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Abstract

Cardiac magnetic resonance perfusion examinations enable non-invasive quantification of 

myocardial blood flow. However, motion between frames due to breathing must be corrected for 

quantitative analysis. Although several methods have been proposed, there is a lack of widely 

available benchmarks to compare different algorithms. We sought to compare many algorithms 

from several groups in an open benchmark challenge. Nine clinical studies from two different 

centers comprising normal and diseased myocardium at both rest and stress were made available 

for this study. The primary validation measure was regional myocardial blood flow based on the 

transfer coefficient (Ktrans), which was computed using a compartment model and the myocardial 

perfusion reserve (MPR) index. The ground truth was calculated using contours drawn manually 
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on all frames by a single observer, and visually inspected by a second observer. Six groups 

participated and 19 different motion correction algorithms were compared. Each method used one 

of three different motion models: rigid, global affine or local deformation. The similarity metric 

also varied with methods employing either sum-of-squared differences, mutual information or 

cross-correlation. There were no significant differences in Ktrans or MPR compared across 

different motion models or similarity metrics. Compared with the ground truth, only Ktrans for the 

sum of squared differences metric, and for local deformation motion models, had significant bias. 

In conclusion, the open benchmark enabled evaluation of clinical perfusion indices over a wide 

range of methods. In particular, there was no benefit of non-rigid registration techniques over the 

other methods evaluated in this study. The benchmark data and results are available from the 

Cardiac Atlas Project (www.cardiacatlas.org).

Index Terms

myocardial perfusion; magnetic resonance imaging; benchmark studies

I. Introduction

CARDIAC magnetic resonance (CMR) of perfusion is an accurate diagnostic tool for the 

quantification of coronary artery disease, with excellent prognostic value [1]. First-pass 

perfusion MRI measurements typically use a low-weight gadolinium-based contrast agent, 

which is injected intravenously into the bloodstream. The bolus of contrast agent passes 

through the right ventricle of the heart, mixing with blood, and after passing through the 

lungs, arrives in the myocardium via the coronary arteries. These agents have the effect of 

shortening T1 resulting in higher signal intensity on T1-weighted images. Blood flow can be 

quantified in absolute units of ml/g/min using indicator dilution theory [2], [3]. For early 

detection of coronary disease, a pharmacologically induced stress perfusion measurement is 

required to characterize myocardial perfusion defects. This is typically performed by the 

administration of adenosine, regadenoson or dipyramidole to induce vasodilation. The 

myocardial perfusion reserve (MPR), calculated as the ratio of myocardial blood flow at 

stress versus rest, provides prognostic value in the assessment of suspected cardiovascular 

disease [4]–[6].

To maximize the contrast between the tissues with and without contrast agent, pulse 

sequences commonly use magnetization preparation strategies based on either inversion 

recovery or saturation recovery techniques. While inversion recovery based sequences 

provide enhanced contrast-to-noise ratio, saturation recovery based sequences enable faster 

image acquisition [7]. The magnetization preparation is combined with fast imaging 

sequences such as steady-state free precession or gradient-recalled echo sequences, to ensure 

that the first-pass of the contrast agent through the myocardium is captured with sufficient 

temporal resolution. The temporal resolution is often improved further through the use of 

segmented acquisitions and parallel imaging.

CMR of perfusion is often performed during a single breath-hold (typically up to 40 

seconds) to limit movement of the heart within and through the imaging plane. However, 
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patients are often not able to hold their breath for this period of time and involuntary motion 

of the diaphragm often occurs [8], [9]. Long breath-holds can also cause changes in heart 

rate, leading to images being acquired at slightly different cardiac phases [10]. Fig. 1a shows 

examples of motion artifacts caused by breathing.

Motion correction must therefore be performed on the resulting images for accurate and 

robust quantification of myocardial blood flow. Small changes in the heart location can lead 

to the region of interest being contaminated by blood in the left ventricle (LV) cavity, 

resulting in potentially large differences in average myocardial signal intensity. Manually 

contouring large image sets is a tedious and error-prone process, which can lead to large 

inter-observer differences. Image registration methods have therefore been proposed to 

remove this source of error.

Many registration methods assume that the transformation between images is rigid in nature 

[11]–[13]. While rigid transformations (translation and rotation) are computationally more 

efficient, robust to noise and provide better consistency, they are limited when capturing the 

effects of more complex transformations. Motion during these scans is not limited to motion 

within the plane of the image. Through-plane motion is problematic in 2D scans where the 

slice thickness is relatively large and the myocardium is undersampled along the long axis of 

the heart [7]. Three-dimensional sequences are increasingly being investigated to correct 

these issues [14]. Aside from through-plane motion, rigid techniques do not consider 

deformations that can occur in the myocardium throughout the first-pass image acquisition. 

