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Abstract

Monitoring indoor air quality is critical because Americans spend 93% of their life indoors, and 

around 6.3 million children suffer from asthma. We want to passively and unobtrusively monitor 

the asthma patient’s environment to detect the presence of two asthma-exacerbating activities: 

smoking and cooking using the Foobot sensor. We propose a data-driven approach to develop a 

continuous monitoring-activity detection system aimed at understanding and improving indoor air 

quality in asthma management. In this study, we were successfully able to detect a high 

concentration of particulate matter, volatile organic compounds, and carbon dioxide during 

cooking and smoking activities. We detected 1) smoking with an error rate of 1%; 2) cooking with 

an error rate of 11%; and 3) obtained an overall 95.7% percent accuracy classification across all 

events (control, cooking and smoking). Such a system will allow doctors and clinicians to correlate 

potential asthma symptoms and exacerbation reports from patients with environmental factors 

without having to personally be present.

Index Terms

Sensor applications; asthma management; cooking; indoor air quality sensor and smoking

I. INTRODUCTION

In a study done by the National Health Interview Survey in 2014, around 6.3 million 

children in the United States suffer from asthma [1]. Asthma management is challenging as 

it involves understanding causes and avoiding triggers that are both multi-factorial and 

unique to each individual. Moreover, it is difficult for doctors to constantly monitor the 

health of many patients and the environmental triggers simultaneously; or to get adequate 

data on the environment in which the patient lives. Americans spend 93% of their life 
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indoors, [2] hence monitoring of the indoor environment of patients is critical for asthma 

management [3].

To address these challenges, we have developed kHealth1 (see Fig. 1), a framework for 

continuous monitoring of patient’s personal, public, and population-based health signals that 

is designed to send alerts to the patient when an adverse condition is detected. The personal-

level data includes questionnaires, individualized exhaled nitric oxide level, and indoor 

environmental measurements as well as activity level measured using fitness trackers.

In this study, we focus on the personal level of the kHealth framework. Specifically, we 

propose the use of the widely ubiquitous air quality monitor called Foobot2 to monitor the 

patients indoor environment. Foobot measures five different air quality parameters (with 

thresholds defined by Foobot): VOC (300 ppb), PM (25 ug/m3), CO2 (1300 ppm), 

Temperature (40 °Celsius), and Relative Humidity (60%). Foobot changes its color from 

blue to orange if any of the parameters value exceeds their thresholds.

Consider James: an eight-year old boy with controlled asthma recently hospitalized due to 

multiple asthma attacks. There has been no change in his outdoor environment, lifestyle or 

medications. The doctors are concerned about these sudden asthma attacks, and their cause? 

The reason may be the change in the indoor environment, possibly caused by activities such 

as cooking or smoking (either active or passive), which can lead to increase in PM, VOC, 

and CO2. By passive monitoring using Foobot, it is possible to detect these activities and 

correlate them to James’s asthma symptoms. Our research is the first step towards evaluating 

whether access to data related to patient’s living surroundings can help doctors in continuous 

monitoring of the indoor air quality of their asthma patients and incorporate them with 

clinical records that contain information on an individual’s asthma triggers, allergies, 

medications, and past emergency room visits for further insights on the role played by the 

indoor environment in asthma management. The aim of this paper is two-fold: firstly, we 

present a validation study of Foobot for the measurement of the personal indoor 

environmental measure in the kHealth framework, and second we present our exploration of 

whether it is possible to successfully detect cooking and smoking activities in the indoor 

environment.

II. PURPOSE OF RESEARCH

We compared the indoor air PM level with the outdoor air PM level in Table 1. We observe 

an elevated indoor PM values as compared to outdoor PM for the environments 4 and 6, 

which may be caused by conventional cigarette smoking. We also observed a higher indoor 

PM value in environment 7, which may be due to the cooking activity. For the values of PM 

and CO2, a sudden hike is observed during the cooking activity for environment 1 as shown 

in Fig. 2. Based on these observations, we will address the following research questions:

1. Can we remove redundant Foobot parameters for simplified activity analysis?

1kHealth- https://goo.gl/0xlQkn
2http://foobot.io/
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2. Can we successfully classify the indoor cooking and smoking activities after 

redundant parameters are removed?

In the next section, we describe the background literature for this study.

