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Abstract

A highly divergent 16S rRNA gene was found in one of the five ribosomal operons present in

a species complex currently circumscribed as Scytonema hyalinum (Nostocales, Cyano-

bacteria) using clone libraries. If 16S rRNA sequence macroheterogeneity among ribosomal

operons due to insertions, deletions or truncation is excluded, the sequence heterogeneity

observed in S. hyalinum was the highest observed in any prokaryotic species thus far (7.3–

9.0%). The secondary structure of the 16S rRNA molecules encoded by the two divergent

operons was nearly identical, indicating possible functionality. The 23S rRNA gene was

examined for a few strains in this complex, and it was also found to be highly divergent from

the gene in Type 2 operons (8.7%), and likewise had nearly identical secondary structure

between the Type 1 and Type 2 operons. Furthermore, the 16S-23S ITS showed marked

differences consistent between operons among numerous strains. Both operons have pro-

moter sequences that satisfy consensus requirements for functional prokaryotic transcrip-

tion initiation. Horizontal gene transfer from another unknown heterocytous cyanobacterium

is considered the most likely explanation for the origin of this molecule, but does not explain

the ultimate origin of this sequence, which is very divergent from all 16S rRNA sequences

found thus far in cyanobacteria. The divergent sequence is highly conserved among numer-

ous strains of S. hyalinum, suggesting adaptive advantage and selective constraint of the

divergent sequence.

Introduction

Small subunit rRNA gene sequence data have become critical for understanding microbial

evolution, definition of taxa, estimating metagenomic diversity in localized environments, and

estimating total microbial diversity on the planet [1–3]. It is considered by many to be the best
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gene locus for studying evolutionary history because it is universal in prokaryotes and eukary-

otes, is stable, has informative variable regions, and has extensive representation in sequence

databases, as well as a purportedly low incidence of horizontal gene transfer (HGT). In bacte-

ria, the more highly variable flanking region, the 16S-23S internal transcribed spacer (ITS)

region can be amplified in the same PCR reaction and provides additional resolution of micro-

diversity and species limits [4–6]. In some cyanobacteria, primary sequence and secondary

structure of ITS regions have been used to delineate and name both phenotypically distinct

species as well as cryptic species [7–10].

Recently, the utility of the 16S rRNA gene in creating phylogenies and in estimating biodi-

versity has been questioned due to two related discoveries. First, over 80% of the prokaryote

genomes sequenced have more than one operon, with copy numbers from 2 to 15 in bacteria

and 2 to 4 in archaea [11,12]. In most cases, the sequence of these different ribosomal operons

is highly similar in the 16S rDNA, ostensibly due to gene conversion [13,14]. However, in the

last 25 years instances in which operons are highly divergent within a single genome have been

discovered [15–18]. Apart from instances of gene truncation (which produces pseudogenes),

the most divergent operons are those that have large insertions or intervening sequences [11].

Divergence in which secondary structure of the 16S rRNA molecule is retained, but exceeds

the recommended species boundary of 1.0–1.3% divergence was recently catalogued in 14 of

568 species surveyed. Of these divergent operons, only seven had divergences >2.0%; Thermo-
anaerobacter with 11.6% divergence due to two large insertions, andHalosimplex carlsbadense,
Haloarcula marismortui, Natrinema sp.,Hamaeophilus influenza, Veillonella sp., and Clostrid-
ium cellulolyticum, with 6.7%, 5.63%, 5.0%, 2.75%, 2.5% and 2.07% divergence, respectively,

due to localized diversity [11,18,19]. Second, HGT is thought to confuse the phylogenetic sig-

nal in sequence data. Some researchers downplay the problem of HGT by noting it is most

common in genes not used to reconstruct phylogeny [1] and single gene 16S rRNA phyloge-

nies are still very robust [3]. Others express concern due to the discovery of HGT in the ribo-

somal genes [20–23]. In particular, Yap et al. [24] give compelling evidence that an entire

ribosomal operon was transferred laterally to Thermomonospora chromogenia from another

species, likely Thermospora bispora or a closely related taxon.

