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Abstract

Alpha-Klotho (αKlotho) protein is encoded by the gene, Klotho, and functions as a coreceptor for 

endocrine fibroblast growth factor-23. The extracellular domain of αKlotho is cleaved by 

secretases and released into the circulation where it is called soluble αKlotho. Soluble αKlotho in 

the circulation starts to decline in chronic kidney disease (CKD) stage 2 and urinary αKlotho in 

even earlier CKD stage 1. Therefore soluble αKlotho is an early and sensitive marker of decline in 

kidney function. Preclinical data from numerous animal experiments support αKlotho deficiency 

as a pathogenic factor for CKD progression and extrarenal CKD complications including cardiac 

and vascular disease, hyperparathyroidism, and disturbed mineral metabolism. αKlotho deficiency 

induces cell senescence and renders cells susceptible to apoptosis induced by a variety of cellular 

insults including oxidative stress. αKlotho deficiency also leads to defective autophagy and 

angiogenesis and promotes fibrosis in the kidney and heart. Most importantly, prevention of 

αKlotho decline, upregulation of endogenous αKlotho production, or direct supplementation of 

soluble αKlotho are all associated with attenuation of renal fibrosis, retardation of CKD 

progression, improvement of mineral metabolism, amelioration of cardiac function and 

morphometry, and alleviation of vascular calcification in CKD. Therefore in rodents, αKlotho is 

not only a diagnostic and prognostic marker for CKD but the enhancement of endogenous or 

supplement of exogenous αKlotho are promising therapeutic strategies to prevent, retard, and 

decrease the comorbidity burden of CKD.

1. INTRODUCTION

The Klotho gene was discovered in 1997 when mice with silencing of this gene developed 

multiple organ dysfunction and failure with shortened life span resembling human premature 

aging (Kuro-o et al., 1997). The overexpression of the Klotho transgene with a ubiquitous 

promoter (Kurosu et al., 2005), viral-based transfer (Masuda, Chikuda, Suga, Kawaguchi, & 

Kuro-o, 2005), or direct parenteral administration (Chen, Kuro, et al., 2013) can extend 

mouse life span compared to normal mouse and rescue the most phenotypes observed in 

Klotho-deficient mouse (Kurosu et al., 2005). Two other paralogs βKlotho (Ito et al., 2000) 

and γKlotho (Ito, Fujimori, Hayashizaki, & Nabeshima, 2002) were identified, then Klotho 

1Corresponding author: ming-chang.hu@utsouthwestern.edu. 

HHS Public Access
Author manuscript
Vitam Horm. Author manuscript; available in PMC 2017 October 26.

Published in final edited form as:
Vitam Horm. 2016 ; 101: 257–310. doi:10.1016/bs.vh.2016.02.007.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



gene was designated αKlotho to distinguish from the other two paralogs (Hu, Shiizaki, 

Kuro-o, & Moe, 2013).

αKlotho is highly expressed in the kidney, brain, and in lesser extent in other organs (Kato et 

al., 2000; Kuro-o et al., 1997). Human αKlotho is a single transmembrane 1012 amino acid 

130 kDa protein encoded by human Klotho gene, while rodent αKlotho is a 1014 amino 

acid protein (Kuro-o et al., 1997; Matsumura et al., 1998; Shiraki-Iida et al., 1998; Tohyama 

et al., 2004). The extracellular domain of membrane αKlotho consisting of two repeat 

sequences (kl1 and kl2) can be shed by secretases and released into the circulation (Bloch et 

al., 2009; Chen, Podvin, Gillespie, Leeman, & Abraham, 2007; Chen, Tung, et al., 2014; Hu, 

Shi, Zhang, et al., 2015). This released extracellular domain of membrane αKlotho is 

referred as soluble or cleaved αKlotho. It is a main functional form in the circulation (Hu, 

Shi, Zhang, et al., 2015; Hu, Shi, Zhang, Pastor, et al., 2010; Hu, Shi, Zhang, Quinones, et 

al., 2010; Imura et al., 2004; Kurosu et al., 2005). Soluble αKlotho protein is also present in 

cerebrospinal fluid (Chen et al., 2015; Degaspari et al., 2015; Emami Aleagha et al., 2015; 

Imura et al., 2004; Semba et al., 2014) and urine of mammals (Akimoto et al., 2012; Hu, 

Shi, Zhang, Pastor, et al., 2010; Hu et al., 2011; Lau et al., 2012). Soluble αKlotho functions 

as a circulating substance exerting multiple systemic biological actions on distant organs and 

directly protects cells against a variety of insults including hypoxia, hyperoxia, oxidative 

stress, and cytotoxic medication and suppresses apoptosis (Cheng et al., 2015; Hu, Shi, Cho, 

et al., 2013; Panesso et al., 2014; Ravikumar et al., 2014; Sun et al., 2015; Wang et al., 

2013).

Chronic kidney disease (CKD) is characterized by progressive deterioration of renal function 

with high risk of end-stage renal disease (ESRD) regardless of whether initial kidney insults 

have regressed or are continuously present (D’Hoore et al., 2015; Ferenbach & Bonventre, 

2015; Rimes-Stigare et al., 2015; Venkatachalam, Weinberg, Kriz, & Bidani, 2015). As 

expected, CKD risk increases with age, and about half of the CKD stage ≥3 cases occurs in 

subjects >70 years old. CKD can be viewed as a state of accelerating aging (Kooman et al., 

2013; Stenvinkel & Larsson, 2013). The relative risk for cardiovascular (CV) mortality of a 

25- to 34-year-old dialysis patient is similar to a non-CKD patient of >75 years of age 

(Foley, Parfrey, & Sarnak, 1998). The similar phenotypes between αKlotho-deficient mice 

and CKD subjects also suggest a potential pathogenic role of αKlotho deficiency in CKD 

development and progression (Hu, Kuro-o, & Moe, 2012, 2013a, 2013b; Hu et al., 2011; Hu, 

Shiizaki, Kuro-o, et al., 2013; Shi et al., 2015).

In this chapter, we aim to summarize the current state of knowledge on αKlotho biology and 

pathophysiology in CKD, and provide a possible novel perspective on potential clinical 

applications of αKlotho in CKD.

2. CKD IS A STATE OF KLOTHO DEFICIENCY

2.1 The Kidney Is the Main Origin for Systemic αKlotho

Compared to the wide distribution of αKlotho mRNA in many organs and tissues, αKlotho 

protein expression is restricted to only a few tissues including the kidney, brain, heart, 

parathyroid gland, and testis (Kuro-o et al., 1997; Takeshita et al., 2004). αKlotho protein 
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was also found in vascular endothelial cells and smooth muscle cells in humans and rodents 

(Fang et al., 2014; Jimbo et al., 2014; Lim et al., 2012; Ritter, Zhang, Delmez, Finch, & 

Slatopolsky, 2015), but this is still in debate because there is equally convincing evidence 

that do not support the presence of αKlotho protein in the vasculature (Hu, 2016; Lau et al., 

2012; Lindberg et al., 2013; Mencke et al., 2015; Scialla et al., 2013). Therefore, whether 

αKlotho is expressed in the vasculature remains to be resolved. Among tissues expressing 

αKlotho protein, the kidney has the highest level. In mammalian kidney, αKlotho is 

prominently expressed in distal convoluted tubules (DCTs; Kato et al., 2000; Kuro-o et al., 

1997), but is also unequivocally found in the proximal convoluted tubules although at lower 

levels compared to DCT (Hu, Shi, Zhang, Pastor, et al., 2010; Lim et al., 2015).

Despite the fact that the kidney is the organ expressing the highest levels of αKlotho protein, 

the confirmation that circulating αKlotho in serum mainly derived from the kidney under 

physiological conditions was demonstrated by Lindberg et al. (2014). The strongest evidence 

comes from mouse with renal tubule-specific partial deletion of αKlotho. This mouse line 

has reduced serum αKlotho levels and systemic features resembling the phenotype of global 

αKlotho deletion or the αKlotho hypomorphic mice, indicating that the kidney may be the 

principal organ mediating the systemic αKlotho effects (Lindberg et al., 2014). More direct 

evidence to support this notion is that αKlotho protein in the suprarenal vein is higher than 

that in infrarenal vein in rodents and humans (Hu, Shi, Zhang, et al., 2015) and circulating 

αKlotho levels were dramatically and quickly dropped in rodents that underwent bilateral 

nephrectomy (Hu, Shi, Zhang, et al., 2015) which strongly suggest that the kidney is the 

main source of αKlotho in the circulation under physiological conditions (Fig. 1). In living 

human kidney donors (Akimoto et al., 2013; Ponte et al., 2014), αKlotho was shown to drop 

after nephrectomy but it is difficult to distinguish this from the effect of surgery. However, 

under pathological renal conditions such as ESRD, circulating αKlotho is low rather absent, 

suggesting the possibility that αKlotho may come from extrarenal source(s), although its 

origin is not clear to date (Lau et al., 2012). Establishing extrarenal sources of αKlotho and 

characterizing how this can be upregulated when renal production fails are of paramount 

importance.

2.2 Renal αKlotho Deficiency in CKD

With the renal source of circulating αKlotho established (Fig. 1), the next step is to 

understand why and how αKlotho is drastically reduced in kidney disease. As a general 

principle, if the organ of origin of an endocrine substance is diseased, it is logical to suspect 

that endocrine deficiency of that substance ensues. Therefore, it is not surprising to witness 

the reduction of αKlotho protein in the diseased kidney. However, whether the reduction of 

αKlotho is due to destruction of kidney, loss ability to produce/secrete αKlotho, or a 

maladaptive response, remains to be explored.

It has been shown that there is a significant reduction of renal αKlotho transcript and protein 

in the diseased kidney resulting from a wide variety of etiologies from glomerular and 

tubulointerstitial diseases, obstructive nephropathy, diabetic nephropathy, ischemic injury, 

subtotal nephrectomy, oxidative stress, chronic allograft rejection, and exposure to cisplatin, 

angiotensin II (Ang II), and calcineurin inhibitors in both humans and rodents (Hu et al., 
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2012; Hu et al., 2013a, 2013b; Hu, Shiizaki, Kuro-o, et al., 2013; Panesso et al., 2014; Sastre 

et al., 2013; Shi et al., 2015; Zhou, Li, Zhou, Tan, & Liu, 2013). The mechanisms underlying 

the relationship between renal αKlotho downregulation and kidney diseases therefore need 

to be further illustrated.