Registration methods that use a global (affine) motions model [15] account for some aspects 

of the more complex deformations. Non-rigid motion models that account for local 

deformations [16]–[18] provide better alignment if there is deformation of the heart during 

breathing, but they are more susceptible to noise and are more computationally intensive.

The performance of a registration technique is not solely dependent on the assumed motion 

model. Other features such as the interpolation algorithm, the strategy for reference frame 

selection, and the similarity metric used can all influence the performance. Many registration 

techniques use similarity metrics based on intensities in the images. Techniques by Bidaut 

and Vallé [11], and Gupta et al. [12] are based on the sum-of-squared differences metric, 

which is well-suited to correcting for rotations [19]. Other groups have employed metrics 

based on normalized mutual information [15], and cross-correlation [12]. Other methods 

move away from the intensity-based approach and use metrics that assess spatial gradients 

[20] or independent component analysis [21]. Further, Cordero-Grande et al. [19] have 

proposed a method using a metric that exploits the variations in the temporal curves.

Despite the wide variety of methods available for motion correction of perfusion CMR, they 

are still limited in clinical acceptance. Widespread adoption of any technique in the clinical 

environment requires thorough validation. Xue et al. [15] did a validation study on two 

registration techniques across a multi-center dataset. They used a combination of qualitative 

and quantitative measures to assess the performance of the methods, but did not evaluate 

clinically relevant parameters on this dataset.
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We present an open benchmark dataset and comparison of a large number of methods, which 

was performed as part of a MICCAI 2014 challenge [22]. The main hypothesis was that the 

use of non-rigid registration techniques on perfusion CMR datasets would yield more 

accurate estimates of blood flow indices than using rigid registration techniques. We 

describe the process of data selection and the calculation of ground truth perfusion 

measures. We then summarize the resulting myocardial blood flow indices generated by the 

challenge participants. The data and evaluation software will remain open to researchers at 

the Cardiac Atlas Project website. This resource is made available to allow researchers to 

compare motion correction methods and evaluate algorithmic improvements in the future.

II. Data and Methods

A. CMR data

Mid-ventricular short-axis first-pass contrast-enhanced CMR slices were selected from nine 

anonymized patients at both rest and adenosine induced stress conditions (50 frames). Seven 

cases were diagnosed as normal, one case had an anteroseptal infarction, and one an inferior 

infarction. All cases were affected to varying degrees by breathing motion. Some cases were 

included because they displayed significant motion indicative of problematic cases often 

found in practice. In the stress study of one case, a dark rim artifact along the endocardium 

was observed. Informed consent from the patients was obtained in accordance with the 

appropriate institutional review boards.

The image data were acquired at two different centers using different protocols and 

scanners. Four cases were acquired at the University of Auckland Centre for Advanced MRI, 

New Zealand, using a Siemens Avanto 1.5T scanner with a Cartesian saturation-recovery 

gradient-echo sequence. Readout time per slice was 203 ms, echo time 1.08 ms, saturation 

recovery time 110 ms, flip angle 12 degrees, using 85 phase encoding steps, iPAT factor 2. 

The acquisitions at rest were performed with a 4 cc/s bolus of 0.04 mmol/kg Omniscan 

(gadodiamide), followed by infusion of 140 µg/kg/min adenosine and another 4 cc/s bolus of 

0.04 mmol/kg Omniscan for the stress acquisition. Imaging was done over approximately 70 

heartbeats with the patient instructed to hold their breath for as long as possible. Five cases 

were acquired at the Utah Center for Advanced Imaging Research, Utah, USA, using a 

Siemens Verio 3T MRI scanner with a radial saturation-recovery gradient-echo sequence. 

Readout time per slice was 187 ms, echo time 1.1 ms, saturation recovery time ~100 ms, flip 

angle 14 degrees, using 72 rays. The acquisitions at rest were performed with a 5 cc/s 

injections of 0.02 mmol/kg Multihance (Gd-BOPTA). This was followed by an infusion of 

140 µg/kg/min adenosine to induce vasodilation, after which a bolus of 5 cc/s Multihance at 

0.03 mmol/kg was injected for the stress acquisition. Imaging was done over approximately 

70 heartbeats with the patient instructed to breathe shallowly.