We here report the first instance of macroheterogeneity in the 16S rRNA gene and associ-

ated 16S-23S ITS region, 23S rRNA gene, and 5S rRNA gene of ribosomal operons in a mem-

ber of the phylum cyanobacteria, Scytonema hyalinum. We present evidence to show that 1)

localized diversity possibly indicative of HGT of an entire ribosomal operon exists in this cya-

nobacterial species cluster, 2) this putative HGT is an event that occurred prior to speciation

within this species cluster, 3) secondary structure of the ribosomal rRNA of both subunits

remains intact in the horizontally transferred operon, 4) gene conversion has not reversed the

heterogeneity introduced by HGT, indicating that the introduced gene may increase fitness at

the genus level.

Materials and methods

DNA isolation and sequencing

Cyanobacterial strains were cultivated on Z8 [25] agar-solidified medium (1.5%) at 22˚C in a

12:12 light:dark cycle. Total genomic DNA of strains obtained from China (CXA), South

America (ATA), the Hawaiian Islands (HA), and selected strains from North America (CMT,

WJT, CNP, HAF, HTT, FI) were extracted using the UltraClean Microbial DNA Isolation Kit

following the manufacturer’s protocol (Mo Bio Laboratories, Carlsbad, California, USA). The

biomass of the remaining strains was dried for 48 hours over silica gel and pulverized in a

Mixer Mill MM200 (Retsch, Haan, Germany) laboratory mill with wolfram carbide beads (3
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min, 30�s-1). Total genomic DNA was isolated following a modified xanthogenate-sodium

dodecyl sulfate buffer extraction protocol with addition of 3% polyvinyl polypyrrolidone and

polyethylene glycol-MgCl2 precipitation [26]. The PCR amplification of three conserved pro-

tein-coding genomic loci was performed using published protocols without modification

(fragment of the DNA-directed RNA polymerase gamma subunit gene rpoC1 [27]; fragment

of the RuBisCO operon rbcLX [28]; fragment of the nitrogenase molybdenum-iron protein

alpha chain nifD [29]); PCR products were sequenced directly using the same primers. Ampli-

fication of a ca. 1600 nucleotide PCR product representing the 16S rRNA and 16S 23S ITS

ribosomal rRNA gene region followed procedures outlined in [4, 30]. PCR products were puri-

fied and cloned using the Stratagene (Agilent Technologies, La Jolla, California, USA) or

pGEM1-T Easy (Promega Corp., Madison, WI, USA) vector systems. The plasmids contain-

ing inserts were purified from 8–20 E. coli colonies and sequenced until multiple rRNA oper-

ons were obtained.

To recover Type 1 and Type 2 operons missed by cloning due to biased PCR amplification

of the two divergent paralogues, and to be able to sequence the initial part of the 16S r RNA

gene, we designed reverse primers specific for each of the two operon types: HY1R (5’-GGA
ATA ACG ACT TCG GGC AAA ACC AA-3’) for Type1 and HY2R (5’-AGG GTA ACG ACT
TCG GGC GTG ACC AG-3’) for Type 2. The sequences of these primers were 100% conserved

in operons previously recovered using the cloning strategy. The PCR using 16S27F primer

[31] and HY1R/HY2R primers, amplifying the first ~800 bp of the 16S rRNA gene, included

an initial denaturation step at 94˚C for 5 min, followed by 35 cycles of 40 s at 94˚C, 45 s at

55˚C, and 1 min 20 s at 72˚C, and a final elongation step for 7 min at 72˚C. PCR products

were directly sequenced using the same primers.

To recover nearly full sequences of the rRNA operons of both types in the strain S. hyali-
num HTT-U-KK4 we matched the 16S+ITS rRNA sequences collected earlier with sequences

obtained using several PCR reactions with overlapping products: (i) the leader region of the

rRNA operon and the partial 16S rRNA gene using primers 16S promoter [32] and the specific

HY1R/2R primers; (ii) the nearly complete 23S rRNA gene using primers KP36F/VC2763R

and protocols according to Haugen et al. [33]; (iii) the central part of the operons using reverse

complement primers to HY1R/2R and the KP591R reverse primer [33]; (iv) the terminal part

of 23S rRNA and partial 5S rRNA using a primer combination WL2419F [33] and 5SR [32].

