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Abstract

Clinical and laboratory studies performed over the past few decades have discovered that dry eye 

is a chronic inflammatory disease that can be initiated by numerous extrinsic or intrinsic factors 

that promote an unstable and hyperosmolar tear film. These changes in tear composition, in some 

cases combined with systemic factors, lead to an inflammatory cycle that causes ocular surface 

epithelial disease and neural stimulation. Acute desiccation activates stress signaling pathways in 

the ocular surface epithelium and resident immune cells. This triggers production of innate 

inflammatory mediators that stimulate the production of matrix metalloprotease, inflammatory cell 

recruitment, and dendritic cell maturation. These mediators combined with exposure of 

autoantigens can lead to an adaptive T-cell mediated response. Cornea barrier disruption develops 

by protease-mediated lysis of epithelial tight junctions leading to accelerated cell death, 

desquamation, an irregular poorly lubricated cornea surface and exposure and sensitization of 

epithelial nociceptors. Conjunctival goblet cell dysfunction and death are promoted by the T 

helper 1 cytokine interferon gamma (IFN-γ). These epithelial changes further destabilize the tear 

film, amplify inflammation and create a vicious cycle. Cyclosporine and lifitegrast, the two FDA-

approved therapies inhibit T cell activation and cytokine production. While these therapies 

represent a major advance in dry eye therapy, they are not effective in improving discomfort and 

corneal epithelial disease in all patients. Preclinical studies have identified other potential 

therapeutic targets, biomarkers and strategies to bolster endogenous immunoregulatory pathways. 

These discoveries will hopefully lead to further advances in diagnostic classification and 

treatment.

Dry Eye – A multifactorial and self-perpetuating inflammatory disease

Knowledge regarding the pathophysiology of dry eye has advanced tremendously over the 

past two decades and continues to evolve. While tear disorders were traditionally classified 

by deficient component (e.g. aqueous or lipid), or as aqueous deficient or evaporative, the 

reality is most patients experiencing symptoms or signs of tear dysfunction have multiple 

risk factors and disease or dysfunction of more than one tear producing cells/glands that 
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result in an unstable tear film.1 Tear instability is accompanied by increased tear osmolarity 

(either in area of tear break-up or diffusely) which activates stress signaling pathways in the 

ocular surface epithelium and resident immune cells and triggers production of innate 

inflammatory molecules that initiate a vicious self-perpetuating cycle (Figure 1) that may 

lead to further decline in tear function and worse symptoms.2, 3 The numerous extrinsic (e.g. 

desiccating environment, exposure) and intrinsic (e.g. aging, autoimmunity, drying 

medications) factors that can contribute to this inflammatory cycle demonstrate why it is 

often difficult to ascribe a single cause for most cases of dry eye disease and the importance 

of addressing all modifiable risk factors.

The ocular surface is a very unique exposed mucosa. It is covered with a specialized 

stratified epithelium that serves as a barrier to environmental, microbial and inflammatory 

insults. Next to the intestine, the conjunctival epithelium has the second highest density of 

mucus-producing goblet cells. It also harbors a variety of resident immune cells, such as 

natural killer, dendritic cells, macrophages, γδ and CD4 and CD8+ T cells that function 

primarily in antimicrobial defense but may participate in the dry eye pathogenesis.4–6 The 

cornea epithelium must withstand daily environmental challenges while maintaining clarity 

and comfort. The lacrimal glands and ocular surface epithelia produce an array of 

antimicrobial factors including, α and β defensins, IgA, lactoferrin, and lysozyme that are 

present in the tear film and function to maintain a paucibacterial microenvironment.7–20 

Many of the mechanisms to maintain ocular surface and glandular homeostasis are disrupted 

in dry eye (Figure 2). Studies performed in animal models and dry eye patients have found 

that desiccation is a potent stress (in the same magnitude to microbial products) to the ocular 

surface that initiates a secondary immune response that can lead to a vicious cycle (Figure 

1).21–27 Hyperosmolar stress has a direct pro-inflammatory effect on the ocular surface 

epithelium. It has been shown to activate mitogen-activated protein kinases (MAPKs), 

stimulate secretion of pro-inflammatory cytokines (e.g. IL-1β, TNF-α, and IL-6), 

chemokines and matrix metalloproteinases such as MMP-3 and MMP-9 and induce 

apoptosis.22, 23, 26, 28–38 The interaction of these inflammatory mediators is complex and 

they have been shown to upregulate each other; thus amplifying the inflammatory cascade. 