III. RELATED WORK

Studies indicate that an increase in the concentration of PM leads to increased emergency 

room visits of asthma patients [4], [5] and deteriorating lung function in patients with 

asthma [6]–[8]. Indoor PM concentration varies with different environments and times as a 

result of various activities such as smoking [9], cooking [10], [11], ventilation [12], and 

heating [13]. VOC consists of the most toxic chemicals (such as formaldehyde, benzene) 

which worsens the asthma symptoms and are carcinogenic even at a very low concentration.
3 The VOC reading of the Foobot sensor also accounts for carbon monoxide (CO), if present 

in the air. The sources of CO inside the house are cooking, conventional cigarette smoking 

or any kind of incomplete combustion. Cooking produces the largest concentration of PM, 

four times greater than major haze events in Beijing.4 Frying, and toasting food with gas or 

electric appliances produces PM, nitrogen dioxide, CO, CO2, and VOC. Smoking releases 

cancer-causing chemicals like CO, cadmium, formaldehyde, and produces up to ten times 

more pollution than diesel exhaust [14]. The second-hand smoke is known to be a human 

carcinogenic and can increase the severity of asthma in children [15]. In the following 

section, we will explore the relationship between these indoor air quality parameters in a 

data-driven approach.

IV. DATA COLLECTION, ANALYSIS, AND RESULTS

In this section, we discuss our methods and experimental results for the environmental 

parameters observed using the Foobot which collects data every 5 min. In total, 27 849 data 

points were collected over 15 days for seven different environments. We collected the data 

from July to November, 2016 which was late summer and early fall in the areas at different 

locations within the city of Dayton,Ohio (with zip codes 45324, 45431, 45424, and 45404). 

The Foobot sensor was placed at an average distance of 10–15 meters from the occurrence 

of the activities to ensure good match with preferred product operation specifications.

For the analysis, the data points were manually annotated by the user as control, cooking or 

smoking. The control activity stands for a clean, non-cooking and non-smoking 

environment. The cooking activity stands for the cooking event (which includes stir frying, 

deep-frying) using an electric coil-stove, and the smoking activity stands for the presence of 

conventional cigarette smoking. To test the consistency of the Foobot we conducted two 

experiments5 to model 1) the consistency of the Foobot in a controlled environment (without 

any activity) and 2) the consistency in an environment where cooking activity took place. 

We computed the Root Mean Square Deviation in both these settings and found the values to 

be extremely low in the control environment (ranging from 0 to 2.42), indicating that the 

3http://www.health.state.mn.us/divs/eh/indoorair
4http://well.blogs.nytimes.com/2013/07/22/the-kitchen-as-a-pollution-hazard/
5https://goo.gl/6MISQs
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reliability of the device is high, especially in the controlled environment. The differences in 

the sensor readings in the uncontrolled (cooking) environment reflect the differences in the 

PM, VOC, and CO2 readings in different areas in the room (since we do not see the variation 

in the controlled environment).

To address the above research questions, we chose environment 1 which had both controlled 

and cooking data points, environments 4 and 6 for smoking, and environment 7 for cooking. 

In the subsequent subsections, we will explore the relationship between the Foobot 

parameters and the activities occurring in different environments.

A. Exploratory Analysis of the Environments

We found high PM, VOC, and CO2 during the activities of cooking and smoking (see Table 

1). We did a Pearson Correlation [16] (see Table 2) to explore the relationship between the 

five parameters observed by the Foobot sensor. From Table 2, we observe a large positive 

correlation (r = 0.72) of PM with VOC and CO2. As PM increases or decreases, the 

concentration of VOC and CO2 also increases or decreases. During smoking and cooking 

events we observe an increase in the concentration of PM; VOC and CO2 also increases as 

evident in Fig. 2 and Table 1. We also observe a moderate negative relationship (r = −0.35) 

between Temperature and PM. During cold weather, at the time of emission with the 

decrease in temperature the concentration of PM increases [17]. Humidity is positively 

correlated (r = 0.67) with temperature. As the temperature increases or decreases, humidity 

also increases or decreases. In this study [18], there is a strong positive correlation between 

outdoor temperature and indoor humidity. Since most of the data was collected in summer 

and early fall, it may indicate the use of air conditioning unit. Overall we observe a strong 

association between the variables PM, VOC and CO2 (see Table 2). In Tables 1 and 2, the 

temperature and humidity do not show as much variation as PM, VOC, and CO2. We want to 

remove the redundant Foobot parameters. While Pearson correlations tell us about how the 

variables relate, they do not help us reduce the data. In order to address this, we applied the 

principal component analysis (PCA) in Table 3 on our correlation matrix to test the 

independence of the parameters, and reduced the data to two main environmental 

components, explaining 55.2% of the variation by Component 1 and 31.8% of variation by 

Component 2 in the data [19].

1. Pollution component (Component 1 which we call Pollution) comprising PM, 

VOC, and CO2;

2. Climate component (Component 2which we call Climate) comprising 

temperature and humidity.