All PCR reactions were performed with an initial denaturation step at 95˚C for 5 min, followed

by 36–40 cycles of 45 s at 95˚C, 45 s annealing at 52˚C, 30 s elongation per each 500 bp at

72˚C, and a final elongation step for 10 min at 72˚C. PCR products were cloned as previously

and sequenced using the T7promoter and SP6R primers included in the vector. The 23S rRNA

was additionally sequenced using internal primers KP798F, WL1608F and WL2242F [33].

Two strains of S. hyalinum, HA4185-MV1 and WJT9-NPBG6B, were selected for draft

genome sequencing. Total genomic DNA was amplified from single filaments using multiple

displacement amplification, and sequenced using a Pair-End genomic library with ~350 bp aver-

age insert length and 250 bp sequencing reads on the Illumina Mi-Seq platform (Illumina, Inc.,

San Diego, CA, USA). The protocols exactly followed the procedures described in detail previ-

ously [34]. The data were assembled using default settings in CLC Bio Genomics Workbench v.

10 (Qiagen Bioinformatics, Redwood, CA, USA) and inspected for rRNA operons only.

All sequences were deposited in the NCBI database under accession numbers KY365438-

512, KY407662-663, KY416993-KY417088, KY423285-332, and MF574178-181. A nearly

complete genome scaffold of Scytonema hyalinum HK-05 was sequenced by other authors

(NCBI accession AP018194), and reported with seven separate plasmids, including a 16.3 kb

plasmid containing a full ribosomal operon that is discussed in this paper (NCBI accession

AP018198).

Ribosomal operons of Scytonema hyalinum
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Sequence analysis

For phylogenetic analysis, the 16S rRNA sequences from individual operons obtained using the

cloning strategy and the PCR with specific HY1R/HY2R primers that were 100% consistent in

the overlapping regions were merged to cover nearly the entire 16S rRNA gene (missing only

the first 27 nucleotides). DNA sequences were aligned together with representative sequences of

major clades of heterocytous cyanobacteria with sequenced whole genomes, and a set of close

BLAST hits (16S rRNA gene). Sequences of the three protein-coding loci (rpoC1, rbcLX, nifD)

were aligned using MAFFT v. 7 [35] and manually checked; from the RuBisCO operon only the

coding regions were included in the phylogenetic analysis. A Maximum Likelihood (ML) phylo-

genetic analysis in RaxML v.8 [36] employing GTR+I+G substitution model was run with each

of the protein-coding loci separately, with 1000 bootstrap pseudo-replications. Resulting phy-

logenies were manually checked to reveal and eliminate taxa exhibiting incongruent positions

in individual gene trees. The three resulting concordant matrices were then concatenated prior

to the final analysis. The 16S rRNA gene sequences were aligned using ClustalW, and manually

corrected to preserve conserved secondary structure. Phylogenies inferred from the rRNA and

concatenated protein-coding genes were reconstructed using Bayesian Inference (BI), ML, and

Neighbor-Joining (NJ) methods. The BI calculation in MrBayes 3.2.6 [37] involved two runs of

eight Markov Chains Monte Carlo (MCMC) for�1,000,000 generations, sampled each 100

generations until the convergence criterion reached a value<0.01. The first 25% of the sampled

data was discarded as burn-in. ML analysis was performed as previously. The best-fitting nucle-

otide substitution models for ML-based methods were estimated using Akaike Information Cri-

terion (AIC) values (jModelTest 2.1.6.; [38,39]) for each of the loci separately. For the 16S rRNA

data set, a GTR+I+G model was selected and applied in both ML and BI analyses. For the pro-

tein-coding alignments, submodels from the GTR family were selected by the software for each