For example, IL-1β stimulates the production of TNF-α and MMP-3, among other 

factors. 31, 32, 39, 40 In turn, TNF-α stimulates MMP-9 and MMP-3 which is a physiological 

activator of MMP-9.41, 42 MMP-9 contributes to corneal barrier disruption by lysing tight 

junctions in the superficial epithelium.23, 26, 43 MMP-9 knockout mice are resistant to 

corneal barrier disruption when exposed to desiccating stress, and MMP inhibitors, such as 

corticosteroids and doxycycline have shown potential in preventing desiccation induced 

corneal epithelial barrier disruption in animal models.26, 43–45 A point-of-care MMP-9 

detection system (InflammaDry®, RPS, Sarasota, FL) is approved for detecting elevated 

levels of MMP-9 in tears of dry eye patients.46–50 Increased tear MMP-9 has also been 

detected in other ocular surface diseases, such as atopic and vernal keratoconjunctivitis, 

corneal ulceration, recurrent corneal erosions and ocular burns that also have corneal barrier 

disruption.51–63 Detection of elevated tear MMP-9 provides a rationale for use of anti-

inflammatory/protease therapies in these conditions.

Ocular surface epithelial cells also secrete chemokines that attract inflammatory cells. 

Increased levels of chemokines CCL20 (MIP3α), CXCL9 (MIG), CXCL10 (IP-10) and 
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CXCL11 (I-TAC) and their receptors was noted in ocular surface cells and/or tears of dry 

eye patients and mice with the experimentally induced dry eye.64–68 Genetic deletion or 

pharmacological blockage of certain chemokines or chemokine receptors (CCL20, CCR6 or 

CXCR3) prevented the development of desiccation-induced ocular surface disease and 

decreased pathogenicity of autoreactive T cells in mouse models of dry eye.69, 70

Another effect of desiccation is upregulation of innate inflammatory pathways in the 

epithelium, including the nucleotide-binding domain, leucine-rich–containing family, pyrin 

domain–containing-3 (NLRP3), toll-like receptor and oxidative stress pathways.29, 30, 71–80 

Antioxidants have shown therapeutic potential for treating dry eye in preclinical culture or 

mouse studies and in a pilot clinical trial. 30, 34, 81–85

Metaplasia and goblet cell loss in the conjunctival epithelium is a well-recognized feature of 

aqueous tear deficiency.86–92 The most severe ocular surface diseases, such as Stevens-

Johnson syndrome, mucous membrane pemphigoid (MMP), graft vs. host disease and severe 

alkali burns involving the conjunctiva often have complete loss of conjunctival goblet 

cells.93–96 T helper cytokines have been found to modulate conjunctival goblet cell 

differentiation. The Th2 cytokine IL-13 stimulates proliferation and mucus production, 

while the Th1 cytokine IFN-γ induced goblet cell entrapment, expression of cornified 

envelope precursors, decreased mucus production, unresponsiveness to cholinergic 

stimulation, ER stress and unfolded protein response and apoptosis.27, 97–104 In addition to 

producing tear-stabilizing mucins, goblet cells also produce 105, 106 immunoregulatory 

factors, such as TGF-β and retinoic acid.104, 107, 108 Crosstalk between goblet cells and 

dendritic cells is critical to maintaining immune tolerance in mucosal tissues.109 Goblet cell 

associated-passages that deliver surface antigens to the underlying dendritic cells and 

promote tolerance have been identified in both intestine and conjunctiva.109, 110 Mice with 

deletion of the SAM pointed domain containing ETS transcription factor gene (Spdef 
knockout) are devoid of goblet cells, develop conjunctival inflammation and lose 111 

immune tolerance to topically applied antigens, as has been found in other mouse dry eye 

models that are accompanied by goblet cell loss 109, 112–114 These studies indicate a critical 

role of goblet cell products in conditioning tolerogenic properties in conjunctival dendritic 

cells and maintaining ocular surface immune tolerance. 107, 108

Evidence indicates that the initial innate immune response to dryness is followed by an 

adaptive CD4+ T cell autoimmune response in mice exposed to desiccating stress and 

patients with Sjögren syndrome (SS) and non-SS associated aqueous tear deficiency.115–117 

