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Islet allotransplantation results in increasing success in treating type 1 diabetes, but the shortage of deceased human 
donor pancreata limits progress. Islet xenotransplantation, using pigs as a source of islets, is a promising approach 
to overcome this limitation. The greatest obstacle is the primate immune/inflammatory response to the porcine (pig) 
islets, which may take the form of rapid early graft rejection (the instant blood-mediated inflammatory reaction) or 
T-cell-mediated rejection. These problems are being resolved by the genetic engineering of the source pigs com-
bined with improved immunosuppressive therapy. The results of pig-to-diabetic nonhuman primate islet xenotrans-
plantation are steadily improving, with insulin independence being achieved for periods >1 year. An alternative 
approach is to isolate islets within a micro- or macroencapsulation device aimed at protecting them from the human 
recipient’s immune response. Clinical trials using this approach are currently underway. This review focuses on the 
major aspects of pig-to-primate islet xenotransplantation and its potential for treatment of type 1 diabetes.
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INTRODUCTION

Islet allotransplantation provides a potential cure for 
type 1 diabetes (T1D)1, but the shortage of islets from 
deceased human donors limits progress. Currently, dia-
betic patients may require islets from two or more donors 
to become normoglycemic2,3. A significant number of 
islets (perhaps up to 70%) may be lost when transplanted 
into the portal vein as a result of what is known as the 
instant blood-mediated inflammatory reaction (IBMIR)4 
and/or from a delay in revascularization of the graft5–11.

Because of these limitations, alternative sources of  
insulin-producing cells are being investigated. Devel-
opments in stem cell research have allowed the transfor-
mation of embryonic stem cells (ESCs) into pancreatic 
b-cells12. The in vitro generation of functional b-cells from 
human induced pluripotent stem cells (hiPSCs) derived 
from patients with T1D can correct hyperglycemia in 

mice13. In adult mice, exocrine cells have been directly 
reprogrammed into cells that closely resemble b-cells14. 
However, stem cells may possibly continue to proliferate 
in an uncontrolled manner after implantation in patients. 
Furthermore, stem cell-derived insulin-secreting cells 
have not yet been demonstrated to produce long-term 
normoglycemia in diabetic nonhuman primates (NHPs) 
or patients.

Islet xenotransplantation is an alternative promising 
approach to the treatment of T1D15,16. Pigs have anatomi-
cal and physiological similarities to humans. Additionally, 
the porcine pancreas can be easily excised, and success-
ful islet isolation procedures have been developed17. 
Furthermore, in contrast to when a deceased human is the 
source, unlimited neonatal as well as adult porcine (pig) 
islets are obtainable. When transplanted into streptozotocin-
induced diabetic NHPs, several studies reported long-term 
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normoglycemia18–26. Use of pigs also has the great advan-
tage of being readily genetically modifiable to provide some 
protection against the human immune and inflammatory 
responses. Porcine islet xenotransplantation has therefore 
become an attractive option for treating patients with T1D.

Here we focus on the major aspects of pig-to-primate 
islet xenotransplantation, including islet-source pig choice 
(optimal age, strain, and genetic modification), porcine 
endogenous retrovirus potential risks, free or encapsu-
lated (immunoisolated) islet transplantation, combined 
islet and mesenchymal stromal cell or Sertoli cell (SC) 
transplantation, immunological tolerance induction, pre-
vious clinical trials on islet xenotransplantation, criteria 
for future clinical trials, and future perspectives.

CHOICE OF ISLET-SOURCE PIG

Pig age, strain, genetic modifications, insulin secre-
tion, and porcine endogenous retroviruses (PERVs) need 
to be considered27,28.

Choice of Pig Based on Age

Adult pigs can provide a large number of islets of large 
size and mature structure and function (Table 1)17,27,29,30. 
Following transplantation, the porcine islets have the 
potential to secrete insulin within minutes or hours31,32. 
However, the cost of housing the pig for a long period 
before pancreas excision, fragility of islets (making iso-
lation difficult), and high cost of islet isolation are signif-
icant disadvantages31. In contrast, neonatal islet-like cell 
clusters (NICCs) and fetal porcine islet-like cell clus-
ters (FICCs) are easy and inexpensive to isolate. They 
also have the potential for islet proliferation following 
transplantation33,34. Embryonic porcine islets, with their 
reduced immunogenicity, proliferative potential, and 
revascularization by host endothelium might provide a 
further advantage35. The main disadvantages of embry-
onic, fetal, and neonatal islet cell clusters is their delay 
in in vivo functioning after transplantation and the high 

expression of oligosaccharide galactose-a1,3-galactose 
(Gal), the major antigenic target for primate anti-pig 
antibodies. Expression of this antigen is much lower in 
adult islets36.

