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Abstract

Background—One of major issues in clinical trials in oncology is their high failure rate, despite 

the fact that the trials were designed based on the data from successful equivalent preclinical 

studies. This is in part due to the intrinsic homogeneity of preclinical model systems and the 

contrasting heterogeneity of actual patient responses.

Methods—We present a mathematical model driven framework, phase i (virtual/imaginary) 

trials, that integrates the heterogeneity of actual patient responses and preclinical studies through a 

cohort of virtual patients. The framework includes an experimentally calibrated mathematical 

model, a cohort of heterogeneous virtual patients, an assessment of stratification factors, and 

treatment optimization. We show the detailed process through the lens of melanoma combination 

therapy (chemotherapy and an AKT inhibitor), using both preclinical and clinical data.

Results—The mathematical model predicts melanoma treatment response and resistance to 

mono and combination therapies and was calibrated and then validated with in vitro experimental 

data. The validated model and a genetic algorithm were used to generate virtual patients whose 

tumor volume responses to the combination therapy matched statistically the actual heterogeneous 

patient responses in the clinical trial. Analyses on simulated cohorts revealed key model 

parameters such as a tumor volume doubling rate and a therapy-induced phenotypic switch rate 

that may have clinical correlates. Finally, our approach predicts optimal AKT inhibitor scheduling 

suggesting more effective but less toxic treatment strategies.

Conclusion—Our proposed computational framework to implement phase i trials in cancer can 

readily capture observed heterogeneous clinical outcomes and predict patient survival. 

Importantly, phase i trials can be used to optimize future clinical trial design.
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Introduction

Significant advances have been made in understanding mechanisms that provoke tumor 

initiation and progression, and often this knowledge has been translated into the 

development of targeted agents that selectively disable the mutated, activated and/or 

overexpressed oncoproteins manifest in tumor cells (1). Most of these targeted agents have 

been tested in clinical trials either alone or in combination with other treatments (2), and 

though some are clinically effective (e.g., small molecule BRAF kinase inhibitors (3)), the 

majority are not (4-6) despite the fact that such agents have potent activity in preclinical 

cancer cell and animal model studies. The leading cause of failure tends to be lack of 

efficacy, in part due to lack of robust predictive models that consider patient heterogeneity, 

and poorly designed clinical trials (6-9). This inconsistency is also partly due to difficulties 

in predicting the long-term effectiveness of a cancer therapy using time-limited in vitro 
(typically < 1 month) or in vivo (often < 3 months) model systems.

We reasoned that an appropriately defined and parameterized mathematical model, based on 

observations in cell and animal studies and clinical trials, might reveal insights regarding the 

design of improved and informed therapeutic approaches for treating cancer patients. We 

consider the recently completed multi-arm phase 1 trial of the MK2206 AKT inhibitor in 

combination with standard chemotherapy with advanced solid tumors, including melanomas 

(ClinicalTrials.gov, trial number: NCT00848718) (10). To investigate potential mechanisms 

of treatment efficacy, a mathematical model comprised of a system of ordinary differential 

equations was developed to describe the dynamics of melanoma cells exposed to four 

treatment conditions, no treatment, chemo, AKTi and combination of chemo and AKTi. Cell 

culture experiments were then used to parameterize the model. The calibrated model was 

further validated using results from an extensive series of cell culture experiments that 

consider twelve different drug combinations and timings. This validated model was then 

used to predict the long-term effects of the twelve treatments on melanoma cells, which 

revealed that all treatments eventually fail, but do so at significantly different rates.

To investigate the long-term effects of therapy in a more clinically relevant setting, we varied 

model parameters to generate virtual patients that had a heterogeneous mix of responses 

similar to typical clinical trial outcomes. We employed a genetic algorithm (GA) to generate 

a diverse virtual patient cohort consisting of over 3,000 patients. Statistical analyses of the 

simulated cohort showed that the treatment responses of 300 virtual patients sampled from 

the cohort matched actual patient responses in the trial (10). Analyses of complete virtual 

patient cohort defined parameters that discriminated virtual patients having more favorable 

versus less favorable outcomes. Finally, the model predicts optimal therapeutic approaches 

across all virtual patients. This strategy allowed implementation of a “virtual clinical trial” 