of them (nifD: TrN+I+G; rpoC1: GTR+I+G; rbcLX: Tim2+I+G). RaxML and MrBayes currently

provide only few options for calculation with GTR models, and the actual best-fitting model for

the data would presumably be even more complicated (including separate models for each

codon position, etc.). Thus, in RaxML we used the most general GTR+I+G model (separate for

each partition/locus), and in MrBayes we compared two extremes–a partitioned GTR+I+G

model versus default settings (F81 non-partitioned model). Default settings in MrBayes resulted

in a topology more congruent with the 16S rRNA tree, which was then used in the main text.

ML and BI analyses were run using the CIPRES supercomputing facility [40]. The NJ analysis

was run in SeaView v. 4 [41] using the BioNJ algorithm [42] and (default) Jukes-Cantor substi-

tution model, with 1000 bootstrap pseudo-replications. The alignments and phylogenetic trees

were deposited in Dryad, at DOI:10.5061/dryad.6s386.

Sequence identities were calculated as 100�(1– (p-distance)), with p-distance obtained

using the SHOWDIST command in PAUP version 4.0b10. Percent sequence divergence is

simply 100�(p-distance). Determination of genospecies within the Scytonema strains was esti-

mated using the following criteria 1) If two strains had 16S rRNA identity� 98.7% in either

operon, they were considered separate species [3]; 2) If strains were phylogenetically separated,

they were considered to be separate species; and 3) named morphologically different species

(e.g. Scytonema arcangeli and Scytonema hyalinum) were accepted as separate species based on

phenotypic traits even if molecular support for their separation was weak. This is a conserva-

tive estimate of species, and detailed analysis of both morphology and 16S-23S ITS p-distance

and secondary structures could reveal additional unnamed cryptic species [7,43]. We consider

this detailed taxonomic analysis and revision beyond the scope of this paper.

The secondary structure estimations were made following the models for the 16S rRNA,

23S rRNA, and 5S rRNA molecules published for E. coli on the Comparative RNA site (CRW)
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[44]. Modifications for longer or shorter helices were required for selected helices, and the ter-

minal structures of the helices were determined in Mfold 3.2 [45]. In instances where helices

with 1–2 mismatches in E. coli could pair in Scytonemawith canonical base pairings, the heli-

ces were closed. The secondary structure figures were assembled manually in Adobe Illustrator

CS5 version 15.0.0.

Results and discussion

Scytonema hyalinum possesses five ribosomal operons as evidenced by the heterogeneity

observed in multiple cloned PCR amplicons (S1 Table) and two recently sequenced genomes

of Scytonema sp. (NIES 4073 and HK-05), each of which have five operons. Four operons are

very similar to each other in the 16S rDNA (>99.5%) and distinguishable only by the divergent

16S-23S ITS flanking the 3’ end of the 16S rRNA gene (S1 Table). These operons, which we

designate as Type 2 operons (Fig 1) are highly similar to other heterocytous taxa outside of the

S. hyalinum cluster (up to 96% sequence identity (SI) to 16S rDNA in Scytonema sensu stricto
and Brasilonema, 94–95% SI to heterocytous taxa outside of the Scytonemataceae). The fifth

operon, designated as the Type 1 operon (Fig 1) is divergent from the others, being only 91.0–

92.7% similar to the Type 2 operon when comparison is made within strains. Among divergent

operons in prokaryotes observed thus far, this is the highest divergence seen among heteroge-

neous 16S rRNA genes that do not have insertions or truncation (7.3–9.0%). These divergent

operons were obtained by several workers in several labs, in strains from four continents and

Pacific islands, isolated over a period of over 15 years. Yarza et al. [3] state that an SI <94.5% is

strong evidence of different genera, while SI <98.7% is strong evidence of different species. If

we had not cloned the PCR amplicons from strains or obtained sequences from environmental

DNA, so that only a single sequence for each strain/lineage was obtained, we would have con-

cluded that we had two phylogenetically well-separated genera (Fig 1), with at least 6 species in

the Type 2 genus, and at least 2 species in the Type 1 genus. With an understanding of macro-

heterogeneity in the operons, we conclude that six distinct genospecies are present within a

single genus (S1 and S2 Tables).