Choice of Pig Based on Strain

Islet quantity and function may vary with pig breed37. 
Despite several studies on the yield of high-quality islets 
from different strains, there is no consensus regarding 
the optimal pig strain for preclinical/clinical islet xeno-
transplantation.

High expression of extracellular matrix (ECM) pro-
teins in islet capsules may make islet isolation easier, thus 
retaining healthier islets for transplantation. Expression 
of these proteins is higher in German Landrace pigs 
than in Deutsches Edelschwein pigs38. Hampshire and 
Duroc pigs have lower expression than Landrace and 
Pietrain pigs39. Older pigs express more ECM proteins 
than younger pigs38,40. How important this would be in 
moving toward clinical trials remains uncertain. Since 
the number of potentially transplantable islets is unlim-
ited, this could compensate for any loss of islets during 
isolation, though clearly this would be less efficient and 
more expensive.

A high yield of islets was obtained from Chicago Med-
ical School miniature pigs (now Seoul National University 
miniature pigs, Seoul, South Korea); the yield was higher 
than from other miniature pigs41. Islet yields from Land-
race pigs were higher than German Landrace and Pietrain 
pigs42,43. Wuzhishan miniature pigs were considered to 
be a feasible source of islets as a much higher yield was 
obtained from this strain than from some market pigs27,44.

Choice of Pig Based on Genetic Engineering

In an attempt to protect islets from IBMIR and the 
primate innate and adaptive immune responses, vari-
ous genetically engineered pigs have been developed 
(Table 2)27,30,45,46. These modifications have included gene 
knockout or gene knockdown, for example, knock out 

Table 1. Comparison of Islets Isolated From Pigs of Different Ages*

Embryonic Fetal Neonatal Adult

Isolation procedure Simple Simple Simple Difficult
Proliferation in vivo Yes Yes Yes Little
Insulin production Delayed >3 months Delayed >2 months Delayed >1 month Immediate
Gal expression High High High Low
Islet yield/pancreas (IEQs) N/A ~8,000 25,000–50,000 200,000–500,000
b-Cells (% of islet cells) N/A 10% 25% >70%
Tumorigenicity Possible Low Low None
Risk of pathogen transmission Low Low Low Low
Cost Low Low Low High

Gal, galactose-a1,3-galactose; N/A, not available.
*Table modified from Zhu et al.27, Nagaraju et al.29, and Park et al.30.
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of the gene for the enzyme a1,3-galactosyltransferase 
(which adds Gal to the underlying oligosaccharides on 
the surface of the pig vascular endothelium) (GTKO 
pigs)47, knockout of the enzyme cytidine monophosphate- 
N-acetylneuraminic acid hydroxylase (which adds N-gly-
colylneuraminic acid)48,49, and knockout of the enzyme 
b1,4 N-acetylgalactosaminyltransferase (which adds N-ace-
tylgalactosamine)50,51. Whether knockout of all of these 
genes will prove beneficial in porcine islet transplanta-
tion remains uncertain. These modifications have also 
included insertion of a human transgene, for example, for 
a human complement-regulatory protein (e.g., CD4624,52, 
CD5553–57, CD5958–60) or a human coagulation-regulatory 
protein (e.g., thrombomodulin61, endothelial protein C 
recep tor62, tissue factor pathway inhibitor63, asialoglyco-
protein receptor-164,65, CD3959, CD7366) to provide some 
protection from primate complement injury and coagu-
lation dysfunction26,67. Manipulations have also aimed 
toward providing a local immunosuppressive effect by 
introducing a molecule that:

provides a T-cell costimulation blockade [e.g., cytotoxic 1. 
T-lymphocyte antigen-4 immunoglobulin (CTLA4-Ig), 
LEA29Y (belatacept, a high-affinity variant of CTLA4-
Ig)]68,69;
suppresses the cellular immune response [e.g., major 2. 
histocompatibility complex (MHC) class II transactiva-
tor knockdown (CIITA-DN)]70; MHC class 1 or class 
2 knockout or knockdown71; insertion of human leuko-
cyte antigen class I histocompatibility antigen, a chain 
E (HLA-E)72,73, HLA-G74,75, human leukocyte antigen 
Cw3 (HLA-Cw3)76, human b-D-mannoside b-1,4-N-
acetylglucosaminyltransferase III (GnT-III)77, or human 
TNF-related apoptosis-inducing ligand (TRAIL)78;

provides a local anti-inflammatory effect [e.g., by 3. 
the introduction of a transgene for hemeoxygenase-1 
(HO-1), A2079,80, or CD4781].