(phase i trial) (11). Similar virtual clinical trials have been developed to simulate clinical 

trials of cardiovascular disease, hypertension, diabetes (www.entelos.com), and acute 

inflammatory diseases (12). There have also been some previous studies that employed 

modeling approaches to predict outcomes of clinical trials (13, 14). Statistical approaches 

based on clinical drug metabolism (e.g., dose-concentration relationships) have also been 

developed to design virtual clinical trials (reviewed in (15)) that detect significant 

differences between treatments (for example, placebo vs. treatment). Here we rather sought 
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to translate biological mechanism coming from in vitro experiments with clinical studies on 

melanoma combination therapy, into a phase i trial.

Results

Mathematical Modeling and Underlying Assumptions

We reported unexpectedly long-term responses (of up to 15 months) to the combination 

therapy of chemotherapy (chemo) and AKT inhibitor (AKTi, MK2206) in two BRAF-wild 

type melanoma patients in the trial (16). Although little was known regarding why this 

combination therapy was successful, we reasoned this reflected differential effects on 

inducing autophagy (16). Autophagy represents a cancer cell-intrinsic mechanism of 

resistance that allows cells to survive times of drug-induced stress (17, 18) or, if 

uncontrolled, can deplete key cellular components and provoke tumor cell death (19, 20). 

Differential autophagic responses to the chemo plus AKTi combination and accompanying 

effects on tumor cell growth and survival were manifest in melanoma cells (16).

Motivated by these experimental results, we formulated a mathematical model comprised of 

three phenotypic compartments (Fig. 1), a non-autophagy compartment (N) and two 

autophagy compartments (P and Q). We divided the autophagy compartment into two, 

physiological autophagy (P) and quiescent autophagy (Q) compartments, based on studies 

showing that some cells where autophagy is manifest continue to maintain normal cell 

homeostasis whereas others did not (21-24) (See supplementary text and Figure S1 for 

further explanation). Figure 1 and Figure S2 show the interactions between the N, P and Q 

compartments within the four different environments: no-treatment, three treatment 

conditions (chemo, AKTi, and combination therapy (chemo+AKTi)).

Untreated melanoma cells proliferate (rate: gN), and following treatment can acquire either a 

physiological autophagy phenotype (transition rate: aP) or a quiescent autophagy phenotype 

(transition rate: bQ). Physiological autophagy cells grow (rate: gP) and can revert to non-

autophagy cells (returning rate: rP), or enter a quiescent/senescent state (rate: qP). Tumor 

cells having the quiescent autophagy phenotype do not divide, but can either reacquire a 

physiological autophagy phenotype (rate: rQ) or a non-autophagy phenotype (rate: rN) state. 

Cells in each compartment die at some rate (dN,P,Q). To model increased cell deaths on days 

6-9 (16), we included the delayed cell deaths of quiescent/senescent autophagy cells (τ).

The effects of chemo, AKTi and their combination were incorporated into the model (Fig. 

S2). As cell culture experiments showed that chemo triggered cell death with negligible 

effects on autophagy (16), we augmented cell death to model effects of chemo. Further, as 

chemo is effective only in proliferating melanoma populations, the therapy increases the 

death rate of the two proliferating phenotypes, non-autophagy (dN) and physiological 

autophagy cells (dP)(Fig. S2, black arrows) in the model. The frequency with which cells 

became quiescent/senescent (qP) increased with chemo (Fig. S2, black lines). Our in vitro 
studies showed that while AKTi did not augment cell deaths or effectively inhibit melanoma 

cell growth (16), it did induce autophagy; thus, we assumed that AKTi increases the rate of 

transitioning to the autophagy phenotypes, aP and bQ (Fig. S2, black arrows). As 

combination therapy does not augment cell death compared with chemo, nor significantly 
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increase autophagy relative to AKTi, the combination of the two treatments was modeled by 

adding the effects of chemo and AKTi (16) (Fig. S2, black arrows and crosses). Finally, no 

cells with a given phenotype can revert to their original states in the model while any 

treatment is being applied. The schematic representation of this compartment model (Fig. 1 

and Fig. S2) converts readily into a system of ordinary differential equations:

(1)

where dN = d0 + cNC, dP = d0 +cPC, qP =q0 + cQC, aP = a0 + aNA, and bQ = b0 + bPA. In 

equation (1), A and C are defined by

Note that the drug is assumed to reach its maximum concentration immediately after 

administration and remains at that level until the beginning of the treatment break. Although 

the chemotherapeutic agents (paclitaxel and carboplatin) are detectable in patients for 24 

hours, the half-life in serum is relatively short, in the range of 5.6 – 11.1 hours (25, 26); the 

concentration of chemotherapeutic agents in the model was maintained for only 1 day after 

administration and became zero at the beginning of the treatment break. As the plasma 

concentration of AKTi (MK2206) is known to be constant for approximately 48 hours (with 

a long terminal elimination half-life of 40-100 hours) (27), a 1-day application of AKTi to 

cells or patients corresponds to a 2-day application to cells or patients in the model. A fixed 

dose was considered for both chemo and AKTi.

Model calibration with preclinical data

To calibrate model parameters, two melanoma cell lines (M257 and WM3918) were treated 

with chemo on the first four days (day 0-4) and with AKTi on every other day (days 0, 2, 4, 

and 6). We quantified the number of melanoma cells from images taken at days 4, 6 and 8 

(Matlab Image Toolbox). We employed an optimization algorithm called implicit filtering 

(28), a steepest descent algorithm for problems with bound constraints, to determine the 

parameter set that minimized the difference between predicted number of cells and 

experimental results (See Supplementary Methods for a detailed explanation). A list of 

parameters and their ranges are summarized in Table S1. For each parameter set, we tested 

goodness of fit using R2, root mean squared error, and normalized root mean squared error, 

and Kolmogorov-Smirnov test. The parameters produced good fits (R2 ≥ 0.8, for all cases) 

for the growth of each cell line (Fig. 2). The maximal root mean squared error was 68.7 and 

the normalized error was 13.5%. The two sample Kolmogorov-Smirnov test doesn't reject 

null hypothesis that the predictions using estimated parameter and experimental data are 

from a same distribution. (See Supplementary Parameter Estimation Section for a detailed 
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explanation) Chemo reduced growth rates of both WM3918 and M257 (Fig. 2, Chemo 

panels) and continuous application of AKTi increased the proportion of the non-autophagy 

(N) to physiological autophagy (P) phenotype (Fig. 2, AKTi panels, increasing green lines). 

The combination of AKTi and chemo generally induced the quiescent autophagy (Q) 

phenotype (Fig. 2, combination panels, increase of red lines), which arose following the 

rapid transition of a non-autophagy to physiological autophagy phenotype (Fig. 2, 

combination panels, a sharp increase in the green line < day 1). The number of cells in the 

total cell population treated with the combination therapy continued to decrease as a result 

of cell death of the Q phenotype (Fig. 2, combination panels, decreasing red lines).

Model prediction and validation with preclinical data

Our calibrated model was used to predict the effects of twelve treatment schedules that 

differed in the timing and order of chemo, AKTi and combination therapy across a 16-day 

period (Supplementary Methods and Fig. S3 for a description of the schedules). The 

expected treatment responses are summarized in Fig. 3 (red bars). Compared with the 

untreated tumor cell population (#1), one application of chemo decreased the tumor cell 

population by 30-65% (#1 vs. #2) and two applications reduced the population by 50-90% 

(#1 vs. #3). One application of AKTi had limited impact on tumor cell growth 

(approximately 20% reduction from #1, untreated to #4, AKTi therapy). Continuous 

application of the AKTi reduced the tumor cell population size by 40-70% (#1 vs. #5). The 

M257 melanoma cell line was more sensitive to both chemo and AKTi than WM3918 

melanoma cells. Combination therapies were substantially more effective than mono-

therapies. In general, concurrent therapies with chemo and AKTi (#6 and #7) were more 

successful than all sequential therapies (#8-#12). Concurrent therapy #6 reduced the tumor 

cell population size by up to 90%, and concurrent therapy #7 nearly eradicated all of the 

tumor cells (Fig. 3, #7, nearly invisible red bars). Sequential therapy decreased the tumor 

cell population size by 50-90% (Fig. 3, #1 vs. #8-#12).