While the target autoantigen(s) in this autoimmune reaction have not been identified, 

members of the kallikrein family have been implicated as putative antigens in some 

studies.118, 119 Disrupted immune tolerance in dry eye112–114 elicits leads to dendritic cell 

maturation120 and generation of autoreactive T effector cells70, 101, 121–124 in mouse dry eye 

models. Human dry eye patients have an increased number of conjunctival dendritic 

cells125, 126 and a higher percentage of cells expressing the dendritic cell maturation marker 

HLA-DR.127–130 Depletion of dendritic cells prevented the development of dry eye disease 

in mice subjected to desiccating stress.120 Mature dendritic cells prime antigen-specific Th1 

and Th17 effector T cells in the conjunctival draining lymph nodes. Several laboratories 

have identified interferon gamma (IFN-γ) and IL-17, produced by Th1 and Th-17 cells 
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respectively, as critical effector cytokines in dry eye.27, 66, 69, 70, 99, 101, 121, 123, 124, 131–136 

IFN-γ promotes conjunctival goblet cell loss and lacrimal gland acinar loss, while IL-17 

cause corneal barrier disruption and lymphangiogenesis in mouse dry eye models. The 

disruption of immune tolerance and generation of effector T cells suggests inadequate 

suppression by regulatory T cells (Tregs). Indeed, dysfunctional Tregs that cannot suppress 

T effector activity, but produce IFN-γ and IL-17 have been observed in mouse models of dry 

eye induced by desiccating stress or associated with aging.123, 137 Furthermore, adoptive 

transfer of either T effectors or Tregs from aged mice into naïve immunodeficient recipient 

mice caused goblet cell loss and lacrimal gland infiltration, while the adoptive transfer T 

effectors or Tregs from young mice did not, suggesting that age-related Treg dysfunction 

may contribute to induction of dry eye disease.137

Lacrimal gland (LG) inflammation and dysfunction develop with age and in the autoimmune 

disease Sjögren syndrome (SS).138 The hallmarks of SS are lymphocytic infiltration of the 

lacrimal and salivary glands, serum autoantibodies, keratoconjunctivitis sicca and dry 

mouth.139 Mouse models of SS and aging have identified a pathogenic role for 

CD4+T 98, 137, 140–142 and B cells.143–146 Mouse SS models that develop dacryoadenitis tend 

to be Th1 skewed147–151, whereas those that develop sialadenitis are Th17 skewed.152–155 

IFN-γ produced by the infiltrating cells increases caspase expression and causes acinar 

apoptosis.150, 151, 156–158 Altered nuclear factor kappa-light-chain-enhancer of activated B 

cells (NFκB) signaling has been implicated in SS 159–161 and increased NFκB signaling in 

epithelial cells was found to promote lacrimal gland acinar apoptosis that preceded 

lymphocytic infiltration in a mouse SS model.161 Infiltration with autoreactive T cells and 

oxidative stress have also been observed in the aged lacrimal gland, indicating that aging is 

associated with inflammation and is not simply a degenerative process. 98, 137, 162–166 These 

studies suggest that similar to the ocular surface, a vicious cycle of inflammation and 

apoptosis involving infiltrating cells and glandular acinar cells perpetuates LG inflammation 

leading to glandular dysfunction in SS and age-related dry eye.

There is an increased body of evidence demonstrating that the microbiome, the microbial 

community that inhabits the human body, has immunoregulatory functions. The presence of 

an ocular microbiome has long been suspected; however, traditional swab cultures of the 

conjunctiva are often negative.17, 167 This is in sharp contrast to cultures of the lid margin 

and periocular skin which often grow bacteria.168, 169 Studies using 16S genomic 

sequencing have demonstrated an ocular surface microbiome that may have the lowest 

biomass of any tissue in the body16, 170, 171 No difference in the quantity and diversity of the 

ocular microbiome was noted between SS and control subjects;16 however, significant 

alterations of the intestinal microbiome were noted in the same cohort with a significant 

decrease in commensal genera and an increase in pathogenic genera, such as Escherichia/
Shigella and Proteobacteria. Mice that had an antibiotic-induced depletion of the 

microbiome with a cocktail of five oral antibiotics prior to experimental desiccating stress 

developed significantly worse dry eye than control mice that did not receive antibiotics, 

suggesting that the intestinal microbiome can modulate ocular surface inflammation and 

severity of dry eye disease.16
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Future Directions for Research

