaging over the years that 

discuss the basic concepts.8,12–14 This article takes a different approach, expanding on 10 

observations that highlight various aspects of the practical use of ICA in analysis that the 

authors think will be of use to readers. The examples provided are largely from our own 

work, but this article draws on other citations in order to represent the extensive amount of 

work performed related to ICA of fMR imaging (eg, querying “independent component” and 

“fMR imaging” in PubMed shows that approximately 2000 articles have been published).

One of the most scientifically appealing attributes of ICA is its ability to extract components 

from the mixed fMR imaging signal that represents large-scale neural networks.

These components are highly tractable to subsequent approaches examining many features 

of their temporal, spatial, and dynamic structures. For example, our own software platform 

GIFT (http://mialab.mrn.org/software/gift/) makes whole-brain networks available to view 

and analyze on a subject, component, or multi-network basis, including grouping into the 

primary neurocognitive functions (Fig. 2), as desired. A wide array of brain function 

measures, ranging from basic individual intranetwork integrity to averaged functional 

connectivity to complex features of internetwork brain dynamism, may be analyzed using 

the extracted components, in tandem with behavioral, psychiatric, demographic, genetic, or 

other subject characteristics. Tools provided in GIFT show the breadth and depth of ICA 

techniques for analyzing single or multiple subjects and static or dynamic connectivity, and 

providing more than a dozen ICA algorithms, including standard algorithms such as 

infomax15 and fastICA16; advanced and more flexible algorithms, such as entropy-bound 

minimization17; and additional advanced algorithms, including independent vector 

analysis18 and constrained ICA.19,20 There are many visualization tools, including single-

component or multi-component viewing tools, statistical analysis of maps and/or time 

courses, and toolboxes for dynamic connectivity and advanced statistical analysis.

Number 1: Independent Component Analysis Approaches are Robust to 

Artifacts

One of the benefits of data-driven approaches is they fit the data better because there are 

more flexible. This flexibility means they fit not only signals of interest but also the artifacts. 

Although this can be a negative issue (eg, fitting outliers in the data better could imply 

overfitting to noise), in the case of blind source separation approaches like ICA, the goal is 

to separate the signals or sources from one another. This separation can be leveraged in 

several ways; for example, ICA can be used to denoise the data (for use in a subsequent 

analysis; eg, by a general linear model [GLM] approach) or this benefit can be exploited 

directly by further analyzing the good components in the context of an ICA analysis. As 

discussed in more detail later, there are now multiple strategies in use, including the use of 

single-subject21-23 or group-level10 ICA denoising. One of the benefits of the GIG-ICA 
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approach is that it can robustly remove the impact of artifacts but does not require time-

consuming training.10 Another benefit is it gives researchers a second opportunity to remove 

motion artifact after the initial data preprocessing. An example of this approach in which 

ground truth maps are compared with the estimated components for several approaches in 

GIG-ICA is shown in Fig. 3.

Importantly, because the components have a value at every voxel, this results in a type of 

spatial filtering (in contrast with approaches based on hard sparsity that move voxels to zero 

for regions not strongly contributing). This spatial filtering enables ICA to both separate 

artifacts from signals of interest10,22 and also separate task-related events that are 

overlapping (and in some cases may even cancel out within a single voxel).24,25 As such, 

ICA is not a pure parcellation scheme in that it requires thresholding to split the brain into 

separate regions, hence straddling the line between lumping and'splitting.26 ICA can be used 

to evaluate the degree to which the fMR imaging response to a task is positive, negative, or 

neutral (Fig. 4).24

Number 2: Independent Component Analysis is Agnostic to the Temporal 

Evolution of Brain Activity Signals

One of the early applications of ICA was to analyze task-related fMR imaging data without 

requiring a specific temporal model. In the early ICA studies of task-based designs, transient 

task-related activity was captured by independent components enabling investigators to 

better understand how the brain is responding in regions where activity does not perfectly 

temporally correspond with the task.27,28 This property is likely one of the main reasons 

ICA is so widely used on resting fMR imaging data, because in this case there is no 

temporal model available because the subject is resting quietly without the presence of an 

externally controlled stimulus. ICA is free of assumptions about the temporal evolution of 

the data. Subject time courses can be unknown, not synchronized across individuals, and 

ICA extracts components that show considerable anatomic and functional structure, with 

some showing bilateral or anterior/posterior symmetry (Fig. 5). This benefit is a direct result 

of the blind source separation (BSS) approach originally motivated by the cocktail party 

problem, in which multiple microphones are recording sound from multiple conversations in 

a room: the goal of BSS is to take the multiple microphone recordings and unmix them to 

get to the original sources without knowing how those sources were generated. This process 

finds a strong parallel in resting-state fMR imaging, in which there is a mixed signal from 

the whole brain arising from many brain areas.

Number 3: Independent Component Analysis Components can be Coupled 

to One Another Spatially and Temporally

Importantly, maximal independence does not remove all information about spatial coupling 

between different components. The linear unmixing assumption identifies components that 

highlight regions showing strong temporal correlation (within network connectivity); 

however, there can still be considerable temporal correlation between components. This 

correlation is known as functional network connectivity (FNC) or among network 
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connectivity.29 It is one of the most powerful ways to use ICA, in that it can provide 

information about which components are fluctuating together, which are anticorrelated with 

one another, and which are not correlated at all; this provides a wealth of information about 

the functional relationships between large-scale neural networks. The observations from an 

FNC analysis also show face validity in that separate components with similar primary 

neurocognitive functions tend to be highly correlated with one another. For example, 

different components may be extracted that are all primarily associated with visual function, 

and these are highly correlated with each other, and it is similar for motor or default mode 

components. These attributes open up the opportunity to examine functional connectivity 

patterns within neurocognitive domains containing multiple networks. In addition, default 

mode components tend to be seen as weakly negatively correlated with other networks, also 

consistent, but extending, early observations about the default mode network (Fig. 6 less 

than). FNC has also been widely used to identify group differences or even individual 

subject classification,30–32 and differences in FNC can profitably be analyzed for 

associations with symptoms or quantitative characteristics.

Previous work has also shown that, despite spatial independence being maximized using 

mutual information, spatial coupling among the components can still be identified, revealing 

interesting hierarchical structure to network relationships33 even across neurocognitive 

domains. When working with ICA components it can be informative to evaluate not only the 

time courses and spatial maps but also their temporal and spatial coupling. Temporal FNC 

and spatial FNC, both dynamic and static, have grown to be among the most widely used 

ways of querying the results from an ICA of fMR imaging analysis.