Recently, pigs with one or more genetic manipulations 
were produced with transgene expression being driven by 
an insulin promoter to specifically target pancreatic b-cells28. 
In a humanized mouse model, islets from insLEA29Y 
transgenic pigs demonstrated the potential to normal-
ize glucose homeostasis and inhibit cellular rejection68. 
Transgenic expression of human complement-regulatory 
proteins (e.g., hCD46, hCD59, hCD5524,26,52,55,56,58,59) has 
been shown to provide significant protection against the pri-
mate humoral response. Expression of HO-1 can reduce 
islet apoptosis79. Knockout of pig tissue factor or over-
expression of the human “anti-thrombotic” gene, CD39, 
reduces the effect of IBMIR and coagulation dysfunc-
tion82. Genetically “humanized” pigs exclusively express-
ing human insulin have been generated83.

Genetic Engineering to Increase Pig Insulin Production

Casu et al. reported that the metabolic demands on 
porcine islets in their natural host are significantly less 
than after their transplantation into a primate, particu-
larly if the new host is a monkey rather than a human84. 
Nondiabetic cynomolgus monkeys show lower levels of 
fasting and stimulated blood glucose but higher levels 
of C-peptide and insulin than nondiabetic pigs. The 
reported levels in humans lie between those of monkeys 
and pigs85–88. Graham et al. reported that species incom-
patibilities in the pig-to-macaque islet xenotransplant 
model affect the translational and predictive value of 
pig-to-NHP islet transplant studies with regard to pig-
to-human islet transplantation86,87. Developing approaches 

Table 2A. Experience With the Xenotransplantation of Islets From Wild-Type Pigs in Immunosuppressed NHPs*

Reference Donor/Recipient Immunosuppressive Therapy
Maximal Graft 
Survival (Days)

Hering et al., 200619 Adult/CM FTY720 + rapamycin + anti-IL-2R + anti-CD154 >187
Cardona et al., 200620 Neonatal/rhesus monkey CTLA4-Ig + rapamycin + anti-IL-2R + anti-CD154 >260
Thompson et al., 2011166 Neonatal/rhesus monkey CTLA4-Ig + rapamycin + anti-IL-2R + anti-CD40 >203
Thompson et al., 201222 Neonatal/rhesus monkey MMF + CTLA4-Ig + LFA-3-Ig + anti-IL-2R + anti-LFA-1 114
Shin et al., 201523 Adult/rhesus monkey ATG + CVF + rapamycin + anti-TNF + anti-CD154 (+Treg) >603

*Table modified from Park et al.30.

Table 2B. Experience With the Xenotransplantation of Islets From Wild-Type Pigs in Nonimmunosuppressed NHPs*

Reference
Donor/

Recipient Immunoisolation/Site of Transplantation
Maximal Graft 
Survival (Days)

Sun et al., 199618 Adult/CM Alginate encapsulated/intraperitoneal 804
Dufrane et al., 201021 Adult/CM Alginate encapsulated/subcutaneous with monolayer device >180

*Table modified from Park et al.30.
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to improve insulin secretion may be beneficial or even 
necessary.

Genetic modification of the pig, even if this involves 
transgenes with an insulin promoter, does not appear to 
reduce porcine islet function further89,90. Increased insu-
lin production by genetic modification may be a direction 
for the future. In vitro perifusion assays have shown that 
porcine islets exhibit a biphasic pattern of glucose-stim-
ulated insulin secretion91–94, but isolated porcine islets 
secrete six to three times less insulin than human islets 
during the first and second phases after stimulation with 
15 mM glucose. Insulin granule exocytosis trig gered by 
glucose metabolism, and the ensuing rise in cytosolic cal-
cium concentration, is regulated by two major amplifying 
pathways95,96. The first is a cyclic adenosine monophos-
phate (cAMP)-dependent pathway, which is activated 
physiologically by binding of glucagon-like peptide-1 
(GLP-1) to its G protein-coupled receptor on b-cells. The 
second is a cho linergic pathway, which is activated by 
binding of acetylcholine or cholecystokinin to a type 
3 muscarinic receptor. Both of these pathways, if effi-
ciently activated, increase the number of readily releas-
able insulin granules in b-cells97 and result in a greater 
secretory response to glucose stimulation. Cooper et al. 
have demonstrated that islets coexpressing GLP-1 and 
activated muscarinic receptor type 3 have significantly 
improved insulin secretion98. The authors have sug-
gested that permanently inducing these changes in por-
cine b-cells by means of genetic engineering might be a 
novel approach to increase insulin secretion from isolated 
porcine islets, bringing their secretory function closer to 
that of human islets and rendering them more efficient in 
controlling host glycemia in both preclinical and clinical 
trials without the need to transplant extremely high num-
bers of islets98.