The ITS regions of all Type 1 operons differ in a number of ways from the ITS regions of all

of the Type 2 operons of S. hyalinum as well as all available heterocytous cyanobacteria. The

marked differences include: i) the first three bases of the ITS are AAC, when in almost all cya-

nobacteria these bases are TTT, TTA, or TAT; ii) the spacer between D2 and D3 regions is 10–

11 nucleotides, compared to 4–6 nucleotides in Type 2 operons; iii) the D3 region is GGTAY,

which differs from GGTTC in all Type 2 operons; iv) the D4 is longer and differs in sequence;

v) the D5 is shorter, 6 nucleotides compared to 15–16 (S1 Table).

While divergent operons in S. hyalinum were sequenced earlier based on records in NCBI,

they went unreported in the literature reporting on the strains in which they were first seen

(DC-A in Yaeger et al. [46], HAF2-B2-c1 in Vaccarino et Johansen [47]). Only when intensive

efforts in sequencing Scytonema strains were undertaken, did recognition that these were

highly divergent operons within strains and not an artifact become unavoidable. To determine

if the divergent Type 1 operon was a pseudogene, secondary structure of the 16S rRNA mole-

cule was compared within strains. One representative example is shown (strain HTT-U-KK4),

and it is clear that the secondary structure was almost perfectly conserved (Fig 2). Only in heli-

ces H9 and H10 did a change in structure take place, due to a decoupling of one base pair in

the terminal loop of H9, and to four inserted bases in H10. An examination of the locations of

the variable bases (which are nearly the same in all strains) shows that the heterogeneity be-

tween operons is highly localized in selected helices distributed throughout the 16S rRNA mol-

ecule (Fig 2, S3 Table).
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We recovered the promoter region, leader, 16S rRNA, 16S-23S ITS, 23S rRNA, 23S-5S ITS,

5S rRNA and the terminator region for WJT9-NPBG6B (entire Type 2 operon) and HA4185-

MV1 (entire Type 1 operon). A recently available genome of Scytonema sequenced by others,

Scytonema sp. HK-05, also possesses both divergent operons, with the four Type 2 operons in

the chromosome and the Type 1 operon on a plasmid. Finally, we sequenced the 23S rRNA

gene, 23S-5S ITS, and partial 5S rRNA gene for HTT-U-KK4. All 23S rRNA gene sequences in

Type 1 operons for these four strains are highly similar (98.4–99.3%), as are the 23S rRNA

sequences for the Type 2 operons (98.5–100%). However, the 23S rRNA genes in the Type 1

and Type 2 operons are much less similar (92.7–93.7%). This level of divergence roughly corre-

sponds to the degree of divergence seen in the 16S rRNA genes. Likewise, the secondary struc-

ture of the 23S is preserved for both operons, with highly localized heterogeneity (Figs 3 and

4). Finally, the proximal promoter regions (-10, -35, and -52) match established prokaryotic

promoter sequences that bind RNA polymerase holoenzyme containing sigma-70 (Table 1).

This combined evidence suggests that both operons are functional and transcribed. However,

direct experimental evidence for the transcription of both operons is pending.

We amplified rbcLX, rpoC1, and nifD, all single copy genes, in numerous S. hyalinum
strains. In no instance did we get a mixed PCR product of any of these genes, indicating a

single genome in each strain (i.e. no contaminants). The multilocus phylogeny excluding the

16S rRNA gene showed Brasilonema as a sister taxon to S. hyalinum (Fig 5), a result echoed in

the 16S tree, except Brasilonema is closest to the Type 1 operon (Fig 1). In examining just the

variable positions of the 16S rRNA gene between operons (as shown in Fig 2), we found that

Brasilonema species had 28% of the positions identical to the Type 1 operon, 54% of the posi-

tions identical to the Type 2 operon, and 18% of the positions either unique or a mix of what

occurred in the S. hyalinum operons (S3 Table). Within operon types, bases were very consis-

tent, with only H9 and H33 showing elevated variation among strains within operon type (S3

Table). At present, 23S rRNA sequences are not available for Brasilonema.