It is proposed that renal αKlotho deficiency in early stages of CKD may be attributed mainly 

to suppression of αKlotho expression rather than loss of viable renal tubules. Several 

intermediates are shown to be involved in the reduction of αKlotho expression: high serum 

phosphate (Hu, Kuro-o, & Moe, 2014), hypermethylation (Azuma et al., 2012; King, 

Rosene, & Abraham, 2012; Lee, Jeong, et al., 2010; Sun, Chang, & Wu, 2012; Young & Wu, 

2012), and hyperdeacetylation (Moreno et al., 2011) in αKlotho gene promoter induced by 

inflammatory cytokines and the uremic toxin, indoxyl sulfate (Fig. 2). If these observations 

are correct, they provide an opportunity to reactivate αKlotho expression by modulation of 

these factors and thereby correcting circulating and renal αKlotho deficiency in early stages 

of CKD.

2.3 Circulating αKlotho Deficiency in CKD

αKlotho transcript and protein expression in diseased kidneys from humans and animals is 

clearly decreased. However, the relationship between renal αKlotho expression and serum 

and/or urinary αKlotho levels remains to be confirmed.

In a rodent model of CKD from uninephrectomy plus contralateral ischemia reperfusion, 

serum αKlotho concentration was remarkably decreased, and the degree of its reduction was 

similar in magnitude to that of decreased αKlotho protein in the kidneys and in the urine 

(Hu et al., 2011). Thus in rodents, CKD is a state of endocrine (circulating and urinary) 

αKlotho deficiency in addition to renal αKlotho deficiency (Hu et al., 2011).

In CKD patients, urinary αKlotho levels are significantly decreased at very early stages 

(stage 1) and sustainably reduced with progression of CKD (Hu et al., 2011), while the 

reduction of serum αKlotho starts later at stage 2 CKD (Barker et al., 2015). Moreover, 

human urinary αKlotho excretion is significantly decreased and the amount of urinary 

αKlotho decrease is directly correlated with estimated glomerular filtration rate (eGFR) 

decline (Yamazaki et al., 2010). These observations suggest that urinary soluble αKlotho 

may be a good biomarker for early CKD detection. A growing body of evidence has shown a 

reduction of circulating αKlotho in CKD and ESRD patients (Devaraj, Syed, Chien, & 

Jialal, 2012; Fliser, Seiler, Heine, & Ketteler, 2012; Pavik et al., 2013; Scholze et al., 2014; 

Shimamura et al., 2012; Zhou et al., 2013), therefore identifying the plausible mechanisms 

and clinical implications of serum and/or urinary αKlotho reduction in CKD/ESRD patients 

is of paramount importance.

3. αKlotho DEFICIENCY CONTRIBUTES TO CKD DEVELOPMENT AND 

PROGRESSION

αKlotho deficiency is not only an early biomarker of CKD but also a pathogenic 

intermediate for CKD development and progression, and extrarenal complications. 

Compared to wild-type mice, αKlotho-deficient mice have more severe kidney damage and 
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faster progression to CKD with more fibrosis, and αKlotho overexpressors have milder 

kidney dysfunction and less fibrosis after exposure to renal insults including ischemic injury 

(Hu et al., 2011; Hu, Shi, Zhang, Quinones, et al., 2010; Shi et al., 2015), cisplatin (Panesso 

et al., 2014), Adriamycin (Zhou et al., 2013), and ureteric ligation (Sugiura et al., 2012; 

Zhou et al., 2013). αKlotho is a multifaceted protein. Different forms of αKlotho may be 

involved in different biological functions. Membrane αKlotho is confirmed to participate in 

maintenance of mineral homeostasis, while soluble αKlotho protein plays a more important 

and systemic role in cytoprotection, antifibrosis, and angiogenesis.

3.1 Increased Cell Senescence and Reduced Ability of Regeneration

Stem cells in most mammalian tissues participate in maintenance of tissue homeostasis and 

are involved in tissue repair or regeneration (Li & Clevers, 2010; Weissman, 2000). The 

dysfunction and depletion of stem cells and progenitor cells contribute to aging and aging-

associated diseases including kidney disease. CKD can be a consequence of incomplete or 

failed tubule recovery after AKI (D’Hoore et al., 2015; Ferenbach & Bonventre, 2015; 

Kramann, Tanaka, & Humphreys, 2014; Polichnowski et al., 2014; Venkatachalam et al., 

2015; Zhang et al., 2013). The repeated administration of bone marrow-derived 

mesenchymal stem cells improved renal function and histology, reduced blood pressure, and 

attenuated the infiltration of inflammatory cells on a remnant rat kidney (Lee, Lee, et al., 

2010). More recently, evidence has shown human-induced pluripotent stem cells derived 

from any human somatic cell type after the introduction of reprogramming transcription 

factors contributing to kidney regeneration and improvement in kidney function (Schmitt, 

Susnik, & Melk, 2015).

The decrease in stem cell number is associated with an increase in progenitor cell 

senescence, a complicated process present not only in normal aging but also in 

pathophysiological states (Dmitrieva & Burg, 2007; Haruna et al., 2007; Jennings et al., 

2007; Kailong et al., 2007; Nakano-Kurimoto et al., 2009; Yang et al., 2009; Yang & Fogo, 

2010). Excessive senescence and subsequent stem cell deletion may decrease the ability of 

the kidney to defend against renal insults and impair regeneration (Schmitt et al., 2015).

αKlotho deficiency is associated with stem cell dysfunction and depletion which is part of 

normal aging (Bian, Neyra, Zhan, & Hu, 2015; Liu et al., 2007). αKlotho deficiency in CKD 

could enhance renal tubular and vascular cell senescence induced by oxidative stress, uremic 

toxin, and high phosphate (Carracedo et al., 2013; Clements, Chaber, Ledbetter, & Zuk, 

2013; de Oliveira, 2006; Niwa & Shimizu, 2012; Small et al., 2012; Tsirpanlis, 2008; 

Verbeke, Van Biesen, & Vanholder, 2011; Yamada et al., 2015). Wnt signaling activity is 

significantly increased in tissues from kl/kl mice, which can be rescued by genetic αKlotho 

overexpression (Liu et al., 2007). Administration of exogenous Wnt stimulates Wnt signal 

transduction, and triggers or accelerates cell senescence both in vitro and in vivo. αKlotho 

appears to be a secreted Wnt antagonist and may utilize this mechanism to retard 

mammalian aging. Suppression of cell senescence may be one of many novel strategies for 

promotion of kidney regeneration after AKI and retardation of CKD progression (Camilli et 

al., 2011; Liu et al., 2007; Satoh et al., 2012; Zhou et al., 2013).
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3.2 Defective Endothelial Function and Impaired Vasculogenesis

In CKD patients, there is endothelial dysfunction and impaired bone marrow-derived 

endothelial progenitor cells-mediated vascular regeneration and kidney repair ( Jie et al., 

2010; Mohandas & Segal, 2010), both of which can contribute to progression of CKD and 

aging of the kidney (Chade et al., 2006; Mu et al., 2009; Reinders, Rabelink, & Briscoe, 

2006; Taniyama & Morishita, 2010; Westerweel et al., 2007). Recent studies further 

indicated a potential causal link between vascular rarefaction and CKD progression. kl/kl 
mice do not only have abnormal vasodilatation due to abnormal endothelial function 

(Nakamura et al., 2002) and low blood flow after hind limb ischemia (Fukino et al., 2002) 

but also impaired angiogenesis and vasculogenesis (Shimada et al., 2004). The HMG 

coenzyme A reductase inhibitor, cerivastatin, increases αKlotho levels in cultured kidney 

cell lines (Narumiya et al., 2004) and mice (Yoon et al., 2012) and also restores impaired 

neovascularization in kl/kl mice (Shimada et al., 2004), but the causal relation between 

increased Klotho and restoration of vasculogenesis remains to be confirmed. The impaired 

vasculogenesis and angiogenesis might be attributable to downregulation of vascular 

endothelial growth factor (VEGF) in the aorta (Nakamura et al., 2002). Recent in vivo and in 

vitro studies showed that αKlotho is associated with VEGF receptor-2 (VEGFR-2) and the 

transient receptor potential canonical-1 (TRPC-1) Ca2+ channel to maintain endothelial 

integrity because in αKlotho-deficient endothelial cells, VEGF-mediated internalization of 

the VEGFR-2/TRPC-1 complex is impaired, and surface TRPC-1 expression increases 

which can be reversed by αKlotho protein (Kusaba et al., 2010). In addition, αKlotho 

mitigates the increased cell senescence and apoptosis triggered by oxidative stress in 

endothelial cells (Ikushima et al., 2006); and αKlotho also suppresses TNF-β-induced 

expression of intracellular adhesion molecule-1 and vascular cell adhesion molecule-1, 

attenuates NF-kappaB activation, and reverses the inhibition of eNOS phosphorylation by 

TNF-α. Thus αKlotho protein also protects vascular endothelium by inhibition of 

endothelial inflammation (Maekawa et al., 2009).

3.3 Promotion of Renal Fibrosis

Renal fibrosis is a histological hallmark of CKD and also believed to be a pathogenic 

intermediate for CKD progression (Ardura, Rayego-Mateos, Ramila, Ruiz-Ortega, & Esbrit, 

2010; Iwano et al., 2002; Kalluri & Neilson, 2003; Liu, 2010; Zeisberg & Duffield, 2010; 

Zeisberg et al., 2003). kl/kl mice have more renal tubulointerstitial fibrosis (Sugiura et al., 

2012) which is associated with upregulation of TGF-β in the kidneys. The renal fibrosis 

induced by unilateral ureteral obstruction (UUO) is accompanied by upregulation of TGF-β 
and fibronectin, and down-regulation of αKlotho mRNA and protein. These alterations are 

exaggerated in αKlotho-deficient UUO mice compared to WT UUO mice. Along the same 

line, more renal fibrosis was found in αKlotho-deficient mice injected with Adriamycin 

(Zhou et al., 2013). Soluble αKlotho alleviates renal fibrosis induced by UUO and 

suppresses expression of fibrosis markers and TGF-β1 target genes (eg, Snail, Twist), but 

does not reduce TGF-β1 expression in UUO kidney (Doi et al., 2011), suggesting that 

αKlotho suppresses renal fibrosis primarily through inhibiting TGF-β1 downstream 

signaling (Doi et al., 2011).
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As discussed earlier, αKlotho is an antagonist for Wnt signaling and Wnt is associated with 

renal fibrosis. αKlotho’s suppression of renal fibrosis is conceivably attributable to 

inhibition of Wnt signal transduction. Mice with UUO and Adriamycin injection have high 

Wnt levels and β-catenin activity as well as myofibroblast activation which can be 

suppressed by administration of expression vector encoding the extracellular domain of 

αKlotho (Zhou et al., 2013).