The Potential Risk of Porcine Endogenous 
Retroviruses (PERVs)

The potential risk of the presence of PERVs in islets has 
long been discussed99–102. Even the use of islets from desig-
nated/specific pathogen-free (DPF) pigs will not eradicate 
PERVs, but their presence is currently not thought to be a 
major problem that would prevent clinical application99,100. 
No evidence of PERV transmission was found in patients 
with T1D after long-term follow-up after porcine islet trans-
plantation27,103–106. The existence of PERV-C-free Auckland 
pigs that have been used in preclinical and clinical trials 
may possibly offer a solution107. If necessary, PERV acti-
vation could be suppressed by genetic manipulation108–110, 
and there is also the potential to knock out PERV111, though 
neither approach may be essential, as no PERV transmis-
sion has been documented in clinical trials of porcine islet 
transplantation112–117.
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When all of these data are considered together, there 
is evidence that the ideal sources of islets might be those 
isolated from neonatal DPF pigs with specific genetic modi-
fications to protect islets from IBMIR and innate and 
adaptive immune and inflammatory responses. However, 
exact choices of strain and genetic manipulation have not 
yet been conclusively identified.

FREE OR ENCAPSULATED ISLET 
TRANSPLANTATION

Two major approaches have been explored in islet 
xenotransplantation, namely, (i) free (or naked) porcine 
islet transplantation, in which islets are transplanted with-
out physical protection around them, and (ii) encapsu-
lated islet transplantation, where islets are encased in 
some form of protective capsule or device. The purpose 
of encapsulation is to protect islets from the recipient’s 
immune and inflammatory responses, yet allow insulin to 
be released. When free islets are transplanted, some form 
of exogenous pharmacologic immunosuppressive ther-
apy is required to prevent rejection (unless this could be 
achieved entirely by genetic modification of islets, which 
is not currently possible).

Free Islet Transplantation

In current clinical practice, free allo-islets are deliv-
ered into the portal vasculature, and the liver has been 
proven to be a site associated with clinical success2,118. 
Islets are infused through a catheter placed into the por-
tal vein under ultrasound or fluoroscopic guidance119,120. 
One disadvantage of the hepatic site is the low oxygen 
tension121, as hypoxia is an apoptosis-inducing signal in 
b-cells122. Furthermore, after infusion into the portal vein, 
IBMIR has been proven a major hurdle123,124.

IBMIR encompasses complement activation, coagula-
tion activation, platelet activation and aggregation, proin-
flammatory cytokine/chemokine production, and infiltration 
of leukocytes (Fig. 1)125. Interventions directed against the 
various components of IBMIR reduce early graft loss but 
are far from completely successful in this respect124,126–128. 
Complement activation can be partially controlled by 
agents such as cobra venom factor or soluble comple-
ment receptor 1 (CR1)4,129 or C5a-blocking peptide130,131. 
Coagulation can be reduced by heparin infusion4,132,133, 
low-molecular-weight dextran134,135, melagatran136, or an 
anti-tissue factor antibody (CNTO859)137. Antiplatelet 
agents, such as tirofiban, can inhibit platelet activation/
aggregation138. Developmental endothelial locus-1 (Del-1) 
downregulates the interaction between platelets and 
monocytes, thus reducing aggregation139. By decreasing 
tissue factor expression, pretreatment of por cine islets 
with nicotinamide can ameliorate IBMIR140,141.

However, several of these experimental agents cannot 
be used clinically, and so alternative agents (e.g., agents 
specifically targeting complement, such as compstatin) 
are under investigation142,143. The combination of antiplate-
let and anticoagulant agents can, of course, increase the 
risk of bleeding, and therefore the patients (or NHPs) would 
require close monitoring.

Other strategies include the transplantation of islets 
from pigs overexpressing CD39144,145, human tissue fac-
tor pathway inhibitor146, human thrombomodulin147, or the 
knockout (or knockdown) of tissue factor148,149. Hawthorne 
et al. prevented IBMIR by using pig NICCs transgenic 
for human complement-regulatory proteins transplanted 
into baboons150.

Site of Implantation of Free Islets

Because of the loss of islets after their transplanta-
tion into the portal vein, other potential sites are being 
explored, though a perfectly hospitable site remains 
elusive (Table 3)151. Because the native pancreatic bed 
is relatively inaccessible, attempts have been made to 
deliver islet grafts at several other sites. Transplantation 
into the splenic vasculature resulted in significant mor-
bidity, including infarction, rupture, and gastric perfora-
tion152. Although transplantation into the renal subcapsular 
space has become the gold standard for experimental pur-
poses and for islet quality control in rodents, this site has 
not proved entirely successful in large animals or clini-
cal studies, possibly because of a relative ischemia until 
revascularization takes place153,154. The intramuscular 
transplantation of pig NICCs into diabetic mice has been 
successful but has not yet been proven successful in large 
animal models155.