The presence of the highly divergent Type 1 operon is strongly indicative of HGT. It

appears to have come to an ancestor of the S. hyalinum species complex. At the time of intro-

duction to the ancestral genome, there were likely up to four near-identical Type 2 16S rRNA

genes in separate operons, most similar to those in Brasilonema, and slightly less similar to

those in the type species of Scytonema and its sister taxon, S. hofmannii and S. fritschii, respec-

tively. The evidence we present indicates that all elements of the Type 1 operon are consistently

divergent, suggesting introduction of an entire operon. The localization of the Type 1 operon

on a plasmid in HK-05 further supports the HGT hypothesis, as vector-facilitated HGT is

more common than direct transfer of chromosomal segments. It is intriguing that this is the

first report of an rrn-plasmid in cyanobacteria, and only the second report of an rrn-plasmid

in the bacterial domain [48]. However, there are several unexpected findings associated with

this HGT event.

First, we cannot identify the source of the operon. While the Type 1 operon is only slightly

more similar to Brasilonema species (91.7–92.9%) than to the Type 2 operon of S. hyalinum
(91.0–92.7%), it bears less resemblance to all other cyanobacterial and non-cyanobacterial 16S

rRNA sequences. This is consistent with the complexity hypothesis, which posits that HGT of

Fig 1. Phylogenetic tree based on 16S rRNA data. Sequences of the Scytonema hyalinum species cluster were generated using a combination of

cloning strategy and PCR with specific primers designed for each of the two divergent operon types (for details see Materials and Methods). The clades

corresponding to rRNA operon Type 1 and Type 2 are shown in shaded boxes. The operon Type 1 sequences form a long branch in the tree due to high

dissimilarity to all available 16S rRNA sequences of cyanobacteria. Circles with numbers inside indicate strains in which both operon types were recovered.

The tree is based on Bayesian Inference; branch supports�50% are given at the nodes in this shape: Bayesian Inference/Maximum Likelihood/Neighbor-

Joining. Asterisks indicate nodes with�95% support from all methods.

https://doi.org/10.1371/journal.pone.0186393.g001
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Fig 2. Predicted secondary structure of the complete 16S rRNA molecule for Scytonema hyalinum HTT-U-KK4. Type 2 operon is the

base structure, and variable bases in the Type 1 operon are shown as alternates. Indels are noted with empty circles where a base was
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deleted (or an insertion occurred opposite the position), e.g. in H6 and H10. The separation of the four domains are delineated with lines; the

end of Domain 2 and beginning of Domain 3 occurs between helices 27 and 28.

https://doi.org/10.1371/journal.pone.0186393.g002

Fig 3. Predicted secondary structure of the complete 5’ end of the 23S rRNA molecule for Scytonema

hyalinum HTT-U-KK4. Type 2 operon is the base structure, and variable bases in the Type 1 operon are shown as

alternates. Indels are noted with empty circles where a base was deleted (or an insertion occurred opposite the

position). The separation of the first three domains are delineated with lines. Helix 1 consists of the 5’ end of the 23S

rRNA molecule bound to the 3’ end of the molecule, indicated by labels of 5’ and 3’. See Fig 4 for the continuation of

the structure (i.e., the 3’ end).

https://doi.org/10.1371/journal.pone.0186393.g003
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ribosomal genes is very unlikely, but most likely in closely related lineages [49]. The source is

likely a member of the Scytonemataceae, but not one that has been sequenced as yet. This

raises the inevitable evolutionary question, how did this ancestral taxon become so divergent

in the first place, and what selective forces allowed such a deep divergence? HGT is a handy

explanation of the Type 1 operon sequence, but it does not address the ultimate origin of the

sequence.

