Skip to main content
. 2017 Oct 26;12(10):e0186751. doi: 10.1371/journal.pone.0186751

Table 4. Support vector machine regression model parameters.

Degree Gamma Coef0 Nu Epsilon Cashesize Cost Shrinking Prob P
3 0.5 0.001 0.5 0.001 100 1 1 1 0.01

Degree: set degree in kernel function; Gamma: set gamma in kernel function; Coef0: set coef0 in kernel function; Nu: set the parameter nu of nu-SVC, one-class SVM, and nu-SVR; Epsilon: set tolerance of termination criterion; Cashesize: set cache memory size in MB; Cost: set the parameter C of C-SVC, epsilon-SVR, and nu-SVR; Shrinking: whether to use the shrinking heuristics, 0 or 1; Prob: whether to train a SVR model for probability estimates, 0 or 1; P: set the epsilon in loss function of epsilon-SVR.