The two approved therapies for dry eye, cyclosporine and lifitegrast, target T cells which are 

key contributors to the pathophysiology of chronic dry eye. Cyclosporine bound to 

cyclophilin inhibits the activity of the serine/threonine phosphatase calcineurin which 

normally dephosphorylates nuclear factor of activated T cells (NFAT) after antigen binding 

to the T cell receptor.172 Dephosphorylated NFAT is transported to the nucleus where it 

initiates transcription of T cell cytokines, notably IL-2 and IFN-γ.172 Lifitegrast is a small 

molecule that inhibits binding of leukocyte-associated antigen 1 (LFA-1) on T cells to its 

ligand intercellular adhesion molecule 1 (ICAM1) on antigen presenting, epithelial and 

vascular endothelial cells and prevents the formation of the immunological synapse that is 

required for full T cell activation.125 These molecules have improved dry eye signs and 

symptoms in clinical trials, but they are not effective in all dry eye patients and don’t address 

acute effects of desiccation on the ocular surface, including the increased production of 

innate mediators and activation of the MAPK stress signaling pathways.172–174 Therapies 

targeting the acute effects of desiccation would likely provide more rapid relief of eye 

irritation and prevent the effects of a dry, drafty environment such as an airplane cabin. 

Corticosteroids have shown efficacy in treating chronic dry eye and preventing irritation and 

cornea barrier disruption in response to a desiccating environmental challenge175–178; 

however, long-term use of corticosteroids carries risks of cataract formation and glaucoma, 

and therapies with steroid-like inhibitory effects on innate inflammatory pathways would 

represent a major advance.

Conjunctival goblet cells produce soluble mucins that stabilize the pre-corneal tear layer. 

They also produce factors that maintain homeostasis and immune tolerance on the ocular 

surface.109, 179 The worst cornea disease develops in dry eye conditions with loss of goblet 

cells, such as Sjögren syndrome, Stevens-Johnson syndrome and graft-vs.-host 

disease.134, 180, 181 The Th1 cytokine IFN-γ inhibits goblet cell secretion and promotes 

apoptosis of these cells.133, 182 Both cyclosporine A and serum drops have been reported to 

increase conjunctival goblet cell density.183, 184 Research is needed to identify therapies to 

maintain goblet cell number and function with aging and in dry eye conditions, particularly 

those associated with the most severe goblet cell loss.

Therapies to bolster endogenous natural anti-inflammatory and immunomodulatory 

mechanisms also appear to have promise. The Western diet is often deficient in anti-

inflammatory polyunsaturated fatty acids (PUFAs).185, 186 Oral supplementation with 

gamma-linolenic acid (GLA, n-6) and omega-3 (n-3) PUFAs has been found to improve 

ocular irritation symptoms and tear stability, inhibit conjunctival dendritic cell maturation 

and decreased inflammatory mediators in patients with dry eye.187–189 Other nutritional 

supplements such as curcumin have potent anti-inflammatory effects and have been found to 

suppress IL-1β production by osmotically stressed cornea epithelial cells and dendritic cell 

maturation.190, 191 Intestinal dysbiosis has been found as a risk factor for SS dry eye and 

mice with antibiotic-induced depletion of their microbiome developed significantly worse 

ocular surface disease in response to desiccating stress.16 Supplementation with commensal 

microbiota have shown anti-inflammatory effects in autoimmune conditions such as 

inflammatory bowel disease and diabetes mellitus.192–196 It is possible that probiotics or 
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metabolites of commensal bacteria could have future therapeutic potential for dry eye 

disease.
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Highlights

Multiple factors can promote tear instability and hyperosmolarity that trigger ocular 

surface and glandular inflammation. Cornea barrier disruption, conjunctival goblet cell 

loss, and glandular dysfunction are consequences of the dry eye inflammatory cascade.
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Figure 1. 
Dry eye inflammatory cycle that can be initiated or amplified by extrinsic and intrinsic 

factors that cause tear instability and tear composition changes including hyperosmolarity 

that activate stress signaling pathways in the ocular surface cells which triggers production 

of innate inflammatory mediators which can lead to recruitment and activation of CD4+ T 

cells which produce cytokines that cause corneal, conjunctival and lacrimal gland epithelial 

disease.
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Figure 2. 
Function of the cornea, conjunctival and lacrimal gland in maintaining ocular surface 

homeostasis (left side of each tissue) and disease relevant mediators and pathological 

changes in each tissue (right side of each tissue). IL-17 = interleukin 17, IL-13 = interleukin 

13, IFN-γ = interferon-gamma
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