This implies that there are two orthogonal components that describe the indoor air quality 

using the Foobot sensor. So instead of using the five Foobot parameters in the analysis, we 

instead use the two principal components. We further test the consistency and reliability of 

using Foobot with the same activity but in different environments using independent samples 

t-test at a 95% confidence interval for the mean difference. For the activities control and 

smoking in the environment group (4, 6) (13.8 <|t(6793)| <129.2, p ≪ 0.001) and control 

and cooking in the environment group (1, 7) (11.8 <|t(9705)| <189.8, p ≪ 0.001), there are 

significant differences between the groups. An Independent samples t-test provided an 
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evidence that there are significant differences between the control, cooking, and smoking 

environments.

B. Activity Analysis

We use principal components logistic regression (see Table 4) as a classifier to explore the 

efficacy of the Foobot parameters in predicting the presence of smoking and cooking in a 

given environment with the control environment as a reference. The main effects included 

the Pollution and Climate principal components. In addition, the Pollution-by-Climate 

interaction was included to account for potential differential effects of pollution caused by 

indoor climate. We use odds ratios to explain the constant effect of the two components on 

the activities. Odds ratios for the Pollution component are very large for both the cooking 

and smoking outcomes, indicating that the probability of detecting a cooking or smoking 

event increases dramatically with Pollution. Similarly, the odds ratios near zero for the 

Climate component shows that likelihood of detecting a cooking or smoking event goes 

down as measures for the Climate component increase. Significant Pollution-by-Climate 

interactions well above 1 for both the cooking and smoking events (OR = 186.5 and 2.38 × 

106, respectively) indicate that Pollution becomes a more powerful predictor of these events 

as temperature and humidity increase. Using both components and their interaction, we 

successfully detected the activities of cooking and smoking through an automated system 

with a total accuracy of 95.7% (see Table V). In Table V, we observe an overlap between the 

cooking and smoking activity although the diagonal values are higher. The false alarms in 

the cooking activity are likely due to the confounding factors such as the distance of the 

Foobot from the cooking area, the lasting effects of cooking and the presence of other 

activity during that time. These factors are inevitable in patient monitoring, and indicate that 

more training data are needed to account for these factors. Nonetheless, the classifier gave 

promising results for the discrimination of cooking (89%) and smoking activities (99%), and 

is sufficiently accurate to show promise as a useful activity monitor within the kHealth 

framework.

V. CONCLUSION

Using a principal components multinomial logistic regression classifier, we found that 

principal components, Pollution and Climate, were able to successfully identify the presence 

of conventional smoking (with 99% accuracy) and cooking (with 89% accuracy), with a total 

classification accuracy of 95.7% across all the events (control, cooking, and smoking). The 

activities cooking and smoking lead to a perceptible change in the environmental parameters 

PM, VOC, CO2, temperature, and humidity. The parameters PM, VOC, and CO2 were better 

predictors of the activity of smoking and cooking in comparison to temperature and 

humidity. The use of such a model will help in continuous monitoring of indoor air quality 

and activity detection within our asthma management framework involving end-to-end 

validation in a trial of 200 patient cohort. Besides providing more training data for the 

present classifier, we recommend that future studies build upon this model towards the 

detection of other PM-inducing events which may exacerbate asthma symptoms such as the 

use of e-cigarettes, burning incense, sweeping, and the use of particular cooking methods 

[20].
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Fig. 1. 
kHealth System for Asthma Management using personal, population, and public level 

signals. Specifically, we examine data from Foobot (is highlighted in green) in this paper.
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Fig. 2. 
Sudden hike in the value of PM and CO2 due to cooking in the environment 1 with zoomed 

in hike in PM.
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TABLE 3

Principal Component Analysis (PCA)

Parameters Component 1 Component 2

PM 0.88 0.02

VOC 0.93 0.32

Carbon Dioxide 0.93 0.32

Temperature −0.37 0.85

Humidity −0.36 0.82
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TABLE 4

Multinomial Regression using PCA Components for Cooking and Smoking Environment with Reference to 

clean (Controlled Environment)

Activity Intercept(Std. Error.) χ2(df = 1) Odds Ratios

Cooking 19.26 (3.94) 23.81

Pollution Component 25.03 (4.80) 27.17 7.48 × 1010

Climate Component −4.97 (2.01) 6.09 7 × 10−3

Pollution* Climate Component 5.22 (2.52) 4.30 186.5

Smoking 10.90 (5.04) 4.62

Pollution Component 41.41 (7.82) 27.98 9.65 × 1017

Climate Component −11.51 (2.92) 15.56 9.93 × 10−6

Pollution* Climate Component 14.68 (4.74) 9.59 2.38 × 106
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TABLE 5

Confusion Matrix for Multinomial Regression

Predicted

Observed Control Cooking Smoking % Correct

Control 98 1 0 99%

Cooking 8 89 3 89%

Smoking 0 1 99 99%

Overall % 35.5% 30.4% 34.1% 95.7%

IEEE Sens Lett. Author manuscript; available in PMC 2017 October 26.
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