To validate these predictions, an extensive series of in vitro experiments were performed and 

the numbers of viable tumor cells were quantified on day 16 (Fig. S3B). We then compared 

the total experimental melanoma cell numbers with those predicted by the models (Fig. 3, 

blue vs. red bars). In general, the predictions matched well with the experimental results, as 

all predicted values (red bars) were within one standard error deviation from the mean value 

of the experimental results (blue bars). Thus, this mathematical model accurately describes 

and predicts treatment outcomes obtained in vitro.

Long-term response of treatments

Having established a successfully validated model, the longer-term effects of the therapies 

were assessed. Surprisingly, the best proposed strategy (#7) failed by day 40 (WM3918 

cells) or day 50 (M257 cells), where the physiological autophagy phenotype developed 

resistance to the therapy population (green lines, Fig. S4). This finding highlights a key 

shortcoming of in vitro experiments; i.e., the limited timescale. To test this prediction long-

term cell culture studies were performed. Unsurprisingly, as the model predicted, a 30-day 

treatment of strategy (#7) failed to eradicate some of the melanoma cell lines in colony 

formation assay experiments (16).
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Phase i trial

To investigate the long-term effects of therapy beyond homogeneous cell lines (or preclinical 

data in general) to a more clinically relevant setting, where heterogeneous treatment 

responses are typically observed, we propose a virtual clinical trial, termed Phase i trial (11). 

The trial consists of three steps, i) model development, ii) cohort generation, iii) 

stratification of simulated cohort response and factors, and treatment optimization (Fig. 4).

Virtual cohort generation

Under the assumption that our underlying resistance mechanism is relevant to the clinic, and 

there is some evidence to support this (29), we will use our framework to investigate the 

long-term treatment responses in a more clinically relevant scenario. Specifically, we 

consider model parameters that are more representative of real patients to generate a virtual 

patient cohort. The same treatment schedules as in the clinical trial (10) were used, with five 

cycles of first-day chemo in a 21-day cycle, and two different treatment arms of AKTi 

schedules (arm1, 2). In the first AKTi schedule (arm 1: Q3W), the drug is administered on 

the first day of the 21-day cycle for five cycles, and thereafter is given on the first day of 

every week (weekly maintenance therapy). In the second schedule (arm 2: QOD), the drug is 

administered on days 1, 3, 5 and 7 of the 21-day cycle, and is then given weekly as 

maintenance therapy. The total treatment time was set to be 15 months.

To generate virtual patients that exhibit the diversity of responses observed in the clinic, 

adaptive heuristic search Genetic Algorithms (GA, built in Matlab) were used (30, 31). We 

employed genetic algorithms as they are less dependent on initial conditions and allow a 

wider search space than classical optimization techniques. A solution (P = [gN, gP, dQ, dτ, 
rP, rN, bP, cP, cQ, aN, cN]) was searched that minimized the difference between tumor 

volume with a parameter and the target tumor volume, which was randomly selected from 

three categories: complete response (CR; whose tumor diameter < 1 mm), partial response 

(PR; at least 30% reduction in tumor diameter), and stable disease (SD; up to 20% increase 

in tumor diameter) based on response criteria (32). Our GA found 3391 matched virtual 

patients, 1293 sets of parameters in the case of arm 1 and 2098 sets of parameters for arm 2 

(See Supplementary Methods for a detailed explanation).

In comparing the parameter range of patients and cell lines we strikingly note that they 

barely intersect with each other (Fig 5A-B). Growth rates (gN, gP) of patients were much 

lower than those of cell lines (Fig 5B, top histograms). Death rates (dQ, dτ, cP, cN) and 

transition rates (rP, rN, bP, cQ, aN) overlapped somewhat (Fig 5B, middle and bottom 

histograms). This might partially explain why preclinical results fail to translate clinically. 