When renal fibrosis and Wnt signaling are compared between αKlotho overexpression and 

αKlotho deficiency in UUO, Wnt signaling and tubulointerstitial fibrosis were attenuated in 

αKlotho-overexpressing compared to WT mice. In contrast, Wnt signaling and 

tubulointerstitial fibrosis were dramatically augmented in αKlotho heterozygous-deficient 

(kl/+) mice after UUO compared with WT mice. Interestingly, after transferring plasmid 

overexpressing αKlotho into skeletal muscle, kl/+ mutant mice had much lower Wnt 

signaling and extracellular matrix deposition. Therefore, αKlotho is a critical negative 

regulator of Wnt signaling and a suppressor of renal fibrosis in the obstructed kidney model 

(Satoh et al., 2012). In addition, αKlotho also promotes clearance of collagen I through 

upregulation of autophagy (Shi et al., 2015). Therefore, αKlotho suppresses fibrosis and 

enhances removal of collagen. Exogenous αKlotho administration may be a novel 

therapeutic agent for renal fibrosis.

4. αKlotho DEFICIENCY EXACERBATES DISORDERS OF MINERAL 

METABOLISM IN CKD

The fact that mice with complete αKlotho deficiency share similar features such as 

hyperphosphatemia, hyper-FGF23-temia, and high morbidity and mortality from CV disease 

than CKD subjects suggests that αKlotho deficiency may participate in CKD development 

(Hu et al., 2013a, 2013b; Hu, Shiizaki, Kuro-o, et al., 2013). Furthermore, αKlotho-deficient 

mice with AKI progress to CKD more rapidly and exhibit more severe vascular lesions (Hu 

et al., 2011; Shi et al., 2015) and uremic cardiac remodeling (Hu, Shi, Cho, et al., 2015), 

supporting the concept that αKlotho deficiency might be a pathogenic intermediate in CKD 

(Fig. 3). Given that disturbed mineral metabolism contributes to the high morbidity and 

mortality of CV disease in CKD (Davidovich, Davidovits, Peretz, Shapira, & Aframian, 

2009; Fernandez-Martin et al., 2015; Kaisar, Isbel, & Johnson, 2007; Kestenbaum & 

Belozeroff, 2007; London, Marchais, Guerin, & Metivier, 2005; Obi, Hamano, & Isaka, 

2015; Siomou & Stefanidis, 2012; van Ballegooijen, Rhee, Elmariah, de Boer, & 

Kestenbaum, 2016; Wesseling-Perry, 2015), a better understanding of the molecular 

mechanisms of how αKlotho deficiency dysregulates mineral metabolism will aid in the 

exploration of novel therapeutic strategies in CKD.

4.1 Hyperphosphatemia

The role of αKlotho in phosphate homeostasis was recognized as soon as αKlotho was 

discovered because αKlotho-deficient mice have severe hyper-phosphatemia (Hu, Shi, 

Zhang, Pastor, et al., 2010; Kuro-o et al., 1997). This was further confirmed by the fact that 

there is low serum phosphate in αKlotho-overexpressing mice (Kurosu et al., 2005). A 

patient with homozygous missense mutation (H193R) in the αKLOTHO gene had severe 
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calcinosis, dural and carotid artery calcifications, severe hyper-phosphatemia, 

hypercalcemia, and high serum 1,25-(OH)2-vitamin D3 and fibroblast growth factor 

(FGF23) (Ichikawa et al., 2007). This mutation conceivably destabilizes kl1 domain of 

αKlotho, thereby attenuating production of membrane-bound and soluble αKlotho protein 

(Ichikawa et al., 2007). Therefore, in one human, the manifestations are similar to those 

observed in αKlotho-deficient mice. Phosphate overload suppresses αKlotho expression in 

the kidney (Hu, Shi, Cho, et al., 2015; Shi et al., 2015; Fig. 2). Normal mice fed a high Pi 

diet have dramatically decreased αKlotho protein and mRNA in the kidney, while αKlotho 

hypomorphic mice fed low Pi diet can regain part of their Klotho expression (Hu, Shi, Cho, 

et al., 2015; Morishita et al., 2001; Shi et al., 2015).

Accumulating evidence showed that kidney disease is a status of αKlotho deficiency. 

Although the mechanism of reduced renal and circulating αKlotho is not understood, it is 

conceivable that αKlotho deficiency might be involved in the development of 

hyperphosphatemia, one of components of CKD–metabolic bone disease (CKD-MBD). 

αKlotho deficiency impairs phosphaturia (Hu, Shi, Zhang, Pastor, et al., 2010) and 

consequently accelerates Pi accumulation in CKD. The higher the level of serum Pi, the 

greater the degree of soft-tissue calcification, and the greater the risk of mortality 

(Kestenbaum et al., 2005). Higher serum Pi levels have been shown to be associated with 

high mortality in incident ESRD patients (Gutiérrez et al., 2008) and control of serum Pi 

may help decrease vascular calcification and suppress proliferation of parathyroid glands 

(Cannata-Andia & Rodriguez-Garcia, 2002; Isakova et al., 2009; Kestenbaum et al., 2005). 

αKlotho administration could be a novel strategy for the correction of hyperphosphatemia in 

CKD patients.

4.2 Increased FGF23 Levels

FGF23, a phosphatonin, is thought to be implicated in the systemic balance of phosphate 

maintained by the interaction of intestine, bone, and kidneys (Hu, Shiizaki, Kuro-o, et al., 

2013) through interplay with αKlotho, parathyroid hormone (PTH), and 1,25-(OH)2-vitamin 

D3 (Bian, Xing, & Hu, 2014). One principal stimulus for FGF23 secretion is currently 

believed to be high serum phosphate caused by dietary phosphate load (Nishida et al., 2006). 

In CKD, there is an increase in FGF23 levels in parallel with the deterioration of renal 

function (Fliser et al., 2007) and the increase of serum phosphate and PTH (Ben-Dov et al., 

2007; Nagano et al., 2006; Silver & Naveh-Many, 2010). High serum FGF23 in CKD may 

not only serve as a diagnostic biomarker of early CKD and predictor of CV disease and 

mortality in CKD/ESRD patients, but recently, it is proposed to be the necessary and 

sufficient contributor to uremic cardiomyopathy (Faul et al., 2011; Grabner et al., 2015) 

through activation of FGFR4 and independently from αKlotho. In contrast, recent data also 

showed that the relationship between FGF23 and cardiac remodeling depends on αKlotho, 

and the association of FGF23 with cardiac hypertrophy and fibrosis is only evident in the 

presence of αKlotho deficiency (Hu, Shi, Cho, et al., 2015).

High serum FGF23 levels antedate high serum levels of phosphate, suggesting a disrupted 

feedback loop resulting in very high levels of serum FGF23. αKlotho-deficient mice have 

very high serum levels of FGF23 further supporting that αKlotho might be a negative 

Neyra and Hu Page 8

Vitam Horm. Author manuscript; available in PMC 2017 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



regulator of FGF23 regardless of the unknown precise mechanisms of how it suppresses 

FGF23 synthesis in bone (Fig. 3). Currently, there are no experimental data to show direct 

suppression of FGF23 by αKlotho in osteoblast or osteocytes in vitro. But other animal 

experiments have shown that extremely high circulating αKlotho with viral delivery can 

induce severe hypophosphatemia and increase blood FGF23 through stimulation of FGF23 

production in the bone although the molecular mechanisms remain to be clarified (Smith et 

al., 2012). Because phosphate is a potent stimulus for FGF23 production in the bone, 

therefore, whether αKlotho directly or indirectly increases FGF23 remains to be explored. 

On the other hand, αKlotho-deficient mice have high levels of serum phosphate and 

conceivably high FGF23 results from high phosphate due to defective phosphate excretion 

induced by αKlotho deficiency (Hu, Shi, Zhang, Pastor, et al., 2010; Fig. 3).

4.3 Hypovitaminosis D

Low 1,25-(OH)2-vitamin D3 is a major component of disorders of mineral metabolism, and 

is conventionally attributed to cause bone disease and secondary hyperparathyroidism in 

CKD (Lips, 2001). However, hypervitaminosis D is present in αKlotho deficiency (Kuro-o 

et al., 1997) and removal of key components involved in vitamin D metabolism or function 

can rescue these phenotypes in αKlotho-deficient mice (Lanske & Razzaque, 2007; Ohnishi, 

Nakatani, Lanske, & Razzaque, 2009; Razzaque, 2012) suggesting that αKlotho is a 

suppressor of vitamin D signaling. If CKD is a state of αKlotho deficiency, why αKlotho 

deficiency does not raise the serum levels of 1,25-(OH)2-vitamin D3 in CKD? The increase 

in plasma FGF23 in CKD is thought to suppress 1α-hydroxylase in the kidney and initiate or 

accelerate vitamin D deficiency (Gutiérrez, 2010; Liu et al., 2006). Because 1,25-(OH)2-

vitamin D3 induces αKlotho expression in the kidney (Tsujikawa, Kurotaki, Fujimori, 

Fukuda, & Nabeshima, 2003), it is plausible that low vitamin D levels in CKD may 

exacerbate renal αKlotho deficiency (Fig. 3).