The omental pouch is a viable site that offers a safe, 
convenient, and efficacious alternative to islet transplanta-
tion into the renal subcapsular in rodents156. The omentum 
offers good vascularization and drainage of the produced 
insulin into the portal vein for direct utilization in the 
liver151. The results of allotransplantation in NHP models 
using the omental pouch have been reported157. There is a 
multicenter trial ongoing with the BioHub system, using 
omentum as an alternative transplant site158. Compared 
with islet transplantation into the portal vein, islets in the 
omentum have to secrete insulin and release it into the 
portal vein, but the omentum is anatomically more simi-
lar to the pancreas151,159.

Transplantation into the submucosal space of the gastro-
intestinal tract can be achieved by endoscopy and offers 
the advantage of subsequent biopsy160–162, but clinical 
testing has been very limited to date163.

Bone marrow is currently being considered as an alter-
native site for islet transplantation. Studies in mice demon-
strated that syngeneic islets could survive in bone marrow 
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indefinitely with greater success in inducing normoglyce-
mia compared to islets transplanted into the liver164,165.

Immunosuppressive Therapy Following 
the Transplantation of Free Islets

Free islet transplantation requires the administration 
of significant exogenous immunosuppressive therapy to 
prevent rejection, especially in the xenotransplant set-
ting. Modulation of the CD40–CD154 pathway has been 
associated with encouraging results19,20,23–26,166. However, 
anti-CD154mAb is currently unlikely to be administered 
clinically in view of the associated risk of thromboem-
bolic complications. The anti-CD40mAb Chi-220 has 
been reported to be effective in pig-to-NHP islet xeno-
transplantation, but it is a depleting antibody166. Another  
anti-CD40mAb, 2C10R4, is a nondepleting antibody that 

has shown success in preclinical islet allotransplanta-
tion167 and pig-to-NHP organ transplantation168–171, and so 
there is great potential for this mAb in clinical practice.

Other agents that might also contribute to successful 
suppression of the immune response are also being investi-
gated, but efalizumab [anti-lymphocyte function-associated 
antigen-1 monoclonal antibody (anti-LFA-1mAb)] was also 
withdrawn from the market because of the occurrence of 
three cases of progressive multifocal leuko encephalopathy 
following a trial in patients with psoriasis172.

Transplantation of Immunoisolated Islets

Lifelong immunosuppressive therapy, as would be 
required after the transplantation of free porcine islets 
(unless immunological tolerance can be induced), might be 
accompanied by significant side effects or complications, 

Figure 1. Overview of instant blood-mediated inflammatory reaction (IBMIR). The contact between blood and islets triggers the 
activation of coagulation that is mediated through tissue factor (TF). As a result, thrombin is generated, leading to fibrinogen deposi-
tion. Attachment of platelets to islets further increases the procoagulant. Complement (iC3b) is deposited on the islet surface, and C3a 
and C5a are activated, attract leukocytes, and promote formation of the membrane attack complex (MAC), which mediates the lysis of 
islets. FVIIa, activated coagulation factor VII.
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and so islet transplantation that might not require such 
therapy is being explored. Cell immunoisolation by encap-
sulation in a semipermeable matrix to protect islets from 
immune cells is one such approach173,174. Encapsulated 
porcine islets have been transplanted to nonimmuno-
suppressed NHPs (Table 4)175,176.

Encapsulation entails coating cells or tissue in a semi-
permeable biocompatible material that allows for the 
entry of nutrients, oxygen, and hormones while blocking 
the entry of immune cells and, ideally, immune molecules 
(e.g., antibody, complement, cytokines, chemokines) that 
might recognize and destroy the islets177. Islet encapsula-
tion requires the encapsulating material to have several 
properties, including (i) biocompatibility, (ii) immunopro-
tection (yet allowing insulin to be released through the 
capsule wall), and (iii) the ability to allow oxygen and 
nutrient diffusion into the capsule for islet survival178.

There are three main types of encapsulation systems: 
intravascular devices, microcapsules, and macrocapsules179, 
and there is also a relatively new technique—conformal 
coating (Table 5)175,180.

Intravascular and Extravascular Devices

Intravascular devices are islet-containing perfusion 
devices anastomosed to the vascular system as arterio-
venous shunts179,181. Although this device ensures a rapid 
exchange of insulin and glucose, complications (e.g., throm-
bus formation, bleeding) associated with vascular pros-
thetic surgery potentially limit the therapeutic potential 
of this approach.

Extravascular devices can be categorized by their size 
into (i) microcapsules (150–1,000 µm) and (ii) macrocap-
sules (3 cm ́  8 cm)182,183.