We then compared the maximum tumor diameter changes of the 24 patients in the trial with 

those of 300 patients sampled from our virtual cohort (Fig. 5C, upper vs. lower waterfall 

plots). To test if the distributions of maximum diameter changes are from the same 

continuous distribution, we performed a two-sample Kolmogorov-Smirnov test (Matlab 

statistics toolbox) (33). The test does not reject the null hypothesis at 5% significance (test 

statistic = 0.12). In addition, empirical cumulative distribution functions of the two overlap 

each other (Fig. 5D).
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Virtual cohort stratification

Phase i combination therapy was simulated for 6 months with the two arms to predict 

treatment responses in the virtual patients. We randomly assigned a treatment arm (either 

arm 1 or arm 2) to all virtual patients. Then, all eleven parameters that were varied to 

generate VP were assessed to characterize this virtual cohort. We divided the patient group 

into CR, PR, SD, and PD (progressive disease, more than 20% increase in tumor diameter) 

using their tumor volumes at 6 months. Each parameter value from each group was 

compared and the Student's t-test was used to determine if the mean values of a parameter 

differed between two groups (CR vs. PR, PR vs. SD, and SD vs. PD) (Fig. S5). Our analysis 

identified the key parameters, growth rate of non-autophagy cells (gN) and quiescent 

autophagy phenotype (bP), as potential predictive factors of the treatment outcomes (Fig. 

S5). We divided all virtual patients into four sub-cohorts based on these parameter values 

(Fig. 6A, C1-4) and compared tumor volume changes less than 300% at 6 months (3000 

patients). Each sub-cohort showed significantly different mean (p value < 0.01, Student's t 

test) and median (p value < 0.01, Wilcoxon rank sum test, Matlab statistics toolbox) 

response to therapy (Fig. 6B). The sub-cohort C1 (cyan) is most likely to benefit from the 

treatment, while the likelihood decreased gradually in C2 (blue), and C3 (yellow) or C4 (red). 

There is also a clear shift in the distribution of treatment response from C1 to C4 (Fig. 6C). 

Patients had diverse responses to the therapy, where CR, PR, SD, and PD were observed in 

40 randomly selected subjects (Fig. 6C). For example, some patients in C4 were expected to 

be complete responders (CR, red bars of nearly -100%), while others in the same cohort 

were expected to be in PD (red bars of > 20%). In addition, a hierarchical clustering with 

Pearson correlation distance selected gN and cN as potential predictive factors of tumor 

volume changes (Fig. S6, A) although cN was less effective in separating treatment 

outcomes (Fig. S6, B-C, unclear separations between C1 and C2 and between C3 and C4). In 

summary, these statistical analyses allow one to select potential stratification factors for a 

treatment strategy, which could be used to guide patient specific selection criteria for future 

therapies and trials.

Optimizing AKTi treatment to minimize toxicity for each sub-cohort

For the virtual sub-cohorts (C1-C4) optimal therapy recommendations were derived using 

implicit filtering (28). Notably, the schedule of chemo was fixed, as it was in the clinical trial 

(10), with the goals of identifying the AKTi schedule that reduced the initial tumor volume 

by at least 30% after 6 months of therapy (Supplementary Methods for a detailed description 

of AKTi treatment optimization). Optimized schedules of AKTi are summarized in Table S2. 

To understand the relative impact of these alternate therapies we compared the 2-year 

survival probability of patients on the different therapies. The therapies included optimized 

therapy, treatment arm 1 and arm 2, and two mono-therapies of AKTi only (i.e., AKTi 

treatment only from either arm 1 or arm 2), and chemo. The initial number of tumor cells 

was set at one billion and the melanoma was considered fatal when the number of tumor 

cells reached 1013 cells. We also compared the cumulative drug concentration of each 

therapy at two time points, immediately after the five-cycles of combination therapy of 

AKTi with chemo (105 days) and at the completion of therapy (2 years) (See Supplementary 

Methods for a detailed explanation of toxicity calculation).
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For patient cohorts C1-3, optimum scheduling improved the survival slightly but reduced the 

cumulative concentration of drugs (both AKTi and chemo) significantly. The maximum 

reduction was approximately 83% (Fig. S7). Here we focus on the probability of 2-year 

survival of the C4 subcohort because their expected tumor volume responses were the worst 

(Fig. 6B, red box plots) and because their untreated survival is the poorest of the group 

showing a rapid decrease after 6 months (Fig. 6D, black line). Survival of the chemo-alone 

had only minimal improvement (Fig. 6D, yellow line). The AKTi monotherapies improved 

survival (Fig. 6D, red line (Q3W), and pink line (QOD)). Both treatment arm 1 and arm 2 

also increased the probability of survival (Fig. 6D, blue line: arm 1 and cyan line: arm 2). 