4.4 Secondary Hyperparathyroidism

Secondary hyperparathyroidism is a common complication of CKD/ESRD and is induced by 

retention of phosphate as a result of reduced glomerular filtration. The “trade off” hypothesis 

formulated by Slatopolsky and Bricker has been used for several decades to explain the role 

of hyperphosphatemia in secondary hyperparathyroidism (Slatopolsky & Bricker, 1973). It 

was proposed that in the early stages of CKD, an increase in serum phosphate concentrations 

can be overcome by an increased rate of PTH release, which may be also a result of 

hypocalcemia. However, as CKD progresses to advanced stages or ESRD, 

hyperphosphatemia becomes sustained and PTH chronically elevated, suppressing the 

synthesis of 1α,25(OH)D3 in the kidney. The reduction in the synthesis of 1α,25(OH)D3 

also results from hyperphosphatemia and reduced nephron mass. 1α,25(OH)D3 deficiency 

also contributes to an increase in PTH synthesis (Delmez & Slatopolsky, 1992).

Currently, secondary hyperparathyroidism is considered as part of the syndrome of CKD-

metabolic bone disease (MBD; Galitzer, Ben-Dov, Silver, & Naveh-Many, 2010; Khan, 

2007). Even mild increments in PTH levels are associated with an increased CV risk, 

regardless of the serum levels of calcium and phosphorus and whether vitamin D therapy is 

given, suggesting that decreasing PTH levels may improve mineral metabolism disorders 
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(Floege et al., 2011; Panichi et al., 2010; Patel et al., 2011; Pontoriero, Cozzolino, Locatelli, 

& Brancaccio, 2010).

CKD patients have high blood FGF23 levels (Shimada et al., 2010) and low αKlotho and 

FGFR(s) in parathyroid gland (Canalejo et al., 2010; Krajisnik et al., 2010). In subjects with 

normal kidney function, FGF23 plays a crucial role, both as a phosphaturic factor (Gattineni 

& Baum, 2010; Goetz et al., 2010; Weber, Liu, Indridason, & Quarles, 2003) and as a 

calciotropic hormone to suppress 1,25-(OH)2-vitamin D production in the kidney (Liu et al., 

2006) and PTH production in the parathyroid gland (Ben-Dov et al., 2007), and to increase 

renal calcium reabsorption through modulation of TRPV5 channel (Andrukhova et al., 

2014). In contrast, in a CKD setting, FGF23 fails to inhibit PTH production probably due to 

downregulation of αKlotho and FGFR(s) in parathyroid gland (Fig. 3; Canalejo et al., 2010; 

Krajisnik et al., 2010). The mechanisms of downregulation of αKlotho and FGFR(s) in 

uremic parathyroid gland remain to be explored.

Renal and circulating αKlotho deficiency is associated with development and progression of 

CKD-MBD (Fahrleitner-Pammer et al., 2008; Hruska, Saab, Mathew, & Lund, 2007; 

Kalantar-Zadeh et al., 2010; Patel et al., 2011). Although whether αKlotho is present in the 

vasculature is still under debate, it has been shown that even early CKD-MBD may cause a 

reduction of vascular αKlotho (Fang et al., 2014), stimulate vascular osteoblastic transition, 

increase osteocytic secreted proteins, and consequently induce vascular calcification. 

Correction of αKlotho and maintenance of mineral homeostasis do not only benefit bone 

and mineral metabolism but also may attenuate CV disease and improve the quality of life of 

CKD/ESRD patients (Fernandez-Martin et al., 2015).

5. αKlotho DEFICIENCY IN CV DISEASE IN CKD

CKD confers significant CV morbidity and mortality (Go, Chertow, Fan, McCulloch, & 

Hsu, 2004; Gross & Ritz, 2008; Taddei, Nami, Bruno, Quatrini, & Nuti, 2011). A large 

number of CKD patients die from CV disease even before initiation of dialysis. The main 

clinical features of CV disease in CKD include uremic cardiomyopathy and vascular 

calcification.

5.1 Pathological Uremic Cardiomyopathy

Uremic cardiomyopathy or cardiomyopathy of advanced CKD, characterized by cardiac 

hypertrophy and fibrosis, is a major cause of CV disease, by causing congestive heart 

failure, cardiac dysrhythmias, and sudden cardiac death (Glassock, Pecoits-Filho, & 

Barberato, 2009; Go et al., 2004; Gross & Ritz, 2008; Taddei et al., 2011). There are 

traditional risk factors such as hypertension, coronary disease, atherosclerosis, anemia, and 

volume overload (Glassock et al., 2009; Gross & Ritz, 2008), and also CKD-specific factors 

such as hyperphosphatemia (Block, Hulbert-Shearon, Levin, & Port, 1998; Glassock et al., 

2009; Gross & Ritz, 2008; Kestenbaum et al., 2005). Recent data have shown an association 

between elevated FGF23 levels and uremic cardiac remodeling (Faul et al., 2011; Gutiérrez 

et al., 2009). Soluble αKlotho deficiency may also be an intermediate mediator of the 

pathological cardiac remodeling observed in CKD (Hu, Shi, Cho, et al., 2015). Furthermore, 

αKlotho may protect the heart against stress-induced cardiac hypertrophy by inhibiting 
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TRPC-6 channel-mediated abnormal Ca2+ signaling in the heart (Xie et al., 2012; Xie, Yoon, 

An, Kuro-o, & Huang, 2015) or against uremic solute indoxyl sulfate-induced myocardial 

hypertrophy probably by suppressing NADPH oxidase Nox2/Nox4-derived reactive oxygen 

species (ROS) production and its downstream signaling (Yang et al., 2015; Fig. 4).

5.1.1 αKlotho as a Modulator of Pathological Cardiac Remodeling—Uremic 

cardiomyopathy is a state of pathological cardiac remodeling characterized by left 

ventricular hypertrophy (LVH) and extensive fibrosis (Foley et al., 1995; Tyralla & Amann, 

2003). Both primary genetic αKlotho deficiency (heterozygous αKlotho-deficient, kl/+ 

mice) and secondary αKlotho deficiency (from phosphate loading, aging, and CKD) 

triggered cardiac hypertrophy and fibrosis in mice, such that higher plasma phosphate and 

lower plasma αKlotho levels were associated with more severe cardiac hypertrophy and 

fibrosis (Hu, Shi, Cho, et al., 2015). Furthermore, higher plasma FGF23 levels were 

associated with more severe cardiac hypertrophy and fibrosis but only in the presence of 

moderate or low plasma αKlotho levels (Hu, Shi, Cho, et al., 2015). This suggests that 

FGF23 may not be cardiotoxic unless there is simultaneous αKlotho deficiency.

CKD models of secondary αKlotho deficiency included: (1) unilateral nephrectomy and 

contralateral ischemic–reperfusion injury followed by high-phosphate diet (2% phosphate) 

and (2) 5/6th nephrectomy. Both CKD models showed cardiac hypertrophy and left 

ventricular fibrosis. αKlotho levels in kidney tissue, plasma, and urine were decreased by 

high-phosphate diet starting at 6 months of age. When high-phosphate diet was given to 

older mice (12 months of age), additional reductions in plasma and kidney αKlotho were 

observed (Hu, Shi, Cho, et al., 2015). Cardiac hypertrophy and fibrosis were exaggerated in 

kl/+ mice and lessened in transgenic αKlotho-overexpressing mice (Tg-Kl) compared to WT 

mice and changes were more severe at age 15 months compared with 9 months. Aging 

exacerbated phosphate or αKlotho deficiency-induced pathological cardiac remodeling. 

Notably, αKlotho suppressed cardiac fibrosis triggered by high dietary phosphate. αKlotho 

overexpression (Tg-Kl) suppressed phosphorylation of Smad2/3 and extracellular signal-

regulated kinase (Erk; Hu, Shi, Cho, et al., 2015), which are known to be involved in uremic 

cardiac fibrosis (Olson, Naugle, Zhang, Bomser, & Meszaros, 2005).

In vitro, αKlotho blocked TGF-β1- and angiotensin II (Ang II)-induced hypertrophy in 

cardiomyocytes (primary culture of neonatal rat) by inhibiting Smad2/3 phosphorylation. 

αKlotho also attenuated TGF-β1-, Ang II-, and high phosphate-induced upregulation of 

fibrosis markers in cultured cardiac fibroblasts by inhibiting Erk phosphorylation (Hu, Shi, 

Cho, et al., 2015).

Cardiac hypertrophy and fibrosis scores correlated negatively with plasma αKlotho levels 

and positively with plasma phosphate levels. In multivariable analysis, adjusting for plasma 

creatinine, FGF23, PTH, and 1,25-(OH)2-vitamin D3 levels, only plasma αKlotho and 

phosphorus levels were independent factors associated with pathological cardiac remodeling 

(Hu, Shi, Cho, et al., 2015).

5.1.2 αKlotho Protection Against Stress-Induced Cardiac Hypertrophy—Xie 

and coworkers reported that cardioprotection by αKlotho in normal mice is mediated by 
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downregulation of TRPC-6 channels in the heart (Xie et al., 2012). In their experiments, 

deletion of TRPC-6 prevented stress-induced exaggerated cardiac remodeling in αKlotho-

deficient mice (kl/+). In contrast, mice with heart-specific overexpression of TRPC-6 

developed spontaneous cardiac hypertrophy and remodeling. Furthermore, αKlotho 

overexpression (Tg-Kl mice) ameliorated pathological cardiac remodeling and improved 

long-term survival (Xie et al., 2012). In addition, they proposed that soluble αKlotho 

inhibits TRPC-6 currents in cardiomyocytes by blocking phosphoinositide-3-kinase-

dependent exocytosis of TRPC-6 channels (Xie et al., 2012).

Subsequently, the same investigators inferred that the decrease in soluble αKlotho in CKD is 

not only an important cause of uremic cardiomyopathy but independent of FGF23 and 

phosphotoxicity (Xie et al., 2015). They reported that αKlotho levels in αKlotho-deficient 

mice (kl/+) were about one half of those of WT mice, and they further decreased in kl/+ 

CKD mice to barely detectable levels (Xie et al., 2015). Heart weight-to-body weight ratio 

(a measure of cardiac hypertrophy) was significantly increased in both WT and kl/+ CKD 

mice, but the increase in kl/+ CKD mice was significantly more prominent than that in WT 

CKD mice. Similarly, the degree of fibrosis in kl/+ CKD was much more severe than that in 

WT CKD heart (Xie et al., 2015). WT CKD mice had ventricular hypertrophy, normal 

chamber size, and preserved contractility (diastolic dysfunction) in contrast to systolic 

dysfunction with dilated cardiomyopathy and impaired contractility in kl/+ CKD mice. 