B. Reference Region of Interest

For each case, a single frame with high contrast between the myocardium and surrounding 

tissues was selected manually. The reference region of interest comprising left ventricular 

myocardium was manually drawn and verified by experts from both Utah and Auckland (see 

overlaid masks in Fig. 1b). Each reference region of interest was required to completely 
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enclose the myocardium on the high-contrast image, avoid contamination from pixels in the 

blood pool, and have a thickness of at least 2 pixels at any given point. This frame and 

contours delineating the reference region of interest were provided to all challenge 

participants. The reference region of interest was used together with the motion corrected 

images from all other frames to calculate the pixel intensities at each time point, and thereby 

quantify myocardial blood flow as described in Section II.E.

C. Ground Truth

For the ground truth creation, a manually-based motion correction method was developed. A 

single observer manually segmented all frames using ImageJ (ver. 1.48, NIH). Papillary 

muscles were excluded from the segmented region. In all cases, the reference mask was used 

as a starting point, which was edited to cover the myocardium on all frames. All image 

masks were visually inspected for accuracy by a second independent observer.

The perfusion quantification algorithm required images to be registered, so that the pixel 

locations in each image correspond to the pixel location in the reference frame for each 

myocardial segment. To provide a ground truth myocardial perfusion estimate, registration 

was performed on the segmented binary images obtained from the manually drawn contours. 

First, a translation was performed to eliminate the largest motion caused by breathing. The 

center of the LV was calculated from the mask and aligned to the reference frame. The first 

level used nine bicubic Bezier elements, while the finer level used 25 elements.

The resulting transformations derived from this registration were then used to map the 

corresponding gray scale perfusion images to a common reference frame.

Since the ground-truth registration was performed on binary images from the manual 

segmentations, no pixels from outside the myocardium contaminated the result. Spurious 

misregistered boundary pixels on the blood cavity are known to cause signal intensity errors 

[24]. This is expected to give minimal bias since very different results are obtained from 

registrations without segmentations.

D. Participating algorithms

Six groups participated in this study with each using diverse motion correction approaches. 

There was no limitation on what types of approaches to apply. We characterised the 

participating motion correction algorithms based on their motion model and the choice of 

similarity metric (Table I). Five algorithms applied rigid transformation, which only 

consisted of image shifting (translation) and/or rotation. Two algorithms added global affine 

deformation, which included scaling, shear and stretching. Twelve other algorithms applied 

different local deformation techniques including B-splines, Bezier curve fitting, elastic 

matching, or diffeomorphic manifold registration. Two algorithms applied the normalised 

cross-correlation technique, two methods used mutual information and 15 methods used 

sum-of-squared differences. These methods are summarized in Table I, with the descriptions 

of each of the methods in the following sections.

1) M1-M2: Deformable and rigid model-based image registration—In these two 

methods [25], knowledge about myocardial perfusion was directly applied to create 
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reference images for each time frame, so that rather than having to register all frames to a 

single reference image, registration could be performed to a reference image specific to each 

time frame. After pre-processing the images by coarse rigid registration (shifting images 

between frames with a cross-correlation method), model images were generated by fitting 

the data to a compartment model [13]. The idea was that the model images reflect contrast 

changes without motion and these model images can be used as the reference images at each 

time frame.

A compartment model was described as follows:

(1)

where Cpix(t) represented a curve of signal intensity differences and Cinput (t) was the 

arterial input function from the right ventricle (RV) blood pool. The Ktrans and kep were the 

rate constants representing the exchange of contrast agent between plasma and extra cellular 

space, respectively. The data at each pixel were fitted to (1) using minimization of the chi-

squared error with the recorded signal difference curves. The fitted curves were then used to 

generate the model images.

After model images were generated, two different registration types were performed: 

diffeomorphic registration with normalized cross-correlation (M1) and rigid registration with 

mutual information (M2). Both methods were implemented using the Advanced 

Normalization Tools (ANTS) package [13], [31].

2) M3-M15: Linear and non-linear 2D + T motion compensation algorithms—
For this family of methods, various related motion compensation schemes [26] were applied 

to the cardiac MR perfusion images. These schemes were based on 1) independent 

component analysis (ICA scheme) to segment the area of interest around myocardium, 

identify motion and eliminate it, 2) quasi-periodicity (QUASI-P scheme) of free breathing to 

identify key frames that are closely aligned, 3) temporal succession registration (SERIAL 

scheme), 4) global registration to a single image (AllToOne scheme) using a localized 

normalized cross correlation cost function, and 5) pseudo ground truth (PG scheme) where 

synthetic reference images are used to compensate motion. Three different linear 

transformation spaces were also investigated: translational (rigid), affine (global affine) and 

translation + rotation (rigid). Additionally, a non-linear transformation was also investigated 

based on B-splines.