Fig 4. Predicted secondary structure of the complete 3’ end of the 23S rRNA molecule for Scytonema

hyalinum HTT-U-KK4. Type 2 operon is the base structure, and variable bases in the Type 1 operon are

shown as alternates. Indels are noted with empty circles where a base was deleted (or an insertion occurred

opposite the position). The separation of the last three domains are delineated with lines. Helix 1 consists of

the 5’ end of the 23S rRNA molecule bound to the 3’ end of the molecule, indicated by labels of 5’ and 3’. See

Fig 3 for the continuation of the structure (i.e., the 5’ end).

https://doi.org/10.1371/journal.pone.0186393.g004
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Second, we do not understand why gene conversion, a phenomenon observed in other

instances of HGT of 16S rRNA genes [13,50], has not been more effective at homogenizing the

divergent sequence. There is limited evidence of gene conversion in the S. hyalinum species

complex. In particular, in 14 of the 123 variable positions there were a few reversions among

the 21 strains sequenced (S3 Table). However, this is relatively little gene conversion given the

fact that the HGT event occurred sufficiently long ago that at least six species have arisen in

the lineage since the event occurred.

Third, all of the positions variable between the two operon types in S. hyalinum operons are

considered to be among the least conserved in the prokaryotic 16S rRNA molecule according

to a recently published summary [51]. This could explain the origin of the divergent sequence

in an unknown ancestral heterocytous taxon, but it does not explain the relative invariability

in these positions within the Type 1 operon in the Scytonema hyalinum species cluster. We

conclude that the HGT event, which likely defines the origin of the Scytonema hyalinum/arcan-
gelii lineage, is relatively recent in evolutionary terms. It is a challenging notion because “rela-

tively recent” seems inconsistent with a radiation event which has given rise to multiple

ecophysiologically and genetically (16S-23S ITS) diverse species. The alternative hypothesis is

that the sequence of the Type 1 operon is ancient, but has been tightly constrained by natural

selection since its origin.

The persistence of the relatively stable Type 1 operon in this cyanobacterial lineage is evi-

dence that the Type 1 operon imparts some selective advantage. In prokaryotic lineages with

macroheterogeneity in ribosomal operons the taxa are often from extreme environments, and

adaptive advantage is inferred from this congruence [16,24,52,53]. Condon et al. [54] suggest

that additional operons in E. coli permit more rapid adaptation to changing environmental

conditions, and Anda et al. [48] suggest this same adaptability in the ribosomal genes in the

high-copy plasmids of Aureimonas. Scytonema hyalinum is an extremophile, with populations

being exposed to rapidly changing temperatures, high conductivities, damaging levels of solar

radiation, and rapidly changing moisture conditions. It consequently fits the model expected if

adaptive advantage accrues from the additional, divergent operon, especially if it is positioned

Table 1. Promoter regions for Type 1 and Type 2 operons. The -10 (Pribnow Box) and -35 promoter regions are considered to be likely functional if 3–6

nucleotides in each match the consensus sequence. The optional -52 promoter may or may not be functional in these promoter regions.

Prokaryotic Consensus -52 -35 -10 Transcript

begins

AWWWWWTTTTT . . . .. . . . TTGACA . . . .. . . .. . . .. . .. . . TATAAT . . . . . . . .. . .. . ..