Dietary phosphate restriction was successfully utilized to normalize serum phosphate and 

FGF23 levels in CKD mice (serum phosphate and FGF23 levels were similar in WT and 

kl/+ CKD mice compared with sham controls). Notably, dietary phosphate restriction did not 

significantly alter the pattern of cardiac hypertrophy in WT or kl/+ CKD mice (Xie et al., 

2015). Moreover, viral-based deliver of αKlotho transgene significantly ameliorated cardiac 

hypertrophy and fibrosis in kl/+ CKD mice when compared with empty vector-injected 

mice. Functional TRPC-6-mediated currents were increased in cardiac myocytes isolated 

from CKD mice (vs sham), and the increase was more pronounced in kl/+ CKD vs WT 

CKD mice. Extracellular application of soluble αKlotho decreased these currents, 

confirming that αKlotho directly affects TRPC-6 functionality (Xie et al., 2015). The 

mechanisms of how the increase in TRPC-6 induces cardiomyopathy are not currently 

known.

5.1.3 αKlotho Protection Against Indoxyl Sulfate-Induced Myocardial 
Hypertrophy—Yang and colleges studied 86 patients with CKD and showed higher levels 

of indoxyl sulfate (Yang et al., 2015), a uremic solute derived from dietary protein and 

excreted by the kidney. Indoxyl sulfate accumulates with progressive loss of kidney function 

and can induce vascular endothelial cell dysfunction by enhancing oxidative stress (Tumur 

& Niwa, 2009; Tumur, Shimizu, Enomoto, Miyazaki, & Niwa, 2010). They showed a 

negative correlation between serum levels of indoxyl sulfate and αKlotho (r = −0.59, 

p<0.001). Importantly, serum levels of indoxyl sulfate and αKlotho were independently 

associated with LVH (Yang et al., 2015). This was further confirmed by experiments in 

normal mice in which intra-peritoneal injection of indoxyl sulfate for 8 weeks induced LVH, 

accompanied by substantial renal αKlotho downregulation. Notably, indoxyl sulfate-induced 

LVH was more severe in heterozygous αKlotho-deficient (kl/+) mice relative to WT mice, 
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indicating that αKlotho deficiency may exacerbate indoxyl sulfate-mediated LVH (Yang et 

al., 2015) and αKlotho supplementation may be a strategy to counteract indoxyl sulfate-

mediated LVH.

In vitro experiments showed that indoxyl sulfate induces cardiomyocyte hypertrophy 

through activation of Nox/ROS/MAPK (p38 and Erk1/2) signaling pathways and this 

activation can be attenuated by pretreatment with αKlotho protein, possibly through 

inhibition of ROS signaling. Indoxyl sulfate-induced cardiomyocyte hypertrophy is not 

mediated through TRPC-6 signaling pathway (Yang et al., 2015). Interestingly, the in vivo 

administration of exogenous αKlotho protein significantly alleviated the development of 

LVH in a mouse model of CKD-associated LVH characterized by high serum indoxyl sulfate 

levels, which confirmed in vitro findings (Yang et al., 2015). Moreover, indoxyl sulfate has 

been shown to suppress αKlotho deficiency in mice (Adijiang, Shimizu, Higuchi, Nishijima, 

& Niwa, 2011) and downregulate αKlotho expression in cultured cells (Shimizu et al., 2011; 

Sun et al., 2012). Therefore, indoxyl sulfate has a dual effect: induction of cardiomyocyte 

hypertrophy and induction of αKlotho deficiency to enhance cardiomyocyte hypertrophy.

5.2 Vascular Medial Calcification

Apart from traditional risk factors, the high CV morbidity and mortality in CKD have been 

linked to CKD-specific mechanisms of vascular calcification through modulation of the 

endothelium–vascular smooth muscle network (Hu et al., 2014; Vervloet, Adema, Larsson, 

& Massy, 2014). Calcium and phosphate play an important role in the initiation of 

osteochondrogenic changes of cellular elements in the arterial wall, and also in the final 

common pathway of alleged ectopic bone formation (Vervloet et al., 2014). Although the 

expression of αKlotho in the vasculature is highly controversial, there are data associating 

changes in circulating αKlotho levels with uremic vasculopathy (Hu et al., 2014; Vervloet et 

al., 2014). Blood vessels are composed of endothelial cells, mural cells (smooth muscle cells 

and pericytes), their shared basement membrane, and extracellular matrix. Vascular smooth 

muscle cells (VSMCs) and endothelial cells work synergistically for maintenance of the 

integrity of the vasculature (Heydarkhan-Hagvall et al., 2003; Fig. 5).

5.2.1 αKlotho and Endothelium—Endothelial dysfunction is associated with CV 

morbidity and mortality in CKD (Ravani et al., 2005). Endothelial cells damaged by high 

phosphate or uremic solutes show increase in apoptosis, ROS, proinflammatory cytokines, 

profibrotic and proangiogenic growth factors, and impaired nitric oxide production 

(Carracedo et al., 2013; Di Marco et al., 2008). Vascular endothelium can be a source of 

osteoprogenitor cells in vascular calcification (Di Marco et al., 2008). Moreover, the 

endothelium could also stimulate VSMCs to initiate or participate in vascular calcification 

(Yao et al., 2013).

A functional vascular tone and low levels of oxidative stress are maintained by releasing 

nitric oxide, prostacyclin, and endothelin-1, and by controlling local angiotensin II activity. 

In addition, the endothelium also regulates vascular permeability, platelet and leukocyte 

adhesion and aggregation, and thrombosis (Sitia et al., 2010). Elevated asymmetric 

dimethylarginine, a known inhibitor of nitric oxide synthase, and consequent reduced nitric 
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oxide production and reduced flow-mediated dilatation (FMD) of the vessels have been 

characterized in CKD (Schwedhelm & Boger, 2011; Yilmaz et al., 2006). High phosphate 

impairs FMD in experimental CKD and FMD is inversely related to serum phosphate level 

in humans (Shuto et al., 2009; Van et al., 2012). Similarly, oxidative stress and inflammation 

are implicated in the development of endothelial dysfunction in CKD (Recio-Mayoral, 

Banerjee, Streather, & Kaski, 2011).

Interestingly, circulating αKlotho regulates vasodilation through modulation of nitric oxide 

production in vascular endothelium (Nagai et al., 2000; Saito et al., 1998; Six et al., 2014; 

Yamagishi et al., 2001). In addition, treatment of cultured endothelial cells with αKlotho 

alleviates tumor necrosis factor α-mediated ROS activity, cell apoptosis, and induction of 

adhesion molecules (Carracedo et al., 2012; Maekawa et al., 2009; Yang et al., 2012). 

Importantly, αKlotho-deficient mice have increased VEGF-mediated calcium influx, 

downregulation of cadherin surface expression, increased apoptosis, and increased 

permeability (Kusaba et al., 2010). It is suggested that the Kl2 domain of αKlotho protein 

binds directly to VEGFR-2 and endothelial TRPC-1 Ca2+ channel and promotes their 

cointernalization and consequent reduction of cellular Ca2+ influx limiting the activity of 

Ca2+-dependent proteases that disrupt endothelial integrity (Kusaba et al., 2010). αKlotho 

protein is also capable of attenuating indoxyl sulfate-induced endothelial dysfunction, partly 

through inhibition of ROS/p38 mitogen-activated protein kinase and downstream nuclear 

factor-κB signaling pathways (Yang et al., 2012).

It is possible that αKlotho may act on the endothelium and induce a secondary effect via 

endothelial-VSMC crosstalk, or that VSMC-resident αKlotho regulates VSMC function in 

an autocrine mode or even endothelium in a paracrine mode (Fig. 5). The role of αKlotho 

protein in the disturbed endothelium–vascular smooth muscle network in CKD requires 

further investigation.

5.2.2 αKlotho and Vascular Smooth Muscle—Measurement of aortic αKlotho 

mRNA expression has not been consistent (Hu et al., 2014; Lim et al., 2012; Mencke et al., 

2015; Navarro-Gonzalez et al., 2014; Ritter et al., 2015; Six et al., 2014). However, the 

association between αKlotho deficiency and medial vascular calcification has been well 

documented in hypomorphic αKlotho mice (Kuro-o et al., 1997), a phenotype rescued by 

transgenic overexpression, viral delivery of αKlotho, or recombinant αKlotho protein 

(Chen, Kuro, et al., 2013; Masuda et al., 2005; Shiraki-Iida et al., 2000). Furthermore, 

transgenic mice over-expressing αKlotho had significantly less vascular calcification after 

CKD induction in comparison to αKlotho-haploinsufficient mice with CKD that exhibited 

more severe vascular calcification (Hu et al., 2011).

The potential mechanisms underpinning the association between high serum phosphate and 

vascular calcification have been described in experimental models of CKD ( Jono et al., 

2000; Lomashvili, Cobbs, Hennigar, Hardcastle, & O’Neill, 2004; Mathew et al., 2008). The 

beneficial effect of αKlotho on vascular calcification in CKD is thought to be a result of 

more than its effect on amelioration of renal dysfunction and hyperphosphatemia. In vitro 

experiments have shown that αKlotho suppresses type III Na+-dependent uptake of 

phosphate (Pit-1 and Pit-2 cotransporters) and mineralization induced by high phosphate in 
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VSMCs (Hu et al., 2011). Runt-related transcription factor-2 (Runx2) expression, an early 

marker of ectopic osteogenesis, was decreased in the aortas of overexpressing αKlotho mice 

(Hu et al., 2011). The contractile phenotype of VSMCs was lost with exposure to high 

phosphate or resident αKlotho knockdown (Lim et al., 2012). Resident αKlotho knockdown 

in VSMCs accelerated the development of vascular calcification through Runx2 and 

myocardin-serum response factor-dependent pathway (Lim et al., 2012). Therefore, αKlotho 

may regulate VSMCs differentiation under CKD procalcific stressors (Hu et al., 2011; Lim 

et al., 2012). However, other experiments have resulted in conflicting evidence. One study 

did not show any effect of αKlotho protein on FGF23 and high phosphate-mediated vascular 

calcification in human or mouse VSMCs (Scialla et al., 2013). Another study performed in 

uremic rats showed that FGF23 augmented phosphate-induced aortic calcification in 

αKlotho-overexpressing but not naive VSMCs through Erk1/2 phosphorylation pathway 

( Jimbo et al., 2014). The conflicting in vitro data may be, besides plausibility, a reflection of 

differences in VSMCs or αKlotho protein preparations utilized.