Microencapsulation

Microcapsules (Fig. 2A) offer better oxygen and nutri-
ent transport because of higher surface area-to-volume 
ratio184,185. They require less complex manufacturing pro-
cedures and can be simply injected but are difficult to 
remove completely, if this becomes necessary 186. Alginate 
is commonly used to entrap islets187,188.

Xenotransplantation of microencapsulated porcine 
islets in an alginate matrix confirmed their biocompat-
ibility and safety and reduced the insulin requirement in 
NHPs189,190. There has been one report of long-term sur-
vival (>9.5years) of some alginate-based microencapsu-
lated FICCs transplanted into the peritoneal cavity in a 
T1D patient in 1996, though the patient’s glucose level 
was not controlled191. A clinical trial of a microencap-
sulated porcine islet system (“Diabecell”) conducted 
by Living Cell Technologies Limited (Auckland, New 
Zealand) has been carried out (see below)192,193.

A nationally regulated clinical trial of intraperito-
neal alginate-poly-L-ornithine-alginate (APA)-encapsulated Ta
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Figure 2. Examples of encapsulation systems and modification of islets. (A) Overview of microencapsulation. Microcapsules incor-
porate individual or small groups of islets in a spherical hydrogel polymer with a stable structure. (B) Beta-O2 macroencapsula-
tion system. Islets immobilized within the alginate compartment, which is covered by a polytetrafluoroethylene (PTFE) membrane. 
Alginate and PTFE provide immune protection and facilitate neovascularization. The double-chambered bioreactor is connected to 
subcutaneous refueling ports through which an oxygen–CO2 mixture is delivered by daily injection. (C) Monolayer cellular device. 
The collagen support is covered by a mono/bilayer of porcine islets and embedded with alginate. (D) Conformal coating. Cell surfaces 
can be modified with amphiphilic polymers that interact both with the lipid membrane and the bioactive substance.
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NICCs (obtained from Diatranz Otsuka) was carried out 
in 14 nonimmunosuppressed diabetic patients in New 
Zealand194. The results, though not yet fully reported, 
suggest only partial graft function, with little impact on 
the clinical status of the patients98. A second clinical trial 
conducted in Argentina, although again not fully reported 
yet, demonstrated improved diabetic status of patients 
for more than 2 years98 (A. Abalovich and S. Matsumoto, 
unpublished data, personal communication). These pilot 
clinical trials have largely confirmed the safety of micro-
encapsulated islets but have not yet convincingly con-
firmed their efficacy. Improvements in microcapsule 
design and fabrication, optimization of biomaterials and 
implantation site to facilitate oxygen transport, coupled 
with sufficient or renewable islets of high quality and low 
antigenicity may help to provide favorable results175.

Macroencapsulation

Macrocapsules can be implanted and removed with 
min imal risk, but oxygen and nutrient transport are lim-
ited185,195. Research on macrocapsules is focused on pro-
moting neovascularization and providing sufficient oxygen 
and nutrition21,186,196–198. However, revascularization might 
be associated with the risk of rejection of islets.

A commercially available form of a macrocapsule 
is TheraCyte, which is made of bilayered polytetra-
fluoroethylene (PTFE)199–201. Either free or microen-
capsulated islets are placed in the membrane. NICCs 
in a TheraCyte system have reversed diabetes for up to 
10 weeks in diabetic mice189. The TheraCyte system is 
impermeable to immune cells but permeable to antibod-
ies and complement, which is a major limiting factor220. 
Furthermore, the beta-O2 implantable chamber has been 
created to offer an adequate oxygen supply to islets 
(Fig. 2B)196,202–203,204. Oxygen is supplied to islets via two 
ports connected to a gas reservoir integrated into the 
device202. Following structural improvements and suc-
cessful application in large animals204,205, clinical evalu-
ation of the beta-O2 device was initiated in eight patients 
by Beta-O2 Technologies in 2014. However, to ensure 
that adequate oxygen reaches the islets, the cell density 
within this device needs to be quite low and thus may be 
inadequate to sustain normoglycemia.

A monolayer made of alginate (adult porcine islets 
seeded as a monolayer on a human decellularized collagen 
matrix) (Fig. 2C)174 implanted subcutaneously demonstrated 
an ability to correct hyperglycemia for up to 6 months  
in diabetic monkeys without the need for immunosup-
pressive therapy21. However, no recent studies appear to 
have been published by this group.

Conformal Coating

Conformal coating (Fig. 2D)206 is a new approach 
to overcome the diffusion limitations associated with 

capsules of large size (>600 µm) by modification of the 
islet surface with polymerization [e.g., polyethylene gly-
col (PEG)] to form a thin coat (<50 µm)186,207–211. This 
approach allows transplantation into the portal vein, but 
the normoglycemia obtained has been very transient212–214. 
Improvements in the technology may allow coating of 
islets by molecules such as heparin, urokinase, or throm-
bomodulin132,186,209,215–219. The main drawback is the pos-
sible cytotoxicity of the compounds used. This strategy 
offers an opportunity to combine the inherent advantage 
of microencapsulation with conformal coating.