Number 4: Independent Component Analysis may be Data Driven but it is 

also useful for Hypothesis-Based Studies

This observation may be obvious given the large amount of work on the topic, but an 

important point to keep in mind is that, although ICA represents a data-driven approach for 

parcellating the brain into components, this does not preclude the use of ICA for hypothesis 

testing. In these schemata, ICA acts as an efficient, robust, and flexible way to extract brain 

networks and time courses to test specific, formulated hypotheses. This can be done in many 

ways, by generating a hypothesis to test before the analysis regarding specific widely 

identified networks (such as default mode34) or by deciding a priori to only test components 

that have large contributions from specific regions. Network maps can also be taken from a 

previous analysis and used to reconstruct components from a new data set.19,20,35 These 

approaches are very useful when trying to use ICA for single-subject prediction, because 

they ensure that the data on which the analysis is predicted are completely separate from the 

data that were used to generate the maps and the prediction algorithm.32

Assumptions of Independent Component Analysis

Importantly, ICA also has several embedded assumptions. For example, ICA is most widely 

used in its linear form (ie, linear mixing of the components). As such, it can be 

mathematically described as the multiplication of 2 matrices, exactly as in the GLM 

approach. In this case, after ICA has estimated the maps and time courses, it can be 
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considered to be very similar to a seed-based approach in which the map represents the 

connectivity associated with the time courses (after accounting for the other component time 

courses),36 with the added benefit that the ICA-derived map is data driven. Another 

important assumption is that the sources can be separated by assuming that they are spatially 

independent. This assumption, although perhaps not perfectly satisfying, has worked 

extremely well in fMR imaging data because networks are typically found that are not 

systematically overlapping.

Number 5: There is No Perfect Number of Components

One of the often-asked questions about ICA is how many components should be selected. 

The choice here is between high-order models with larger numbers of components, and low-

order models with fewer. Higher model orders do more splitting and produce more focal 

components, whereas lower model orders produce larger networks. This difference is 

sometimes addressed by visually comparing results from multiple component numbers.37 

Available software tools (eg, GIFT, MELODIC) have algorithms for estimating the number 

of components and multiple articles have proposed different approaches for solving this 

order selection problem.38–40 Typically, such approaches estimate somewhere between 20 

and 50 components, although recently there has been a trend to estimate higher model orders 

(eg, 100 or 120 components or more). The benefit of this is that the resulting components are 

more focal, and it also allows researchers to estimate the FNC between subnodes within a 

given domain (eg, default mode network subnodes).

Note that a low-order model designed to estimate 20 components will include a set of good 

components (ie, networks) as well as noise components that will ultimately be discarded 

from the analysis. As a general rule, the authors typically find that 50% to 70% of 

components survive as networks. If the ICA produces ∼10 networks, it may prove 

challenging to isolate specific known functional networks of interest in the study design, 

depending on the degree of granularity the researcher requires. For example, in a low-order 

model, the frontoparietal network (also called the central executive network) will be present 

as a single network rather than as lateralized left and right frontoparietal networks.41 Thus, 

for researchers interested in the functional properties of individual networks, a higher order 

model may also be preferred to differentiate more networks. The authors generally find that 

a model order of ∼75 to 100 components results in 30 to 50 networks in which the major 

identified networks are present as well as multiple subnetworks in neurocognitive domains 

such as vision, attention, or the default mode networks.

Importantly, there is a hierarchical relationship between low and high model order analyses, 

and this is clearly visible in the modular structure of the FNC matrix in Fig. 6, which shows, 

for example, that visual components tend to be more highly correlated to themselves. These 

correlated components are then more likely to group together at lower model orders. The 

authors have recently shown that a low model order ICA can be predicted almost perfectly 

from a high model order ICA (Rachakonda S, Du Y, Calhoun VD, model order prediction in 

ICA, submitted for publication). This property makes it possible to zoom up and down in the 

data to see how the maps split or stay together at different levels or granularity (Fig. 7).

Calhoun and de Lacy Page 6

Neuroimaging Clin N Am. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Number 6: Independent Component Analysis Results are Robust to False-

Positives and Spatial Autocorrelation Assumptions Compared with General 

Linear Model Analyses

It has been pointed out recently to the brain imaging community that some data 

preprocessing steps can induce inflated false-positive rates when using cluster-wise tests 

based on parametric statistical methods. Specifically, spatial smoothing changes the 

autocorrelation structure of the data, potentially incrementing the number of false-positive 

results. This problem has long been known as a potential pitfall in the analysis of fMR 

imaging time series. A recent publication, although polemic and exaggerated in its claims, 

highlights problems related to data preprocessing and suggests that many fMR imaging 

studies may be affected.42 In this circumstance, it is critical to reevaluate the methods used 

to preprocess and analyze neuroimaging data.

One characteristic of ICA is the goal of finding components with maximal statistical 

independence that tend to diminish spatial cross-correlations. Another important 

characteristic in ICA is the use of high-order statistics; for example, through entropy or 

kurtosis measures, which allows a more comprehensive estimation of independent signal 

sources and reduced influence of artifacts that may arise during preprocessing. Based on 

these characteristics, the authors argue that ICA offers advantages that might reduce the 

problem of inflated false-positives caused by data preprocessing. Through empirical testing, 

the authors evaluated the false-positive rates in the context of ICA. Results indicate false-

positive rates less than 5% for P-value thresholds of .05 after false-discovery-rate correction. 

As anticipated, based on an argued resilience to preprocessing artifacts, ICA delivered low 

false-positive rates, even when using standard parametric testing. These results suggest that 

findings from ICA tend to be statistically conservative, providing further evidence for the 

validity of results obtained using ICA (Fig. 8).

Number 7: The Mantra of “Garbage in Garbage Out” Rings True, but with 

Independent Component Analysis One Person's Garbage may be Another's 

Gold

The history of ICA with fMR imaging is replete with examples of studies using it to identify 

new and interesting aspects of the data that researchers did not know to look for before. For 

example, the initial use of ICA modeled the ICA time courses using a task-based approach, 

but then so-called transient task-related effects were observed,7,27,43,44 including an early 

example of the now widely studied default mode network.28 The use of ICA also identified 

spatially structured but non-task-related components within task-fMR imaging data and 

shortly thereafter in resting-state fMR imaging data.

Another interesting example of this is in results that advance the important research topic of 

how resting-state and task-based networks and activation patterns relate to each other. Here, 

ICA was used to identify structure in covariation among task activation maps, again yielding 

intrinsic networks that look very similar to those now widely studied in resting fMR imaging 
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data.45 The goal was to explicitly compare the networks obtained from a first-level ICA 

(ICA on the spatiotemporal fMR imaging data) with those from a second-level ICA (ICA on 

computed features or second-level maps rather than on the first-level fMR imaging data). 