Vitamin D receptor agonists (eg, calcitriol or paracalcitol) were shown to increase serum and 

urine αKlotho levels and abate aortic calcification in CKD mice likely through modulation 

of osteopontin, an anticalcification factor in VSMCs (Lau et al., 2012). Importantly, no 

αKlotho mRNA expression was found in the aorta in these in vivo experiments (Lau et al., 

2012). One independent study further confirmed that there is no membrane αKlotho 

expression in either healthy or uremic vessels in humans (Mencke et al., 2015). In contrast, 

Lim and colleagues showed that calcitriol effectively restored mRNA αKlotho expression in 

VSMCs (Lim et al., 2012). In a different experiment, αKlotho mRNA was detected in 

mouse aorta but specific deletion of αKlotho in mouse VSMCs did not induce vascular 

calcification (Lindberg et al., 2013) challenging the principal role of αKlotho in VSMCs. 

Moreover, αKlotho protein was found to be increased in atherosclerotic arteries (Donate-

Correa et al., 2013) contradicting the suggested protective role of resident αKlotho in 

vasculature. The existence and role of resident αKlotho protein in the vasculature need to be 

clarified and further investigated (Table 1).

In contrast to the inconclusive evidence of vascular αKlotho expression, the administration 

of exogenous recombinant αKlotho, αKlotho gene delivery, and increased endogenous 

circulating αKlotho significantly reduced vascular calcification and improved endothelial 

function, suggesting that soluble αKlotho may play a pivotal role in the protection of 

vasculature integrity as an endocrine factor (Chen, Kuro, et al., 2013; Lau et al., 2012; 

Masuda et al., 2005; Saito et al., 2000; Utsugi et al., 2000; Fig. 5).

It was shown that αKlotho protein attenuates endothelial cell damage from high phosphate 

and oxidative stress, and inhibits osteogenic transformation of VSMCs induced by high 

phosphate. The administration of exogenous αKlotho or modulators of αKlotho expression 

may represent novel therapies for the management of vascular calcification in CKD patients. 

Studies of endothelial cells or VSMCs in isolation may not fully represent the vascular 

system to dissect out the role of the individual players. Coculture of endothelial cells and 

VSMCs may be a viable intermittent system to further elucidate the role of αKlotho in the 

vasculature under normal and pathological conditions (Hu et al., 2014).
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6. αKlotho DEFICIENCY AS A BIOMARKER OF CKD

CKD is a global public health problem that affects over 20 million people in the United 

States (Snyder, Foley, & Collins, 2009). The major complications in this population are 

progression to ESRD and CV morbidity and mortality (Eckardt et al., 2013; Hemmelgarn et 

al., 2010; Levey et al., 2011).

There has been intense search for highly sensitive (diagnostic value) or highly specific 

(treatment effect value) biomarkers of CKD onset and/or prognosis of progression. An ideal 

prognostic CKD biomarker should be able to predict CKD onset and progression, 

characterize the severity of CKD stage, display similar reliability across multiple species 

(particularly humans), and be accessible in readily available body fluids or tissues.

In the following sections, novel functional (detecting primarily loss of kidney function) and 

injury biomarkers (with or without loss of kidney function) of CKD and the potential role of 

FGF23 and αKlotho as early diagnostic and prognostic biomarkers of CKD will be 

discussed.

6.1 Functional Biomarkers in Human CKD

New filtration markers such as β-trace protein (BTP), β2 microglobulin (β2M), and cystatin 

C were associated with mortality risk in a representative sample of 6445 US adults from the 

Third National Health and Nutrition Examination Survey (Foster et al., 2013). The highest 

quintile for cystatin C, BTP, and β2M were associated with increased all-cause mortality 

risk, whereas the association was weaker for serum creatinine-based eGFR (Foster et al., 

2013). A >50% decline in serum creatinine-based eGFR is an established surrogate marker 

for ESRD in clinical trials but a >30% decline in kidney function assessed using novel 

filtration markers (cystatin C and β2M) has been strongly associated with ESRD (Rebholz, 

Grams, Matsushita, Selvin, & Coresh, 2015).

6.2 Injury Biomarkers in Human CKD

The assessment of the plasma proteome through mass spectrometry analysis identified three 

fragments of high-molecular-weight kininogen associated with early progressive renal 

function decline in microalbuminuric patients with type 1 diabetes (Merchant et al., 2013). 

The performance of urine neutrophil gelatinase-associated lipocalin (NGAL) was analyzed 

in a cohort of 3386 patients with CKD in the Chronic Renal Insufficiency Cohort (CRIC) 

study. Urine NGAL was independently associated with 50% decreased eGFR or incident 

ESRD development over a mean follow-up of 3.2 years. However, it did not improve 

prediction models for CKD progression (Liu et al., 2013). More recently, urine NGAL has 

been independently associated with ischemic atherosclerotic events but not heart failure 

events or death (Fufaa et al., 2015). In a cohort of 124 patients with type 1 diabetes and 

proteinuria, serum kidney injury molecule-1 (KIM-1) levels at baseline strongly predicted 

rate of eGFR loss and risk of ESRD during 5–15 years of follow-up, after adjustment for 

baseline urinary albumin-to-creatinine ratio, eGFR, and hemoglobin A1C (Sabbisetti et al., 

2014). Similarly, urinary NGAL and liver fatty acid-binding protein (L-FABP) were 

independently associated with incident ESRD and mortality but did not meaningfully 
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improved clinical prediction models of CKD progression in a cohort of 260 Pima Indians 

with median follow-up of 14 years (Fufaa et al., 2015).

6.3 FGF23 in Human CKD

Current evidence favors a direct pathogenic role for dysregulated FGF23-α Klotho in CKD-

related adverse outcomes, in particular CV disease. The relationship between baseline serum 

intact FGF23 and incident ESRD was evaluated in 13,448 Atherosclerosis Risk in 

Communities (ARIC) study participants during a median follow-up of 19 years. After 

adjustment for demographics, baseline eGFR, and traditional CKD risk factors, the highest 

FGF23 quintile (>54.6 pg/mL) compared with the lowest quintile (<32.0 pg/mL) was 

associated with risk of developing ESRD (Rebholz, Grams, Coresh, et al., 2015). Similarly, 

elevated FGF23 has been proposed as an early indicator of kidney injury or CKD 

progression (Fliser et al., 2007; Wolf, 2012). Elevated serum FGF23 has been independently 

associated with LVH and a causal inference through Klotho-independent activation of FGF 

receptor-dependent activation of the calcineurin–NFAT signaling pathway in rat 

cardiomyocytes has been proposed (Faul et al., 2011). Increased FGF23 was independently 

associated with mortality among incident hemo-dialysis patients (Gutiérrez et al., 2008) and 

has been linked to mortality and higher risk of ESRD or CV disease in patients with CKD 

during a median follow-up of 3.5 years (Faul et al., 2011; Ix et al., 2012). In contrast, FGF23 

was not associated with arterial calcification in 1501 patients from the CRIC study (Scialla 

et al., 2013).

6.4 The Role of αKlotho as a Marker of Adverse Outcomes in Human CKD

CKD is a state of αKlotho deficiency in multiple tissues. αKlotho mRNA levels in 

parathyroid gland declined in parallel with decreasing eGFR over CKD stages (Krajisnik et 

al., 2010). Similarly, αKlotho mRNA expression in kidney tissue was greatly reduced and 

positively and significantly correlated with eGFR in CKD patients (Asai et al., 2012,; Koh et 

al., 2001). In a larger sample of 236 CKD patients with available kidney biopsies, αKlotho 

mRNA levels were significantly and positively correlated with eGFR (p<0.001) in multiple 

regression analysis including CKD-MBD parameters (Sakan et al., 2014). Most importantly, 

αKlotho mRNA in the kidney was the only independent contributing factor to serum 

αKlotho across all strata of CKD patients. Renal αKlotho was significantly correlated with 

serum calcium, serum phosphorus, 1,25-(OH)2-vitamin D3, FGF23, and intact PTH (Sakan 

et al., 2014). Correspondingly, circulating serum αKlotho levels were progressively lower 

with each CKD stage when compared to healthy controls (Pavik et al., 2013). This was also 

observed in kidney transplant recipients vs healthy controls (Sawires, Essam, Morgan, & 

Mahmoud, 2015). Furthermore, adjusted mean serum αKlotho decrease was 3.2 pg/mL for 

each 1 mL/min eGFR decrease in adult CKD patients (Pavik et al., 2013). A positive 

correlation between αKlotho levels (serum and urine) and eGFR has been further 

characterized in adult CKD patients (Akimoto et al., 2012; Hu et al., 2011; Kim et al., 2013; 

Kitagawa et al., 2013; Ozeki et al., 2014), although only 24-h urine αKlotho but not serum 

αKlotho has been shown to be independently associated with eGFR change (Akimoto et al., 

2012). However, questions about the stability of αKlotho in the urine have emerged (Adema, 

Vervloet, Blankenstein, & Heijboer, 2015). Therefore, a standardized urine protocol is 

required. A similar positive correlation between plasma αKlotho levels and eGFR was 
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shown in CKD children without kidney transplant (Wan et al., 2013). Moreover, serum 

αKlotho levels in children on chronic peritoneal dialysis were significantly lower (~41%) 

than healthy controls (Cano et al., 2014). The progressive decline of serum αKlotho in 

adults with early stages of CKD (eg, stage 2) has been subsequently demonstrated, 

suggesting that the decrease in serum αKlotho may antecede high FGF23, PTH, and 

hyperphosphatemia (Barker et al., 2015; Kim et al., 2013; Rotondi et al., 2015; Shimamura 

et al., 2012; Table 2).