Site of Implantation of Encapsulated Islets

The microenvironment of the implant site plays a 
major role in the survival of encapsulated porcine islet 
xenografts. The intraperitoneal cavity has been the site of 
implantation most often, as there is less restriction of the 
volume of the grafts that can be implanted18,189,191,197,220–225.  
However, transplantation into the peritoneal cavity may 
aggravate hypoxia and inhibit the insulin-secretory 
response226. Furthermore, macrophages and lymphocytes 
in the peritoneum may be involved in the rapid degrada-
tion of the capsule223,227,228.

By contrast, the subcapsular kidney space (only suit-
able for microcapsules) and subcutaneous tissue (suitable 
for different encapsulation devices) have been associated 
with a weaker cellular response, better islet viability, and 
fewer broken capsules21,190,228. The subcutaneous space with 
prevascularization or cotransplantation of porcine islets 
and mesenchymal stem cells (MSCs) was reported to be 
associated with the promotion of neovascularization and 
reduced hypoxic stress198,229,230.

With the emergence of conformal coating and surface 
modification, the liver is being investigated as a potential 
site132,209,210,218. Other sites for microencapsulated or confor-
mal-coated islet transplantation, such as muscle and bone 
marrow, have the advantage of good vascularization and rel-
atively easy access164,231,232, but further studies are required.

Materials

The emergence of novel biocompatible encapsulation 
materials may promote progress in encapsulated islet trans-
plantation. Such a membrane should be biocompatible and 
nondegradable and should allow the passage of insulin and 
glucose while preventing that of antibodies, lymphocytes, 
and toxic cytokines/chemokines. Materials such as alginate 
have resulted in various successful clinical applications 
and biocompatibility studies. A recent report indicated that 
a silicon nanopore membrane, designed with 7-nm-wide slit 
pores, protected encapsulated islets from cytokines, retained 
islet viability over 6 h, and islets remained responsive to 
changes in glucose levels233.

However, our opinion is that it will be difficult to 
develop a system that allows nutrients and oxygen to 
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reach islets sufficiently and prevents islets from being 
damaged by antibodies, complement, and/or cytokines 
and chemokines.

COMBINED ISLET AND MESENCHYMAL 
STEM CELL AND/OR SERTOLI CELL 

TRANSPLANTATION

Mesenchymal Stem Cells (MSCs)

MSCs are known to have regenerative, anti-inflam-
matory, and immunodulatory effects. There are extensive 
indicators that MSCs function satisfactorily across spe-
cies234. MSCs might have considerable therapeutic poten-
tial in islet xenotransplantation. The cotransplantation of 
MSCs with adult porcine islets significantly improved islet 
vascularization and oxygenation198.

Porcine MSCs (pMSCs) express surface markers of 
MSCs but very low levels of swine leukocyte antigens 
(SLAs) and costimulatory molecules. pMSCs downreg-
ulate the human T-cell response to pig antigens as effi-
ciently as do human MSCs235,236. They also have the ability 
to differentiate and help rebuild the vascular system after 
islet xenotransplantation237,238. In summary, pig or human 
MSCs have considerable potential in xenotransplantation. 
The ability to obtain pMSCs in very large numbers from 
adult pigs (from the adipose tissue or bone marrow) may 
prove a significant advantage over human MSCs.

Sertoli Cells (SCs)

Testicular SCs can secrete immunosuppressive factors, 
such as transforming growth factor-b1 (TGF-b1), which 
can inhibit lymphocyte proliferation239,240, prolong survival 
of transplanted islets241, promote b-cell replication242,243, 
and accelerate functional maturation and differentiation 
of neonatal porcine islets244. SCs exert a global immuno-
suppressive effect that extends across species barriers245. 
Cotransplantation of islets with SCs prolonged fish, rat, 
and porcine islet survival in mice246–248. Moreover, some 
islet survival might have been achieved following the 
cotransplantation of SCs with neonatal porcine islets in 
humans, though this study was not conclusive249.

In summary, SCs can prolong the survival time of islets 
during in vitro culture and promote vascularization of 
islets. The intravenous infusion of SCs can inhibit rejec-
tion of islet transplants. The combined transplantation of 
islets and SCs might attenuate both short-term and long-
term loss of islet grafts250.