Convergent results from simulations, task-fMR imaging data, and resting-state fMR imaging 

data show that a second-level analysis, although slightly noisier than the first-level analysis, 

yields strikingly similar patterns of intrinsic networks (spatial correlations as high as 0.85 

for task data and 0.65 for rest data, considerably greater than the empirical null). Second-

level ICA results also largely preserve the relationship of these networks with other 

variables, such as age (eg, default mode network regions tended to show decreased low-

frequency power for first-level analyses and decreased loading parameters for second-level 

analyses). Results comparing the 2 approaches are shown in Fig. 9. The feature-based ICA 

approach has also been used on smoothed peaks from a meta-analytical database, again 

revealing results that resemble the widely identified resting networks.41

More intriguingly, an ICA analysis of the (typically discarded) variance captured by motion 

covariates in an fMR imaging study also yields similar functional network patterns, 

suggesting that the noise removal process also captures variance of interest.46 Regression of 

noise and motion is aggressive for fMR imaging, for good reason, but such studies highlight 

that there is a cost when using such a strategy. Future studies should continue to focus on 

improving ways of separating artifact from noise in a more precise manner.

One of the reasons ICA is so widely used is that it pushes many of the stronger assumptions 

to later in the analytical pipeline. ICA benefits from many existing approaches that have 

strong assumptions. For example, GLM approaches are often used to perform testing on the 

data-driven component time courses or maps (eg, to identify task-related components47–49). 

In essence, ICA is used to extract spatial maps and time courses from the data that can act as 

a fertile analytical substrate to be evaluated or tested in multiple ways using preferred 

frameworks. Testing on the time course is perhaps the most common, including performing 

GLM analysis on the time courses.50,51 Other approaches for analyzing the time courses 

include graph theory52–55 and effective connectivity analysis using dynamic causal 

modeling.56–58 The spatial maps can also be analyzed in several ways, including performing 

a GLM analysis on individual components,8,51 but ICA component maps have also been 

used as input into classification algorithms.59

Number 8: Labeling the Independent Component Analysis Components is 

Still Largely Manual, but Automation Approaches Continue to Improve

One of the challenges with working with ICA is labeling/identifying the components. 

Perhaps the most important category is whether the components are artifacts (non–blood 

oxygenation level dependent [BOLD]) or should be considered intrinsic networks. Many 

investigators, ourselves among them, have used a semimanual approach in which visual 

inspection of the spatial maps, time course signal, and component spectra are combined with 

calculation of the low-frequency/ high-frequency power ratio. Intrinsic networks tend to 

have anatomically reasonable activation patterns, smoother signals and spectra, and higher 

power ratios. Fig. 10 compares an intrinsic network output from ICA with a noise 
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component as an example of this. This approach is partly reliant on experience and the 

human eye, and often there are a few cusp components that pose challenges. Thus, further 

automation to improve standardization and comparability across studies is desirable. Several 

approaches have been proposed to automatically identify artifacts. These approaches include 

models that require training and running a classifier (eg, a support vector machine)21,22,60 as 

well as those based on a set of predefined metrics.10,23,61 They can be run either at the group 

level or the single-subject level.10,22 However, despite the success of such approaches, they 

are not perfect and there can be a cost to misclassification.10 A more recent approach using 

GIG-ICA is intended to avoid this noisy categorization and focus instead on the estimation 

of the individual components at the group level. Results are similar in the case in which the 

single-subject ICA artifact removal process is perfect and are improved when (inevitable) 

errors are made at the single-subject level.

Beyond artifact detection, there is also the challenge of attributing specific neurocognitive 

functions to individual components as well as gathering them into resulting functional 

domains. Several recent articles have shown that, when this is done, the resulting structure in 

the FNC matrix is highly interpretable61,62 and suggests an ordered whole-brain functional 

architecture. Current strategies for automated attribution include drawing on preexisting 

component atlases combined with spatial regression for performing such labeling.63 A focus 

on domains or groupings of regions or components is also thought provoking. For example, 

a focus solely on insula regions yielded multiple unique fingerprints in a dynamic 

connectivity analysis.64 New methods being developed to optimize across multiple domains 

have yielded some interesting results.65,66 Fig. 11 shows an example of estimated joint 

functional domains compared with the static (averaged) FNC matrix. Future work should 

focus on the combination of these approaches with an automated and/or dynamic labeling 

approach. Such work likely draw on more dynamic and flexible atlases.67

Number 9: Independent Component Analysis can be Leveraged to Capture 

Dynamic (Time-Varying) Functional Connectivity

In recent years there have been a large number of articles focused on the estimation of time-

varying connectivity patterns. This article moves beyond consideration of averaged or static 

connectivity across the entire resting fMR imaging experiment (see Refs.68–71 for reviews) 

and toward consideration of nonstationary functional connectivity, exploring how FNC 

changes over the time courses. One of the key advantages of ICA that are discussed here is 

that it minimizes assumptions made up front, including the nature of time course 

fluctuations, allowing an ICA decomposition to provide a powerful way to further study 

dynamic changes among the ICA time courses. Such work can easily be done within an ICA 

context using a sliding-window approach to estimate the FNC,72 other approaches including 

time-frequency analyses,73 or even windowless approaches that can capture instantaneous 

changes and do not assume temporally smooth transitions.74 The windowed approach 

consists of setting a chosen time interval (eg, a window of 20 TRs), computing an FNC 

matrix for the window and shifting the window across the time courses, and computing an 

FNC matrix at each point. This produces a time series of FNC matrices. Following this, 

clustering can be used to reduce these dynamic FNC matrices to a small number of 
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functional connectivity states that represent connectivity patterns localized to a particular 

period of time.

These dynamic connectivity approaches have been shown to be a much more natural way to 

analyze resting fMR imaging data. They have already shown improved sensitivity to 

identifying group differences, brain arousal state, or diagnostic classifications from resting-

state fMR imaging data.30,62 An example of FNC states estimated from resting fMR 

imaging collected concurrently with electroencephalogram (EEG) data is shown in Fig. 12. 

The states are ordered according to EEG measures of drowsiness and it is apparent that the 

connectivity patterns are affected by the arousal state (in particular, anticorrelated 

connectivity, indicated in blue, diminishes with increasing drowsiness).75,76 In terms of 

group differences, recent work using ICA has shown that patients schizophrenia tend to 

spend more time occupying a weakly connected dynamic state versus controls62 and also 

that dynamic FNC estimates seem to be more sensitive for classification of bipolar patients 

and patients with schizophrenia30 than static measures.