6.4.1 α lotho and CV Disease in CKD—A cross-sectional study of 114 CKD patients 

(mean eGFR 48±29 mL/min/1.73 m2) revealed that serum αKlotho was a significant marker 

of arterial stiffness measured by ankle–brachial pulse waive velocity (Kitagawa et al., 2013). 

In contrast, a large cohort study of 444 patients with CKD stages 2–4 showed that plasma 

αKlotho levels (highest vs lowest tertile) did not predict atherosclerotic events or death at 

2.6 years follow-up. Serum αKlotho was also significantly reduced in hypertensive 

(essential and renovascular) patients with mild CKD when compared to healthy controls, 

even after adjustment by eGFR (Park et al., 2015). The proposed cross talk between the 

renin–angiotensin–aldosterone system and the vitamin D–FGF23–α Klotho pathways 

supports the concept that modulation of one system can have positive effects on the other (de 

Borst, Vervloet, ter Wee, & Navis, 2011). In this context, a post hoc analysis of the ESCAPE 

trial in children with CKD (all received fixed dose of ramipril 6 mg/m2 per day) showed that 

25(OH)D ≥50 nmol/L was associated with greater preservation of renal function. 

Interestingly, ACEI therapy significantly increased serum αKlotho levels without any 

associated changes in serum calcium or phosphate (Shroff et al., 2016; Table 2).

6.4.2 αKlotho and Progressive CKD—The most conclusive evidence thus far about the 

role of αKlotho as a predictor of adverse outcomes in CKD is based on a post hoc cohort 

study of 243 adult patients with CKD. In this study, serum αKlotho levels independently 

predicted the composite outcome of doubling SCr, ESRD, or death after multivariable 

adjustment. If serum αKlotho was ≤396.3 pg/mL, 35.2% reached the composite outcome vs 

15.7% if >396.3 pg/mL (adjusted HR 2.03, 95% CI 1.07–3.85, p = 0.03). The areas under 

the curve (a measure of discrimination, that is, the ability of αKlotho to correctly classify 

those with and without the outcome) for 1/serum αKlotho to predicate the composite 

outcome (doubling SCr, ESRD, or death) were 0.81, 0.78, and 0.72 at 12, 24, and 36 months 

(Kim et al., 2013; Table 2). Further studies are needed to corroborate these findings.

Taken together, CKD is a state of αKlotho deficiency and dysfunctional vitamin D–FGF23–

αKlotho pathways. Plasma αKlotho level positively correlates with eGFR and negatively 

with SCr and FGF23 and is a promising biomarker for the prediction of adverse outcomes 

(eg, CKD progression, CV morbidity, and death) in CKD patients. Therefore, αKlotho may 

represent a novel therapy for CKD patients that needs to be further investigated.

7. αKlotho AS A PROMISING TREATMENT STRATEGY FOR CKD

The kidney is confirmed as the major site that contributes to circulating αKlotho (Hu, Shi, 

Zhang, et al., 2015; Lindberg et al., 2014) and dysfunctional or decreased number of 

αKlotho-producing cells contribute to αKlotho deficiency leading to accelerated aging (Hu, 
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Shi, Zhang, et al., 2015; Lindberg et al., 2014). Therefore, αKlotho deficiency may not only 

be a pathogenic intermediate for accelerating CKD progression but also a main promoter of 

complications such as secondary hyperparathyroidism and CV disease in CKD. 

Conceivably, any therapy that restores or stimulates endogenous αKlotho or administration 

of exogenous αKlotho might provide a novel treatment strategy in CKD.

7.1 Epigenetic regulation of αKlotho Expression

αKlotho deficiency in the kidney of hypomorphic αKlotho-deficient mice was thought to 

result from interruption of the promoter of αKlotho gene by the exogenous transgene (Kuro-

o et al., 1997). But recent data do not entirely support this notion because there was aberrant 

αKlotho promoter methylation in kl/kl mice. The in vitro study showed that αKlotho gene 

promoter methylation reduced promoter activity by 30–40%, whereas DNA demethylating 

agents increased αKlotho expression 1.5- to 3.0-fold (Azuma et al., 2012). Similarly, uremic 

toxins—indoxyl sulfate or p-cresyl sulfate—induced hypermethylation of the αKlotho gene, 

and decreased αKlotho expression in renal tubules and kidney cell line, which can be 

reversed by demethylation of the αKlotho gene. Therefore, hypermethylation may be one of 

the mechanisms of αKlotho gene expression inhibition in CKD (Chen, Zhang, et al., 2013; 

Sun et al., 2012; Young & Wu, 2012). In addition, promoter histone acetylation was also 

proposed as a possible mechanism for αKlotho silencing in many types of cancer cell lines 

(Rubinek et al., 2012; Xie et al., 2013). Furthermore, TNF and TNF-like weak inducer of 

apoptosis (TWEAK)-induced downregulation of αKlotho expression in the kidney and 

kidney cell lines can be blunted by inhibition of histone deacetylase (Moreno et al., 2011). 

Therefore, demethylating agents and deacetylase inhibitors may be agents to reactivate 

αKlotho expression in the kidney and consequently increase circulating αKlotho.

7.2 Reactivation of Endogenous αKlotho Expression Independently of Epigenetics

To date, several categories of drugs in the market including peroxisome proliferator-

activated receptors-gamma (PPAR-γ) agonists (Chen, Cheng, Ku, & Lin, 2014; Yang et al., 

2009; Zhang et al., 2008; Zhang & Zheng, 2008), angiotensin II type I receptor antagonists 

(Karalliedde, Maltese, Hill, Viberti, & Gnudi, 2013; Yoon et al., 2011; Zhou et al., 2010), 3-

hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase inhibitors (statin; Narumiya et al., 

2004), and vitamin D active derivatives (de Borst et al., 2011; Forster et al., 2011; Lau et al., 

2012; Lim et al., 2012; Ritter et al., 2015) have been shown to upregulate αKlotho 

expression in vivo and in vitro. The effect of upregulating αKlotho is definitely not 

associated with their well-identified original pharmacological targets, and pharmacological 

mechanisms remain to be explored.

7.3 Administration of Soluble αKlotho Protein

αKlotho gene delivery is shown to effectively rescue many phenotypes observed in 

αKlotho-deficient mice (Shiraki-Iida et al., 2000), attenuating the progression of 

hypertension and kidney damage in spontaneous hypertensive rats (Wang & Sun, 2009, 

2014), improving kidney function in acute kidney injury (Sugiura et al., 2005), ameliorating 

angiotensin II-induced kidney injury (Mitani et al., 2002), improving endothelial function 

(Saito et al., 2000), and protecting from uremic cardiomyopathy (Xie et al., 2012, 2015). 

Although gene therapy is effective in animal studies, its safety is still questionable and 
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human clinical application is not in the proximity. There are only few clinical trials testing 

gene therapy in specific human diseases including genetic diseases (Williams, 2014) and 

some types of cancers (Heller & Heller, 2015).

In contrast, administration of exogenous αKlotho protein is more direct, safer, and an easier 

modality to restore endocrine αKlotho deficiency. Animal studies have already provided 

prove-of-concept encouraging data that soluble αKlotho protein administration is safe and 

effective (Hu, Shi, Zhang, Quinones, et al., 2010; Shi et al., 2015). Soluble αKlotho protein 

attenuates kidney damage and preserves kidney function in an ischemia-reperfusion injury 

model causing acute kidney injury, which is a state of acute αKlotho deficiency (Hu, Shi, 

Zhang, Quinones, et al., 2010). Furthermore, αKlotho protein inhibited renal fibrosis in a 

UUO kidney injury model (Doi et al., 2011), and effectively extended the life span of 

homozygous αKlotho-deficient mice, ameliorating premature aging-related phenotypes 

(Chen, Kuro, et al., 2013). Although there are no clinical data showing αKlotho protein 

administration to CKD patients, the preclinical data clearly support the therapeutic potential 

of soluble αKlotho protein in CKD patients.

8. CONCLUSION AND FUTURE DIRECTIONS

Although progress has been made in understanding that αKlotho is not only an aging 

suppressor involved in longevity and aging, but also a renoprotective factor which has a 

central impact on renal physiology and renal pathophysiology, the utility of αKlotho in 

clinical practice is still under development (Table 3). First, αKlotho could serve as an early 

and sensitive biomarker of CKD, although its specificity and its prognostic value require 

further exploration in humans. Similarly, whether urine or serum αKlotho is a better 

biomarker remains to be confirmed. Second, exogenous αKlotho supplementation may 

represent a novel therapy to retard or block progressive CKD, post-AKI transition to CKD, 

as well as preventing and reversing CV complications associated with renal disease as shown 

in animal studies. The therapeutic efficacy of αKlotho in kidney disease has been 

unequivocally demonstrated in animal models. One needs to validate the efficacy of αKlotho 

therapy in different stages of kidney disease.