Notably, the optimized therapy significantly improved the probability of survival (Fig. 6D, 

green line) compared to arm 2 (p value < 0.05), and the cumulative doses were also lower 

than arm 2 at day 105 right after the five cycles of combination of chemo with AKTi, 

although they became higher at year 2 (Fig. 6D bar graphs).

Discussion

The integrated approach applied herein shows that treatment-induced autophagy phenotypes 

are certainly one factor driving the long-term effects of treating patients with chemo in 

combination with AKTi. The mathematical model hypothesizes that two distinct states of 

autophagy exists (physiological and quiescent states), and indicates that improved patient 

outcomes are associated with the quiescent autophagy phenotype. The model also predicts 

that therapy drives the transition from the non-autophagy to the physiological autophagy 

phenotype, which provides a transient escape route from treatments. In contrast, the model 

indicates that a persistent quiescent autophagy state is detrimental to overall fitness and thus 

this represents a desired outcome of therapy.

Implementing a phase i trial allows one to translate models to a clinically relevant setting 

(Fig. 4). The key components of such a trial are an experimentally calibrated mathematical 

model and a cohort of virtual patients that mirror responses observed in an actual clinical 

trial. The model presented herein is constructed by integrating experimental results on 

melanoma combination therapy. Using a GA and employing standard clinical response 

criteria, one can easily generate a relatively large cohort of diverse virtual patients who are 

treated using the same treatments given to patients in a clinical trial and statistically 

reproduce the same responses. Our statistical analyses of the simulated cohort defined 

predictive factors, which discriminated between CR, PR and SD. The transition to the 

quiescent autophagy phenotype and the growth rate of non-autophagy cells discriminated 

outcomes significantly. This is in agreement with a previous clinical melanoma study, using 

different treatments, where increased autophagy response was associated with resistance to 

BRAF inhibitors (29). An important outcome of this analysis is our ability to define key 

stratification parameters for a given treatment, that differentiate cases having more or less 

favorable outcomes, demonstrating the utility of phase i trials in aiding patient selection for 

future therapies and trials.

Optimizing the AKTi schedule for each cohort provided the most benefit. Notably, 

mathematically informed drug scheduling can positively impact overall outcome, including 

using a lower drug dose in some cohorts. Indeed, changing the temporal protocol influenced 
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the dynamics of the system significantly. Interestingly, another melanoma study showed that 

using unconventional (discontinuous) dosing schedules with BRAF inhibitors could prevent 

resistance (34). This idea is now being explored in a phase II clinical trial of BRAF-mutant 

melanoma patients (SWOG: 1320, ClinicalTrials.gov Registry Number: NCT02199730). We 

submit that the simulation of optimized schedules and comparing outcomes across virtual 

patients can assist clinical treatment planning to improve overall outcomes (10).

The underlining mechanisms, parameterization and validation of our model were based on 

data from a preclinical in vitro study. However, as demonstrated by Leder and colleagues, a 

similar integrated modeling approach can also be achieved using in vivo preclinical studies 

(35). By assuming that the same mechanisms of therapy response and resistance apply, this 

study bridged the divide between our in vitro study and the clinic. Although there are a 

many more potential response and resistance mechanisms in patients, we consider only one 

(autophagy) that we characterized using our integrated approach of mathematical modeling 

with in vitro experiments. We also assume that the variability in patients' responses to 

treatment can be characterized by variability in this autophagy mechanism, although there 

are certainly more sources of variability including but not limited to the variation in patient 

age, size and the genetic composition of an individual tumor, and immune responses. Whilst 

it would certainly be possible to incorporate both additional resistance mechanisms and 

sources of variability into our model, and given appropriate experimental controls to 

calibrate and validate our model, ultimately the methodology would be the same, albeit with 

many more parameters to generate virtual cohorts. What is clear, regardless of the model 

complexity or cancer system, is that using a validated mathematical model to generate a 

virtual patient cohort allows us to carry out phase i trials that may improve the safety and 

efficacy of future phase I-IV trials, as well as patient outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Mathematical model development. Schematic of a compartmental model composed of three 

compartments, non-autophagy (blue), physiological autophagy (green), and quiescent 

autophagy (red).
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Figure 2. 
Model calibration. Predicted non-autophagy (blue), physiological autophagy (green), 

quiescent autophagy (red), total population (black line), and experimental cell counts (black 
dots) on days 4, 6 and 8, under four conditions: no treatment; chemo (day 0-4, cyan bars), 