Researches can also focus on the spatial maps to identify changes in the connectivity nodes 

over time77,78 or across both spatial nodes and time courses.79 Approaches that incorporate 

models of spatial patterns changes over time are extremely interesting, have implications for 

studies that attempt to create atlases of the human brain, and are currently understudied.

Number 10: Independent Component Analysis Algorithm Development is 

Ongoing

New ICA and related algorithms are constantly being developed for application to brain 

imaging data. For example, the incorporation of multiple types of statistical diversity (such 

as independence and sparsity) has already been done within existing algorithms but is not 

yet fully understood. For example, the widely used infomax algorithm incorporates aspects 

of both independence and sparsity, leading to some interesting ongoing discussions.80 The 

combination of both sparsity and independence (as well as other types of statistical 

diversity) to varying degrees may provide a more powerful toolkit for querying resting-state 

fMR imaging data.81–84

In addition, the underlying ICA algorithms that are most widely used for fMR imaging data 

(eg, fastICA and infomax) both make key assumptions about the underlying source 

distributions. For example, infomax assumes that the source distribution is unimodal and 

sparse. Newer algorithms with more flexible models are capable of capturing sources across 

a wider range of possible distributional forms, including multimodal distributions that can 

more effectively maximize independence.17,85,86 In addition, constrained ICA approaches 

are also growing in use because they provide a way to bridge between region of interest-

based and atlas-based approaches, enabling investigators to specify a region to query, and 

are also helpful in approaching single-subject ICA. Blind ICA approaches can provide maps 

based only on the structure of the data.10,19,20,87,88

Another interesting direction is the development of ICA approaches that assume a linear 

mixing of the sources to handle the nonlinear sources that can be present in neuroimaging 
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data and that likely represent the nature of human brain activity. The challenge here is that 

the parameter estimation space becomes much larger. However, there are multiple solutions 

proposed for solving this problem.89,90 Most recently, deep learning approaches91 have been 

combined with modifications to the concept of independence to offer interesting solutions.92 

Following an initial approach,93 the authors can capture nonlinearities within a deep ICA 

model. Neuroimaging data from patients with schizophrenia and healthy controls were 

analyzed with 5 coupling layers each with an embedded nonlinear function composed of 2 

hidden layers. Results identified significant group differences in bilateral temporal lobe 

activity (one of the most consistent structural abnormalities94–96 found in schizophrenia) in 

addition to novel components spanning cerebellum, hippocampus, and parahippocampal 

gyrus. Some components showed evidence of significant non-linearities (Fig. 13). Results 

suggest that such models can detect components that are biologically relevant that may be 

missed by a linear model.

Another area of active development includes the extension of the ICA BSS approach to 

handle multiple subspaces (eg, each subject is modeled in a personal subspace), as in the 

independent vector analysis (IVA) algorithm.18,97,98 IVA has already been applied to resting-

state fMR imaging in multiple studies,18,99 yielding improved representation of intersubject 

variability in the spatial maps.100 The extension of this to additional subspaces to better 

capture other types of variability is an interesting future direction.101

Hybrid ICA and deep learning approaches are also showing strong potential for improved 

modeling of dynamic connectivity. Recent work has shown that a restricted Boltzmann 

machine, a basic building block for deep learning, provides results competitive with the 

widely used ICA approach.102 Moving beyond this to more flexible neural network models 

can capture more complex relationships between spatial and temporal dynamics in fMR 

imaging data.79

Summary

The application of ICA to resting fMR imaging data has been popular in large part because 

of the ability of ICA to capture interesting and meaningful spatiotemporal patterns in fMR 

imaging data while making minimal assumptions about the nature of the underlying spatial 

and temporal organization and being robust to artifactual effects. Although at this point ICA 

of fMR imaging data has been in use for almost 20 years, it continues to provide a fertile, 

robust basis for the development of novel extensions to further automate analysis, better 

capture variability, and extend into new directions, including advance prediction and indirect 

models capable of delineating patterns of brain dynamics via deep learning combined with 

subspace approaches.

Acknowledgments

The corresponding author thanks Victor Vergara and Mohammad Arbabshirani for helpful discussion.

This work was partially supported by the National Science Foundation grant 1539067, and National Institutes of 
Health grants R01EB006841, R01EB020407, and P20RR021938/P20GM103472 (to V.D. Calhoun) and the 
National Center for Advancing Translational Sciences of the National Institutes of Health under award number 

Calhoun and de Lacy Page 11

Neuroimaging Clin N Am. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



KL2TR000421 (to N. de Lacy). The content is solely the responsibility of the authors and does not necessarily 
represent the official views of the National Institutes of Health.

References

1. Biswal B, Yetkin FZ, Haughton VM, et al. Functional connectivity in the motor cortex of resting 
human brain using echo-planar MRI. Magn Reson Med. 1995; 34(4):537–41. [PubMed: 8524021] 

2. Zou QH, Zhu CZ, Yang Y, et al. An improved approach to detection of amplitude of low-frequency 
fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods. 2008; 172(1):137–
41. [PubMed: 18501969] 

3. Insel T, Cuthbert B, Garvey M, et al. Research domain criteria (RDoC): toward a new classification 
framework for research on mental disorders. Am J Psychiatry. 2010; 167(7):748–51. [PubMed: 
20595427] 

4. Clementz BA, Sweeney JA, Hamm JP, et al. Identification of distinct psychosis biotypes using brain-
based biomarkers. Am J Psychiatry. 2016; 173(4):373–84. [PubMed: 26651391] 

5. Marquand AF, Wolfers T, Mennes M, et al. Beyond lumping and splitting: a review of 
computational approaches for stratifying psychiatric disorders. Biol Psychiatry Cogn Neurosci 
Neuroimaging. 2016; 1(5):433–47. [PubMed: 27642641] 

6. Du Y, Pearlson G, Liu J, et al. A group ICA based framework for evaluating resting fMRI markers 
when disease categories are unclear: application to schizophrenia, bipolar, and schizoaffective 
disorders. Neuroimage. 2015; 122:272–80. [PubMed: 26216278] 

7. Calhoun VD, Adali T, Pearlson GD, et al. A method for making group inferences from functional 
MRI data using independent component analysis. Hum Brain Mapp. 2001; 14(3):140–51. [PubMed: 
11559959] 

8. Calhoun VD, Adali T. Multisubject independent component analysis of fMRI: a decade of intrinsic 
networks, default mode, and neurodiagnostic discovery. IEEE Rev Biomed Eng. 2012; 5:60–73. 
[PubMed: 23231989] 

9. Erhardt EB, Rachakonda S, Bedrick EJ, et al. Comparison of multi-subject ICA methods for 
analysis of fMRI data. Hum Brain Mapp. 2011; 32(12):2075–95. [PubMed: 21162045] 

10. Du YH, Allen EA, He H, et al. Artifact removal in the context of group ICA: a comparison of 
single-subject and group approaches. Hum Brain Mapp. 2016; 37(3):1005–25. [PubMed: 
26859308] 

11. Salman, M., Du, Y., Damaraju, E., et al. IEEE International Symposium on Biomedical Imaging 
2017. Melbourne, Australia: 2017. Group information guided ICA shows more sensitivity to group 
differences than dual-regression. 

