Table 4. Support vector machine regression model parameters.
Degree | Gamma | Coef0 | Nu | Epsilon | Cashesize | Cost | Shrinking | Prob | P |
---|---|---|---|---|---|---|---|---|---|
3 | 0.5 | 0.001 | 0.5 | 0.001 | 100 | 1 | 1 | 1 | 0.01 |
Degree: set degree in kernel function; Gamma: set gamma in kernel function; Coef0: set coef0 in kernel function; Nu: set the parameter nu of nu-SVC, one-class SVM, and nu-SVR; Epsilon: set tolerance of termination criterion; Cashesize: set cache memory size in MB; Cost: set the parameter C of C-SVC, epsilon-SVR, and nu-SVR; Shrinking: whether to use the shrinking heuristics, 0 or 1; Prob: whether to train a SVR model for probability estimates, 0 or 1; P: set the epsilon in loss function of epsilon-SVR.