Type 2 operons

NIES 4073 AP018268.1 AAAAATTTTGA AAAAGGAG TTGACA ATGCAGGAGTGGG-TGGA TATATT AAAT AAGTGCCTGAA

NIES 4073 AP018268.1 AAAAATTTTGA AAAAGGAG TTGACA ATGCAGGAGTGGG-TGGA TATATT AAAT AAGTGCCTGAA

NIES 4073 AP018268.1 AAAAAGTTTGA AATGCCCC TTGACA AAAAAAAAAGCGG-TGGC TAGACT AGAT AAA-GTGTGAA

NIES 4073 AP018268.1 AAAAAGTTTGA AATCCCCC TTGACA AAAAAAAAAGCGG-TGGC TAGACT AGAT AAA-GTGTGAA

NIES 4073 AP018268.1 AAAAAGTTTGA AATGCCCC TTGACA AAAAAAAAAGCGG-TGGC TAGACT AGAT AAA-GTGTGAA

HK-05 AP018194.1 AAATTTTTTGA AAAAGGAG TTGACA ATCCAGGAGTGGG-TGGA TATATT AAAT AAGTGCCTGAA

HK-05 AP018194.1 AAATTTTTTGA AAAAGGAG TTGACA ATCCAGGAGTGGG-TGGA TATATT AAAT AAGTGCCTGAA

HK-05 AP018194.1 AAAAAGTTTGA AAAACCCC TTGACA AAAAAAAAAGCGG-TGGC TAGACT AGAT TAA-GTGTGAA

HK-05 AP018194.1 AAAAAGTTTGA ATTGCCCC TTGACA AAAAAAAAAGCGG-TGGC TAGACT AGAT TAA-GTGTGAA

WJT9-NPBG6B KY365452 AATTTTTTTGA AAAAGGAG TTGACA AAAAAAAAAGCGG-TGGC TATATT AAAT AAGTGCCTGAA

HTT-U-KK4 KY365438 . . . .. . .. . .. . . . .. . . . . . .. . . . . . . . . .. . . .GGA TATATT GGAT AAGTGCCGGAA

Type 1 operons

HA4185-MV1 KY365490 AAAAGTACGGT TTCACCTC CACACA CTCCCAACGTTGTCTAGT TACAAT GAAA GAGTGTCAAGG

HK-05 Type 1 AP018198.1 AAAAGTACGGT TTCACCTC CACACA CTCCCAATGTTGTCCAGT TACAAT GAAA GAGTGTCAAGG

https://doi.org/10.1371/journal.pone.0186393.t001
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on a plasmid, as evidenced in the strain HK-05. We cannot hypothesize what advantage the

introduced operon imparts, but its widespread presence and sequence stability still suggest

adaptive advantage.

Supporting information

S1 Table. Characterization of five distinct operons based on 16S-23S ITS regions recovered

from two ribosomal operon types in Scytonema hyalinum species cluster. Color coded

regions are as follows: leader (blue-block); D1-D1’ helix (first green block); D2 (first yellow

block); D3 (second yellow block); tRNA-Ile (first red block, when present); V2 helix (second

blue block, when present); tRNA-Ala (second red block, when present); Box-B helix (second

green block); Box-A (third yellow block); D4 (magenta block); V3 helix (third green block).

(PDF)

S2 Table. Summary of p-distance values for 20 Scytonema strains for which both operons

were observed, and for which long reads were recovered (1170–1485 nucleotides), with

comparisons also to eight Brasilonema strains. Comparisons between the operons within

strain are given in first column (blue highlight). Comparisons among Type 2 operons among

the 20 strains are given in the first block (yellow highlight), followed by the comparisons

among Type 1 operons (green highlight). The third block gives comparisons among Brasilo-
nema spp. and the Type 2 operon (yellow highlight), followed by comparisons among Brasilo-
nema spp. and the Type 1 operon (green highlight).

(PDF)

S3 Table. Alignment of bases consistently variable between operons in Scytonema hyali-
num. Color coding: yellow = consensus bases consistent with Type 2 operons;

blue = consensus bases consistent with Type 1 operons; green = consensus bases unique to

Brasilonema; gray = variable bases not consistent with any consensus base. Question

marks = missing data. Helix number given in accordance to Fig 2, with position numbers

based on 1501 positions in alignment of complete 16S rRNA molecule in Scytonema hyalinum
sensu lato. Brasilonema is 54% like Type 2 operons, 28% like Type 1 operons, and 19% unique

to Brasilonema or variable (consensus with< 85% saturation).

(PDF)

S4 Table. Summary of NCBI accession numbers for rbcLX, rpoC1, and nifD nucleotide

sequences obtained in this study.

(PDF)
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