12. Calhoun VD, Adali T. Unmixing fMRI with independent component analysis. IEEE Eng Med Biol 
Mag. 2006; 25(2):79–90.

13. McKeown MJ, Hansen LK, Sejnowski TJ. Independent component analysis of functional MRI: 
what is signal and what is noise? Curr Opin Neurobiol. 2003; 13(5):620–9. [PubMed: 14630228] 

14. Beckmann CF. Modelling with independent components. Neuroimage. 2012; 62(2):891–901. 
[PubMed: 22369997] 

15. Bell AJ, Sejnowski TJ. An information maximisation approach to blind separation and blind 
deconvolution. Neural Comput. 1995; 7(6):1129–59. [PubMed: 7584893] 

16. Hyvarinen A, Oja E. A fast fixed-point algorithm for independent component analysis. Neural 
Comput. 1997; 9(7):1483–92.

17. Li X, Adali T. Independent component analysis by entropy bound minimization. IEEE Trans Signal 
Process. 2010; 58(10):5151–64.

18. Lee JH, Lee TW, Jolesz FA, et al. Independent vector analysis (IVA): multivariate approach for 
fMRI group study. Neuroimage. 2008; 40(1):86–109. [PubMed: 18165105] 

19. Lin Q, Liu J, Zheng Y, et al. Semi-blind spatial ICA of fMRI using spatial constraints. Hum Brain 
Mapp. 2010; 31(7):1076–88. [PubMed: 20017117] 

20. Du Y, Fan Y. Group information guided ICA for fMRI data analysis. Neuroimage. 2013; 69:157–
97. [PubMed: 23194820] 

Calhoun and de Lacy Page 12

Neuroimaging Clin N Am. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



21. Salimi-Khorshidi G, Douaud G, Beckmann CF, et al. Automatic denoising of functional MRI data: 
combining independent component analysis and hierarchical fusion of classifiers. Neuroimage. 
2014; 90:449–68. [PubMed: 24389422] 

22. Sochat V, Supekar K, Bustillo J, et al. A robust classifier to distinguish noise from fMRI 
independent components. PLoS One. 2014; 9(4):e95493. [PubMed: 24748378] 

23. Pruim RH, Mennes M, van Rooij D, et al. ICA-AROMA: a robust ICA-based strategy for 
removing motion artifacts from fMRI data. Neuroimage. 2015; 112:267–77. [PubMed: 25770991] 

24. Xu JS, Calhoun VD, Worhunsky PD, et al. Functional network overlap as revealed by fMRI using 
sICA and its potential relationships with functional heterogeneity, balanced excitation and 
inhibition, and sparseness of neuron activity. PLoS One. 2015; 10(2):e0117029. [PubMed: 
25714362] 

25. Xu J, Potenza MN, Calhoun VD, et al. Large-scale functional network overlap is a general property 
of brain functional organization: reconciling inconsistent fMRI findings from general-linear-
model-based analyses. Neurosci Biobehav Rev. 2016; 71:83–100. [PubMed: 27592153] 

26. Boles DB. The “lumping” and “splitting” of function and brain. Brain Cogn. 2000; 42(1):23–5. 
[PubMed: 10739588] 

27. McKeown MJ, Jung TP, Makeig S, et al. Spatially independent activity patterns in functional MRI 
data during the Stroop color-naming task. Proc Natl Acad Sci U S A. 1998; 95(3):803–10. 
[PubMed: 9448244] 

28. Calhoun VD, Pekar JJ, McGinty VB, et al. Different activation dynamics in multiple neural 
systems during simulated driving. Hum Brain Mapp. 2002; 16(3):158–67. [PubMed: 12112769] 

29. Jafri M, Pearlson GD, Stevens M, et al. A method for functional network connectivity among 
spatially independent resting-state components in schizophrenia. Neuroimage. 2008; 39:1666–81. 
[PubMed: 18082428] 

30. Rashid B, Arbabshirani MR, Damaraju E, et al. Classification of schizophrenia and bipolar patients 
using static and dynamic resting-state fMRI brain connectivity. Neuroimage. 2016; 134:645–57. 
[PubMed: 27118088] 

31. Arbabshirani M, Kiehl KA, Pearlson G, et al. Classification of schizophrenia patients based on 
resting-state functional network connectivity. Front Neurosci. 2013; 7(133):1–16. [PubMed: 
23386807] 

32. Arbabshirani MR, Plis S, Sui J, et al. Single subject prediction of brain disorders in neuroimaging: 
promises and pitfalls. Neuroimage. 2017; 145(Pt B):137–65. [PubMed: 27012503] 

33. Ma S, Correa N, Li X, et al. Automatic identification of functional clusters in fMRI data using 
spatial information. IEEE Trans Biomed Eng. 2011; 58(12):3406–17. [PubMed: 21900068] 

34. Ongur D, Lundy M, Greenhouse I, et al. Default mode network abnormalities in bipolar disorder 
and schizophrenia. Psychiatry Res. 2010; 183(1):59–68. [PubMed: 20553873] 

35. Lu W, Rajapakse JC. Approach and applications of constrained ICA. IEEE Trans Neural Netw. 
2005; 16(1):203–12. [PubMed: 15732400] 

36. Joel SE, Caffo BS, van Zijl PC, et al. On the relationship between seed-based and ICA-based 
measures of functional connectivity. Magn Reson Med. 2011; 66(3):644–57. [PubMed: 21394769] 

37. Abou-Elseoud A, Starck T, Remes J, et al. The effect of model order selection in group PICA. 
Hum Brain Mapp. 2010; 31(8):1207–16. [PubMed: 20063361] 

38. Li YO, Adali T, Calhoun VD. Estimating the number of independent components for functional 
magnetic resonance imaging data. Hum Brain Mapp. 2007; 28(11):1251–66. [PubMed: 17274023] 

39. Hui M, Li J, Wen X, et al. An empirical comparison of information-theoretic criteria in estimating 
the number of independent components of fMRI data. PLoS One. 2011; 6(12):e29274. [PubMed: 
22216229] 

40. Douglas PK, Harris S, Yuille A, et al. Performance comparison of machine learning algorithms and 
number of independent components used in fMRI decoding of belief vs. disbelief. Neuroimage. 
2011; 56(2):544–53. [PubMed: 21073969] 