Although the effects of αKlotho protein on the kidney will invariably be pleiotropic, how 

αKlotho exerts its renoprotection is largely inconclusive. High levels of FGF23 have been 

found to be associated with high mortality and morbidity in CKD (Arnlov et al., 2013; 

Desjardins et al., 2012; Faul et al., 2011; Fliser et al., 2007; Grabner et al., 2015; Greenhill, 

2011; Guo & Yuan, 2015; Hanks, Casazza, Judd, Jenny, & Gutierrez, 2015; Hasegawa et al., 

2010; Krupp & Madhivanan, 2014; Mencke et al., 2015; Mirza, Larsson, Melhus, Lind, & 

Larsson, 2009; Razzaque, 2009a, 2009b; Rotondi et al., 2015; Sawires et al., 2015; Silswal 

et al., 2014; Silver, Rodriguez, & Slatopolsky, 2012; Sinha et al., 2015; Wolf, 2010; Wright 

et al., 2014; Zhang, Yan, Zhu, & Ni, 2015; Zhang, Yang, et al., 2015). Given that 

administration of exogenous αKlotho has a favorable effect on CKD animals in terms of 

improvement of renal function, better maintenance of phosphate homeostasis, and 

attenuation of vascular calcification and cardiac hypertrophy, whether synergistic utilization 

of FGF23 antagonist or inhibitor and αKlotho can enhance αKlotho therapeutic efficacy 

needs to be tested.
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Some therapeutic modalities including ACE inhibition, HMG-CoA reductase inhibition, 

vitamin D derivatives, and antioxidants could sustain or increase endogenous αKlotho 

expression. It is conceivable that a multi-targeted regimen including αKlotho protein, 

FGF23 antagonist, and endogenous αKlotho inducers may enhance the beneficial effect of 

αKlotho on retardation of CKD progression and prevention or reduction of CV morbidity 

and mortality in CKD. The immediate challenge is to test whether human CKD resembles 

the rodent counterpart and if so, how to more efficiently increase αKlotho levels in patients 

with CKD, either by stimulating endogenous αKlotho or by administering recombinant 

αKlotho. Finally, αKlotho has shown to be effective in experimental CKD models such as 

renal ablation (Xie et al., 2015), hypertensive kidney damage (Tang et al., 2011; Wang & 

Sun, 2009), UUO (Doi et al., 2011; Guan et al., 2014; Satoh et al., 2012; Sugiura et al., 

2012), but few experimental data showed its effect on CKD secondary to diabetes or other 

glomerular diseases which account for large part of the CKD population. More animal 

studies and clinical observational studies are required to consider the administration of 

exogenous αKlotho protein a potential novel therapeutic strategy for CKD.
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Fig. 1. 
Source of circulatory αKlotho. αKlotho protein is expressed in a few organs, but the kidney 

is a main resource of circulating αKlotho under physiological conditions. The contribution 

of parathyroid gland and brain is not clear. Both renal proximal (PT) and distal tubules (DT) 

express membrane αKlotho protein and may also produce a secreted αKlotho protein which 

only contains kl1 domain and is directly secreted into the blood circulation. Extracellular 

domain of membrane αKlotho-containing kl1 and kl2 repeats is shed and cleaved by α and 

β-secretases, and released into the blood circulation.
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Fig. 2. 
Circulating and local renal factors involved in the reduction of αKlotho expression in the 

kidney. In acute and chronic kidney disease, a variety of circulating factors including 

disturbed mineral metabolism, and accumulation of indoxyl sulfate and proinflammatory 

cytokines (left panel), can downregulate renal αKlotho expression. On the other hand, the 

elevation of reactive oxygen species, Ang II, and inflammatory cytokines in the diseased 

kidney can also downregulate renal αKlotho expression (right panel). Epigenetic modulation 

of αKlotho promoter via hypermethylation and deacetylation can reduce αKlotho 

expression and contribute to αKlotho deficiency in chronic kidney disease.
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Fig. 3. 
Proposed physiological role of αKlotho in mineral metabolism and pathophysiological 

consequences of αKlotho deficiency in CKD. In the setting of normal kidney function with 

normal αKlotho levels (left panel), αKlotho may suppress FGF23 production and release 

from the bone. But there is no direct evidence to prove it. αKlotho functions as coreceptor of 

FGFR to allow FGF23 to suppress PTH production and release from parathyroid gland. PTH 

stimulates and increases plasma levels of FGF23 and 1,25-(OH)2-vitamin D3. Increased 

1,25-(OH)2-vitamin D3 further stimulates FGF23, and directly and indirectly suppresses 

PTH levels. Increased 1,25-(OH)2-vitamin D3 also stimulates αKlotho production in the 

kidney. Taken together, through several negative- or positive-feedback loops, αKlotho 

functions as both a phosphate and calcium regulatory hormone to directly or indirectly 

suppress PTH, 1,25-(OH)2-vitamin D3, and FGF23 production and release. αKlotho's action 

on the kidney is to prevent renal Pi retention and to prevent renal Ca loss. In CKD and 

ESRD (right panel), the network is deranged (red arrows). Renal αKlotho is decreased 

followed by decrease in plasma αKlotho. The downregulation of αKlotho increases FGF23 

production via unknown mechanism, which in turn suppresses 1,25-(OH)2-vitamin D3 

production in the kidney. Whether low plasma αKlotho renders parathyroid gland resistant 

to the suppressive effect of FGF23 on PTH production is not proven. However, decreased 

FGFR1/3 and αKlotho expression in the uremic parathyroid gland could make the gland 

resistant to FGF23, and triggers and/or promotes secondary hyperparathyroidism (SHPT). 

Low plasma Ca also participates in SHPT development. Hyperphosphatemia amplifies the 

high FGF23 and PTH levels, and low αKlotho levels in the blood. The high plasma PTH, Pi, 

and FGF23, and low plasma 1,25-(OH)2-vitamin D3 and αKlotho in concert contribute to 

the development of complications such as metabolic bone disease, SHPT, cardiomyopathy, 

and vascular calcification. Dash line: unproven putative roles of αKlotho. Ca, ion calcium; 

CKD, chronic kidney disease; ESRD, end-stage renal disease; FGFR, FGF receptor; Pi, 
phosphate; PTH, parathyroid hormone; SHPT, secondary hyperparathyroidism; 1,25-VD3, 

1,25-(OH)2-vitamin D3.
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Fig. 4. 
Risk factors for uremic cardiomyopathy and proposed mechanisms of attenuation of 

pathological cardiac remodeling by αKlotho. αKlotho deficiency is a novel risk factor for 

uremic cardiomyopathy. Soluble αKlotho deficiency is an intermediate mediator of the 

pathological cardiac remodeling observed in CKD. Experimental αKlotho overexpression 

(Tg-Kl) suppressed phosphorylation of Smad2/3 and Erk, which are known to be involved in 

uremic cardiac fibrosis. Furthermore, αKlotho may protect the heart against stress-induced 

cardiac hypertrophy by inhibiting TRPC-6 channel-mediated abnormal Ca2+ signaling in the 

heart or against uremic solute indoxyl sulfate-induced myocardial hypertrophy probably by 

suppressing NADPH oxidase Nox2/Nox4-derived reactive oxygen species production and its 

downstream signaling. CHF, congestive heart failure; Erk, extracellular signal-regulated 

kinase; LVH, left ventricular hypertrophy; MAPK, mitogen-activated protein kinases; Nox, 

NADPH oxidase; SCD, sudden cardiac death; TRPC-6, transient receptor potential 

canonical-6.
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Fig. 5. 
Proposed model of αKlotho as intermediate of endothelial cells (ECs)–vascular smooth 

muscle cells (VSMCs) cross talk. Left panel: Normal ECs–VSMCs cross talk. Normal ECs 

modulate VSMCs growth via release of growth factors (black line in left panel). NO, nitric 

oxide; PDGF, platelet-derived growth factor; PGI2, prostaglandin I2; VEGF, vascular 

endothelial growth factor. VEGF released from pericytes and/or VSMCs could also regulate 

endothelial cell. Right panel: In CKD, uremic toxins including high plasma Pi, damage ECs 

and induce release of growth factors, proinflammatory cytokines, and profibrotic factors, 

which exacerbate ECs injury and also induce VSMCs transition to osteoblast and promote 

vascular calcification in medial layer (red solid lines in right panel). Impaired ECs also 

directly contributes to vascular calcification through endo-osteoblast transition (green line in 

right panel). Whether dedifferentiated or damaged VSMCs could further modulate function 

of endothelial cells is speculative (red dash line in right panel). Central panel: αKlotho is a 

vascular protective protein. Whether resident aortic αKlotho protein in VSMCs functions in 

autocrine and/or paracrine mode to modulate VSMCs and/or ECs remains to be clarified 

(brown dash line in central panel). The mechanisms of how αKlotho is able to reach the 

VSMCs from the circulation and function as an endocrine factor remain to be defined (blue 
dash line in central panel). αKlotho, regardless of source, could increase NO production 

from ECs and NO consequently modulates VSMCs and ECs function in an autocrine mode 

(blue solid line in middle panel). αKlotho could protect EC from high phosphate and other 

uremic toxins and also attenuate oxidative stress and proinflammatory cytokines-induced 

cell senescence and apoptosis in VSMC (orange line in central panel). αKlotho also directly 

inhibits osteoblast transition induced by hyperphosphatemia and uremic milieu (orange line 
in central panel). Current experimental and clinical observations suggest that both ECs and 

VSMCs endothelium may be potential targets of soluble αKlotho to protect the vasculature 

from vascular calcification in CKD. ECs, endothelial cells; Pi, phosphorus; VSMCs, 

vascular smooth muscle cells.
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Table 1

The Determination of Aortic αKlotho mRNA Expression Has Been Inconsistently Reproduced in Different 

Studies

Aortic αKlotho mRNA Expression = Yes Aortic αKlotho mRNA Expression = 
No

Klotho mRNA and protein is present in aorta and vascular smooth muscle cells Resident αKlotho 
knockdown induced vascular calcification through Runx2 and myocardin-serum response factor- 
dependent pathway Calcitriol effectively restored mRNA αKlotho expression in VSMCs (Lim et 
al., 2015, 2012)

No αKlotho mRNA expression was 
found in the aorta in in vivo experiments 
of aortic calcification in CKD (Lau et al., 
2012)

αKlotho mRNA was detected in mouse aorta but specific deletion of αKlotho in mouse VSMCs 
did not induce vascular dysfunction and vascular calcification (Lindberg et al., 2013)

No membrane αKlotho expression in 
either healthy or uremic human vessels 
was found (Mencke et al., 2015)

αKlotho protein was found to be increased in atherosclerotic arteries (Donate-Correa et al., 2013)

Human umbilical vein endothelial cells (HUVECs) express αKlotho. The decline in αKlotho 
preceded the manifestations of cell aging induced by repeated passage and those of senescence by 
TNF-α. The exogenous αKlotho administration prevented TNF-α-mediated senescence (Carracedo 
et al., 2012)
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Table 3

Potential Applications of αKlotho in Chronic Kidney Disease

Biomarker Therapeutic Agent

Diagnostic Early detection of CKD Prevention • CKD progression

• CV comorbidity and complications

Prognostic Prediction of progression to ESRD Treatment • Anti-Pi toxicity

• Attenuation of CV

CKD, chronic kidney disease; CV, cardiovascular event; ESRD, end-stage renal disease.
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