INDUCTION OF IMMUNOLOGICAL 
TOLERANCE

The induction of tolerance, if it could be achieved, 
would be particularly important after islet transplanta-
tion, as many young patients with T1D may require 
exogenous immunosuppressive drug therapy for decades 

if they are to remain normoglycemic. Tolerance induc-
tion could possibly have a dual protective effect, with 
the potential for inducing both tolerance to the islet graft 
and restoration of self-tolerance to prevent recurrence of 
autoimmunity251–254. Attempts have been made to induce 
a stable hematopoietic cell chimerism by the infusion of 
bone marrow to prolong islet graft survival252,255–257.

PREVIOUS CLINICAL TRIALS OF ISLET 
XENOTRANSPLANTATION (TABLE 6)

Groth et al. first transplanted FICCs into the kidney 
subcapsular space of T1D patients in 1994258. NICCs 
were cotransplanted with SCs in a stainless steel chamber 
under the skin of patients in a study in Mexico; results 
showed some decrease in insulin requirement103,249. Some 
function of the transplanted cells, a low frequency of 
chronic complications, and no evidence of PERV activa-
tion were also reported by the same group in long-term 
follow-up of 23 patients with T1D after NICC transplan-
tation in a device without exogenous immunosuppres-
sive therapy104,105. The patient with long-term survival 
(>9.5 years) of microencapsulated FICCs into the peri-
toneal cavity, but without insulin independence, has been 
mentioned above191. In P.R. China, Wang et al. reported 
that NICCs were transplanted into the hepatic artery in 
22 T1D patients who received clinically relevant immu-
nosuppressive therapy; they provided evidence that some 
NICCs survived in 20 patients259.

Studies have been undertaken by Living Cell Tech-
nologies, a company that has carried out phase I/II clini-
cal trials in Russia, Argentina, and New Zealand under 
approval from the local government health authorities. 
NICCs encapsulated with alginate and ornithine were 
transplanted into various groups of diabetic patients in 
each of those countries, but reports of the results have 
been less than comprehensive.

At this time, there have been no clinical islet xeno-
transplantation trials in which the protocols have been 
proven to be effective. This underpins the urgent need for 
preclinical studies in NHPs to prove the effectiveness and 
safety of the porcine islets and the treatment protocols.

CRITERIA FOR FUTURE CLINICAL TRIALS

Suggested criteria to be fulfilled in clinical trials of 
islet xenotransplantation have been published by the 
International Xenotransplantation Association260,261. The 
World Health Organization (WHO) urged its members to 
embark on clinical trials only when the national health 
authority, in the country where the trial takes place, estab-
lishes effective national regulatory control and surveil-
lance mechanisms. Subsequently, the WHO convened a 
WHO Global Consultation on Regulatory Requirements 
for Xenotransplantation Clinical Trials in Changsha, 
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P.R. China, in 2008, and again in Geneva, Switzerland, 
in 2011262.

It was suggested that the pigs should be DPF and 
PERV-C negative. The porcine islet products should 
be isolated under current good manufacturing practice 
(cGMP) conditions using standard operating procedures 
(SOPs) with strict quality control263–265. Successful rever-
sal of diabetes in four of six (or five of eight) consecutive 
NHPs with a minimum follow-up of 6 months was con-
sidered to be sufficient to indicate potential success of a 
clinical trial266. Prior analyses of microorganisms, recipi-
ent monitoring, and a response plan for preventing dis-
ease transmission needed to be well organized267.

Patient selection for a pilot clinical trial should be 
restricted to those with T1D or T2D complicated by 
impaired awareness of hypoglycemia and/or end-stage 
renal failure268. Informed consent should be obtained after 
informing the patients of the benefit–risk determination 
and postprotocol subject responsibilities261. The absence 
to date of reported in vivo transmission of PERV provides 
some confidence that well-planned pilot clinical trials 
could be safely undertaken.

PERSPECTIVES AND CONCLUSIONS

The availability of organs and cells from deceased 
humans for transplantation does not meet the demand. 
Even though several obstacles remain before clinical islet 
xenotransplantation can become a therapeutic reality, sig-
nificant progress has been made in the development of 
genetically engineered pigs, effective immunosuppressive 
regimens, immunoisolation techniques, and the estab-
lishment of guidelines for the conduct of clinical trials. 
Diabetic monkeys receiving exogenous immunosuppres-
sive therapy in the form of T-cell costimulation blockade 
have remained normoglycemic and insulin independent 
after transplantation with porcine islets for >1 year. Novel 
genetically engineered pigs including those with manipu-
lations to increase insulin production, the identification 
of sites for islet implantation where loss from IBMIR is 
reduced, and the cotransplantation of MSCs and/or SCs 
may advance the field further. Porcine islet xenotrans-
plantation has been demonstrated to be a potentially suc-
cessful strategy to achieve normoglycemia and prevent 
some of the complications of diabetes and may open a 
new avenue for the treatment of T1D.
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