41. Smith SM, Fox PT, Miller KL, et al. Correspondence of the brain's functional architecture during 
activation and rest. Proc Natl Acad Sci USA. 2009; 106(31):13040–5. [PubMed: 19620724] 

Calhoun and de Lacy Page 13

Neuroimaging Clin N Am. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



42. Eklund A, Nichols TE, Knutsson H. Cluster failure: why fMRI inferences for spatial extent have 
inflated false-positive rates. Proc Natl Acad Sci U S A. 2016; 113(28):7900–5. [PubMed: 
27357684] 

43. Konishi S, Donaldson DI, Buckner RL. Transient activation during block transition. Neuroimage. 
2001; 13(2):364–74. [PubMed: 11162276] 

44. Calhoun VD, Adali T, Pekar JJ. A method for comparing group fMRI data using independent 
component analysis: application to visual, motor and visuomotor tasks. Magn Reson Imaging. 
2004; 22(9):1181–91. [PubMed: 15607089] 

45. Calhoun VD, Allen E. Extracting intrinsic functional networks with feature-based group 
independent component analysis. Psychometrika. 2013; 78(2):243–59. [PubMed: 25107615] 

46. Bright MG, Murphy K. Is fMRI “noise” really noise? Resting state nuisance regressors remove 
variance with network structure. Neuroimage. 2015; 114:158–69. [PubMed: 25862264] 

47. McKeown MJ. Detection of consistently task-related activations in fMRI data with hybrid 
independent component analysis. Neuroimage. 2000; 11(1):24–35. [PubMed: 10686114] 

48. Calhoun VD, Adali T, Pearlson GD, et al. Spatial and temporal independent component analysis of 
functional MRI data containing a pair of task-related waveforms. Hum Brain Mapp. 2001; 13(1):
43–53. [PubMed: 11284046] 

49. van den Bosch GE, El Marroun H, Schmidt MN, et al. Brain connectivity during verbal working 
memory in children and adolescents. Hum Brain Mapp. 2014; 35(2):698–711. [PubMed: 
23233279] 

50. Xu J, Calhoun VD, Potenza MN. Spatial ICA reveals functional activity hidden from traditional 
fMRI GLM-based analyses. Front Neurosci. 2013; 7:154. [PubMed: 23986654] 

51. Calhoun VD, Adali T, McGinty V, et al. fMRI activation in a visual-perception task: network of 
areas detected using the general linear model and independent component analysis. Neuroimage. 
2001; 14(5):1080–8. [PubMed: 11697939] 

52. Laney J, Westlake KP, Ma S, et al. Capturing subject variability in fMRI data: a graph-theoretical 
analysis of GICA vs. IVA. J Neurosci Methods. 2015; 247:32–40. [PubMed: 25797843] 

53. Anderson A, Cohen MS. Decreased small-world functional network connectivity and clustering 
across resting state networks in schizophrenia: an fMRI classification tutorial. Front Hum 
Neurosci. 2013; 7:520. [PubMed: 24032010] 

54. Yu Q, Sui J, Rachakonda S, et al. Altered topological properties of functional network connectivity 
in schizophrenia during resting state: a small-world brain network study. PLoS One. 2011; 6(9):1–
12.

55. Yu Q, Allen EA, Sui J, et al. Brain connectivity networks in schizophrenia underlying resting state 
functional magnetic resonance imaging. Curr Top Med Chem. 2012; 12(21):2415–25. Special 
issue on “Neurochemistry of schizophrenia and psychosis: the contribution of neuroimaging”. 
[PubMed: 23279180] 

56. Stevens M, Kiehl KA, Pearlson GD, et al. Functional neural circuits for mental timekeeping. Hum 
Brain Mapp. 2007; 28(5):394–408. [PubMed: 16944489] 

57. Stevens M, Calhoun VD, Pearlson GD, et al. Brain network dynamics during error commission. 
Hum Brain Mapp. 2009; 30(1):24–37. [PubMed: 17979124] 

58. Havlicek M, Friston K, Jan J, et al. Dynamic modeling of neuronal responses in fMRI using 
cubature Kalman filtering. Neuroimage. 2011; 56(4):2109–28. [PubMed: 21396454] 

59. Calhoun VD, Pearlson GD, Maciejewski P, et al. Temporal lobe and ‘default’ hemodynamic brain 
modes discriminate between schizophrenia and bipolar disorder. Hum Brain Mapp. 2008; 29(11):
1265–75. [PubMed: 17894392] 

60. De Martino F, Gentile F, Esposito F, et al. Classification of fMRI independent components using 
IC-fingerprints and support vector machine classifiers. Neuroimage. 2007; 34(1):177–94. 
[PubMed: 17070708] 

61. Allen EA, Erhardt EB, Damaraju E, et al. A baseline for the multivariate comparison of resting-
state networks. Front Syst Neurosci. 2011; 5(2):2. [PubMed: 21442040] 

62. Damaraju E, Allen EA, Belger A, et al. Dynamic functional connectivity analysis reveals transient 
states of dysconnectivity in schizophrenia. Neuroimage Clin. 2014; 5:298–308. [PubMed: 
25161896] 

Calhoun and de Lacy Page 14

Neuroimaging Clin N Am. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



63. Calhoun VD. Group ICA of fMRI toolbox (GIFT). 2004

64. Nomi JS, Farrant K, Damaraju E, et al. Dynamic functional network connectivity reveals unique 
and overlapping profiles of insula subdivisions. Hum Brain Mapp. 2016; 37(5):1770–87. 
[PubMed: 26880689] 

65. Vergara, V., Miller, R., Van Erp, T., et al. Human Brain Mapp 2016. Geneva, Switzerland: The 
functional dynamics of brain domains in schizophrenia. 

66. Miller RL, Vergara VM, Keator DB, et al. A method for inter-temporal functional domain 
connectivity analysis: application to schizophrenia reveals distorted directional information flow. 
IEEE Trans Biomed Eng. 2016; 63(12):2525–39. [PubMed: 27541329] 

67. Yarkoni T, Poldrack RA, Nichols TE, et al. Large-scale automated synthesis of human functional 
neuroimaging data. Nat Methods. 2011; 8(8):665–70. [PubMed: 21706013] 

68. Calhoun VD, Miller R, Pearlson G, et al. The chronnectome: time-varying connectivity networks 
as the next frontier in fMRI data discovery. Neuron. 2014; 84(2):262–74. [PubMed: 25374354] 

69. Hutchison RM, Womelsdorf T, Allen EA, et al. Dynamic functional connectivity: promises, issues, 
and interpretations. Neuroimage. 2013; 80:360–78. [PubMed: 23707587] 

70. Keilholz SD. The neural basis of time-varying resting state functional connectivity [review]. Brain 
Connect. 2014; 4(10):769–79. [PubMed: 24975024] 

71. Preti MG, Bolton TA, Van De Ville D. The dynamic functional connectome: state-of-the-art and 
perspectives. Neuroimage. 2016 [Epub ahead of print]. 