AKTi (days 0, 2, 4 and 6, pink bars) and combination therapy (chemo on days 0-4 and AKTi 

on days 0, 2, 4 and 6) in cell lines WM 3918 (left) and M257 (right) melanoma cells. R2-

values are reported for each case.
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Figure 3. 
Mathematical model validation. In a total of 12 different conditions, predicted total 

populations (red bars) are compared with of the each experimental results (blue bars). Inset: 
Photographs of fixed colonies on day 16.
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Figure 4. Phase i trial flowchart
Model development: a mathematical model is developed based on experimental data. Then 

the model is calibrated and validated by comparing model predictions and experimental 

results. Cohort generation: the validated model and genetic algorithms are used to generate 

virtual cohort that statically matched historical clinical data. Stratification & optimization: 

Phase i therapy assuming the same schedules in a clinical trial is simulated using the cohort. 

The virtual cohort is analyzed to predict stratification factors. Optimization approaches are 

employed to propose optimal therapy, which may guide better patient selection and 

treatment strategies in subsequent clinical trials.
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Figure 5. Virtual cohort generation
A, Parameter range of virtual patients (green) and in vitro cell lines (red). The boxes 

represent ranges of growth rates (gN, gP), death rates (dQ, dτ, cP, cN), and transition rates (rP, 

rN, bP, cQ, aN) of patients and cell lines.

B, Histograms of the parameters of patients (green) and the cell lines (red), first: growth 

rates, second: death rates, and third: transition rates.

C, Waterfall plots representing the distribution of the maximum percentage changes of tumor 

diameter from baseline (initial diameter). Upper, 24 real patient tumors (Fig.1). Lower, 300 

sampled virtual patient tumors (initial diameter, 1cm). Orange lines indicate -30% (PR) and 

20% (SD) tumor diameter changes.

D, Empirical cumulative distribution functions of patients (black line) and 300 sampled 

virtual patients (green line). The maximum difference between two distributions is 0.12. 

Inset: Box-Whisker plots of patients (R, left) and the virtual patients (V, right). x: mean, -: 

median, box: 25% - 75%, upper and lower horizontal bar (-): 91-9%.
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Figure 6. Virtual cohort stratification and optimization
A, Partitioning of all virtual patients based on the growth rate of non-autophagy tumor cells 

(gN) and the transition rate from non-autophagy to quiescent autophagy phenotype (bP) 

based on the sensitivity analysis (Fig. S5). gN was low (<0.05) but bP was high (>0.5) in C1 

(cyan color, 731 patients). Both rates were high in patients in C2 (dark blue, 396 patients). 

Both rates were low in patients in C3 (yellow, 1734 patients). The tumor cells in patients in 

C4 (red, 530 patients) had a higher rate of gN (>0.05) but a lower rate of bP (<0.8).

B, Box whisker plot of the expected 6-month treatment outcomes in the new sub-cohorts C1-

C4.

C, Waterfall plots of the tumor volumes in randomly selected 40 patients from each sub-

cohort C1: cyan bars, C2: blue bars, C3: yellow bars, and C4: red bars, black line indicates 

no-change of tumor volume.

D, Treatment optimization and predicted 2-year survival analysis.

Kaplan-Meier curves in patients from cohort C4 when seven different treatments were 

applied for 2 years, no treatment (black), five cycles of chemo only (yellow), AKTi 
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monotherapy following the Q3W schedule (red), AKTi monotherapy following the QOD 

schedule (pink), combination therapy with arm 1 (blue) or arm 2 (cyan), and the optimum 

therapy (green). Inset bars, sum of cumulative drug (both AKTi and chemo) concentrations 

at day 105 (first bar graph, same color scheme as in the survival curves) and year 2 (second 

bar graph).
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