72. Allen E, Damaraju E, Plis SM, et al. Tracking whole-brain connectivity dynamics in the resting 
state. Cereb Cortex. 2014; 24(3):663–76. [PubMed: 23146964] 

73. Yaesoubi M, Allen EA, Miller RL, et al. Dynamic coherence analysis of resting fMRI data to 
jointly capture state-based phase, frequency, and time-domain information. Neuroimage. 2015; 
120:133–42. [PubMed: 26162552] 

74. Yaesoubi, M., Calhoun, V. Keystone Symposia - Connectomics. Santa Fe, NM: 2017. Window-less 
estimation of dynamic functional connectivity. 

75. Allen, E., Eichele, T., Wu, L., et al. Proc HBM. Seattle, WA: 2013. EEG signature of functional 
connectivity states. 

76. Damaraju E, Allen E, Wu L, et al. EEG signatures of dynamic functional network connectivity 
states. Brain Topogr. 2017 [Epub ahead of print]. 

77. Kiviniemi V, Vire T, Remes J, et al. A sliding time-window ICA reveals spatial variability of the 
default mode network in time. Brain Connect. 2011; 1(4):339–47. [PubMed: 22432423] 

78. Ma S, Calhoun VD, Phlypo R, et al. Dynamic changes of spatial functional network connectivity in 
healthy individuals and schizophrenia patients using independent vector analysis. Neuroimage. 
2014; 90:196–206. [PubMed: 24418507] 

79. Hjelm, D., Plis, S., Calhoun, VD. NIPS. Barcelona, Spain: 2017. Recurrent neural networks for 
spatiotemporal dynamics of intrinsic networks from fMRI data. 

80. Calhoun VD, Potluru V, Phlypo R, et al. Independent component analysis for brain fMRI does 
indeed select for maximal independence. PLoS One. 2013; 8(8):e73309. [PubMed: 24009746] 

81. Adali T, Anderson M, Fu G. Diversity in independent component and vector analyses: 
identifiability, algorithms, and applications in medical imaging. IEEE Signal Process Mag. 2014; 
31:18–33.

82. Adali T, Anderson M, Fu G. IVA and ICA: use of diversity in independent decompositions. 
Proceedings of the European Signal Processing Conferences (EUSIPCO). 2012:61–5.

83. Du, W., Fu, G., Calhoun, VD., et al. ICIP 2014. Paris, France: 2014. Performance of complex-
valued ICA algorithms for fMRI analysis: importance of taking full diversity into account. 

84. Du W, Levin-Schwartz Y, Fu GS, et al. The role of diversity in complex ICA algorithms for fMRI 
analysis. J Neurosci Methods. 2016; 264:129–35. [PubMed: 26993820] 

85. Fu GS, Phlypo R, Anderson M, et al. Blind source separation by entropy rate minimization. IEEE 
Trans Signal Processing. in press. 

86. Li XL, Adali T. Complex independent component analysis by entropy bound minimization. IEEE 
Trans Circuits Syst. 2010; 57(7):1417–30.

87. Lu W, Rajapakse JC. Eliminating indeterminacy in ICA. Neurocomputing. 2003; 50:271–90.

Calhoun and de Lacy Page 15

Neuroimaging Clin N Am. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



88. Calhoun VD, Adali T, Stevens M, et al. Semi-blind ICA of fMRI: a method for utilizing 
hypothesis-derived time courses in a spatial ICA analysis. Neuroimage. 2005; 25(2):527–38. 
[PubMed: 15784432] 

89. Wu L, Calhoun V. Nonlinear ICA: applications to spatial and temporal EEG source separation. 
Human Brain Mapping Conference. 2011

90. Hyvarinen A, Pajunen P. Nonlinear independent component analysis: existence and uniqueness 
results. Neural Netw. 1999; 12(3):429–39. [PubMed: 12662686] 

91. Plis SM, Hjelm DR, Salakhutdinov R, et al. Deep learning for neuroimaging: a validation study. 
Front Neurosci. 2014; 8:229. [PubMed: 25191215] 

92. Castro E, Hjelm RD, Plis SM, et al. Deep independence network analysis of structural brain 
imaging: application to schizophrenia. IEEE Trans Med Imaging. 2016; 35(7):1729–40. [PubMed: 
26891483] 

93. Dinh L, Krueger D, Bengio Y. NICE: non-linear independent components estimation. arXiv 
preprint ar-Xiv: 14108516. 2014; 2014

94. Xu L, Groth K, Pearlson G, et al. Source based morphometry: the use of independent component 
analysis to identify gray matter differences with application to schizophrenia. Hum Brain Mapp. 
2009; 30:711–24. [PubMed: 18266214] 

95. Turner J, Calhoun VD, Michael A, et al. Heritability of multivariate gray matter measures in 
schizophrenia. Twin Res Hum Genet. 2012; 15(3):324–35. [PubMed: 22856368] 

96. Gupta CN, Calhoun VD, Rachakonda S, et al. Patterns of gray matter abnormalities in 
schizophrenia based on an international mega-analysis. Schizophr Bull. 2015; 41(5):1133–42. 
[PubMed: 25548384] 

97. Via, J., Anderson, M., Li, XL., et al. Proc IEEE Workshop on Machine Learning for Signal 
Processing (MLSP). Beijing, China: 2011. A maximum likelihood approach for independent 
vector analysis of Gaussian data sets. 

98. Anderson M, Fu G, Phlypo R, et al. Independent vector analysis: identification conditions and 
performance bounds. IEEE Trans Signal Process. 2014; 62(17):4399–410.

99. Michael AM, Anderson M, Miller RL, et al. Preserving subject variability in group fMRI analysis: 
performance evaluation of GICA vs. IVA. Front Syst Neurosci. 2014; 8:106. [PubMed: 25018704] 

100. Gopal S, Miller RL, Michael A, et al. Spatial variance in resting fMRI networks of schizophrenia 
patients: an independent vector analysis. Schizophr Bull. 2016; 42(1):152–60. [PubMed: 
26106217] 

101. Silva RF, Plis SM, Sui J, et al. Blind source separation for unimodal and multimodal brain 
networks: a unifying framework for subspace modeling. IEEE J Sel Top Signal Process. 2016; 
10(7):1134–49. [PubMed: 28461840] 

102. Hjelm RD, Calhoun VD, Salakhutdinov R, et al. Restricted Boltzmann machines for 
neuroimaging: an application in identifying intrinsic networks. Neuroimage. 2014; 96:245–60. 
[PubMed: 24680869] 

Calhoun and de Lacy Page 16

Neuroimaging Clin N Am. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Key Points

• Independent component analysis (ICA) is a data-driven approach for 

analyzing functional magnetic resonance (fMR) imaging data.

• ICA is typically used for capturing spatial and temporal signatures of brain 

networks within fMR imaging data as well as for separating artifactual signals 

from signals of interest.

• Components from an ICA analysis can be used in a wide variety of 

subsequent analyses, including classification, dynamic connectivity, graph 

theory, and dynamic causal modeling.

• The blind source separation/ICA research community continues to be vibrant 

and new algorithms for use with brain imaging continue to be developed.
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Fig. 1. 
A spectrum of data-drivenness.
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Fig. 2. 
Examples of graphical output from the GIFT ICA software.
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Fig. 3. 
GIG-ICA for artifact removal. Individual independent components (ICs) and time courses 

(TCs) for 1 subject obtained from Individual ICA Artifact Removal Plus Group ICA (IRPG), 

GIG-ICA, and standard group ICA (GICA). The values in parentheses under each estimated 

IC are the relevant correlation coefficients between the IC and the ground truth (GT) source. 

The last row shows related TCs. The correlation values under TCs from left to right 

correspond with IRPG, GIG-ICA, and GICA, respectively. Note that only the nonartifact 

ICs/TCs are shown. (Modified from Du YH, Allen EA, He H, et al. Artifact removal in the 
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context of group ICA: a comparison of single-subject and group approaches. Hum Brain 

Mapp 2016;37(3):1005–25.)
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Fig. 4. 
Task-related modulation in blood oxygenation level-dependent (BOLD) signal during the 

congruent condition of the flanker task. (A) Color on the brain images shows task-related 

increases and decreases in BOLD signal as revealed by GLM-based analyses. The color bar 

indicates t values. (B1–B3) Color on the brain images shows regions covered by positive, 

negative, and neutral ICs, respectively. The color bar indicates the number of overlapping 

ICs. (Modified from Xu JS, Calhoun VD, Worhunsky PD, et al. Functional network overlap 

as revealed by fMRI using sICA and its potential relationships with functional heterogeneity, 
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balanced excitation and inhibition, and sparseness of neuron activity. PLoS One 

2015;10(2):e0117029.)
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Fig. 5. 
Example ICA component spatial maps from rest fMR imaging data. (Modified from Allen 

EA, Erhardt EB, Damaraju E, et al. A baseline for the multivariate comparison of resting-

state networks. Front Syst Neurosci 2011;5(2):2.)
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Fig. 6. 
Example of FNC. The component maps are ordered as shown in Fig. 5. Considerable 

modularity is observable within the matrix; for example, visual and motor regions tend to be 

most highly correlated with themselves and the default mode network is showing 

anticorrelation with multiple other networks. (Modified from Allen EA, Erhardt EB, 

Damaraju E, et al. A baseline for the multivariate comparison of resting-state networks. 

Front Syst Neurosci 2011;5(2):2.)
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Fig. 7. 
The top row shows a temporal lobe component from resting-state analysis and the bottom 

row is a predicted temporal lobe component from a different data set.
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Fig. 8. 
Ratio of false-positives found for group ICA with 28 components on a population of 603 

healthy subjects. One million iterations were performed to estimate the false-positive ratio 

by randomly assigning healthy subjects to 1 of 2 groups.
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Fig. 9. 
Effect of age on the amplitude of low-frequency fluctuations (ALFF). Violin plots show the 

distributions of ALFF estimates for young (left) and old (right) subjects (40 in each group) 

based on the first-level (A) and second-level (B) analyses. For the first-level analysis, ALFF 

values are calculated from the subject-specific TCs; for second-level analysis, ALFF values 

are the subject loading parameters from the ICA mixing matrix (matrix in Fig. 1B). 

Horizontal bars indicate the medians for each group. Because data are skewed, group 

differences are assessed with the nonparametric Wilcoxon rank sum test for equal medians 
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(z-statistics are based on approximate normal distribution). Asterisks denote significantly 

different medians at P<.001, uncorrected. (From Calhoun VD, Allen E. Extracting intrinsic 

functional networks with feature-based group independent component analysis. 

Psychometrika 2013;78(2):243–59.)
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Fig. 10. 
Comparison of components extracted from 75 component ICA performed on resting-state 

data with 120 time points in 1190 neurotypical young adults. On the left is an intrinsic 

network or good component. Note the smooth shape to the power spectra (dynamic range) 

and high low-frequency to high-frequency power ratio. The brain activation pattern is 

spatially aggregated and clearly in frontal gray matter areas. On the right is a bad 

component. Here, there is a shallow, ridged appearance to the spectra and low power ratio. 

Activation is restricted to the ventricles. Likely this component represents artifact from 

cerebrospinal fluid in the brain ventricles.
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Fig. 11. 
Population average of static windowed functional network connectivity matrix; that is, using 

all 162 time points (no windowing) for 47 ICA components (networks) obtained from a 

group ICA decomposition. Grid lines bound 7 functional domains. Rectangular pull-outs are 

15 joint functional domain connectivity blocks estimated from the ICA data using the 

approach described by Miller and colleagues. (Data from Miller RL, Vergara VM, Keator 

DB, et al. A method for inter-temporal functional domain connectivity analysis: application 

to schizophrenia reveals distorted directional information flow. IEEE Trans Biomed Eng 

2016;63(12):2525–39.)

Calhoun and de Lacy Page 31

Neuroimaging Clin N Am. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 12. 
Example of dynamic functional network connectivity states estimated from a resting fMR 

imaging data set for which concurrent EEG data were also collected. Ordering the fMR 

imaging states according to EEG drowsiness measures reveals a striking pattern, because 

drowsiness increases the anticorrelated functional connectivity with the default mode 

network and diminishes that with other networks.
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Fig. 13. 
Nonlinear ICA of sMRI analysis identifies significant nonlinear effects between 

schizophrenia and healthy controls. On the left is an example of a component captured by 

the nonlinear ICA approach and on the right is a plot showing the evidence of a nonlinear 

effect after removing the linear relationship (which only appears in certain components). 

(Data from Castro E, Hjelm RD, Plis SM, et al. Deep independence network analysis of 

structural brain imaging: application to schizophrenia. IEEE Trans Med Imaging 

2016;35(7):1729–40.)
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