This set of algorithms produced 13 different combinations of motion correction methods:

• AllToOne scheme (M3)

• ICA schemes:

– Using affine transformation (M4)

– Using translational transformation (M11)

– Using rigid transformation (M7)
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– Using B-splines transformation (M10)

– Using affine + B-splines transformations (M6)

– Using rigid transformation with B-splines (M9)

– Using translational transformation with B-splines (M13)

• QUASI-P scheme (M14)

• SERIAL scheme (M15)

• Pseudo ground truth (PG) schemes:

– Pre-linear registration using ICA and affine transformation (M5)

– Pre-linear registration using ICA and rigid transformation (M8)

– Pre-linear registration using ICA and translational transformation 

(M12)

Complete descriptions of each scheme, transformation and cost function are detailed in [26], 

and the software implementation used for the challenge is available as free software [32].

3) M16: Phase-based registration for automatic perfusion analysis—This 

approach calculated the motion field using local phase, which represents image features such 

as edges and lines but is invariant to their magnitude. The local phase was calculated by 

using the intensity-invariant algorithm based on the Fourier Shift Theorem [16]. Spatial 

differences were then determined by estimating the voxel-wise difference in the local phase 

between two images.

For this motion correction study, a pipeline was constructed consisting of three processing 

steps: 1) pre-processing to remove outliers and to detect the location of the left ventricle 

automatically, 2) in-plane motion correction based on local phase, and 3) myocardial 

segmentation based on the object-base image analysis segmentation approach proposed in 

[33]. Motion was corrected by maximum intensity projection on the temporal perfusion 

series with the mutual information criteria. The result was a local deformation correction 

algorithm, (see details in [27]).

4) M17: Non-linear consecutive finite element model warping—This algorithm 

was based on a finite element model (FEM) formulation where 2D grid lattice was deformed 

to match image features following the movement of wall motion [23]. To avoid problems in 

strong intensity contrast changes during the uptake and washout of the contrast agent, the 

warping method was applied consecutively between successive image frames, starting from 

the reference frame. First, a coarse rigid registration was performed to remove the most 

severe breathing artifacts by using Canny edge detector and sum-of-squared difference 

function. A regular 2D lattice grid was then constructed by using bi-cubic Bezier basis 

function for the FEM. The grid deformation was performed by a non-rigid transformation by 

minimizing the sum-of-squared pixel intensity differences:
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(2)

where  denotes a registration of image It to I0 at pixel p after a 

deformation function u. The coefficient w defines an image to locally control weighting in 

the image. Sobolev regularization was used to control the smoothness of the resulting 

deformation [28].

5) M18: B-Spline Symmetric Normalization (SyN)—This method used Symmetric 

Normalization (SyN), a registration method based on explicit symmetrisation of Large 

Deformation Diffeomorphic Metric Mapping (LDDMM) [34], which computes the geodesic 

solution between image pairs in the space of diffeomorphisms. A variation of SyN, which 

uses B-splines as smoothing kernel, was introduced in [29]. In this study, B-Splines SyN 

was applied for cardiac motion correction with a small adjustment in which registrations 

were made between successive image frames, starting from the reference frame. To improve 

the correction results, preprocessing steps were performed to the input images that included 

bias correction to minimize low frequency intensity variation artifacts, noise reduction 

filtering and a Laplacian-based edge-detection algorithm. The framework was made 

available through the Advanced Normalization Toolkit (ANTS) as described in [31], [35]. 

Since LDDMM is a deformable registration technique, this approach was a non-rigid 

correction method.

6) M19: Joint multi-level image registration and intensity correction algorithm
—This method used a non-rigid joint motion and intensity correction algorithm, introduced 

in [36]. This algorithm integrates changes in intensity to compensate motion artifacts. Let 

I,I0 ∈ ℝd be a template and reference image, respectively. The motion correction algorithm 

can be summarized as a minimization approach to the following objective function:

(3)

where D : ℝd × ℝd → RRR is the sum-of-square distance function to measure dissimilarity 

between two images, T: ℝ → ℝd is an image transformation function, S: ℝd → ℝ and Q: 

ℝ → ℝ are both regularization operators on the transformed image with weight α and on 

parameter w with weight β, respectively. Elastic regularization [37] was used for S, while 

the total variation [38] penalty function was applied for Q. The key ingredient of this 

algorithm was to embed an intensity correction image w ∈ ℝd as a parameter in the 

minimization algorithm. Equation (3) was then solved using a Gauss-Newton approach in 

different levels of displacement grids. For each pair of images, this approach yielded not 

only a non-rigid displacement field, but also an intensity correction image simultaneously 

[30].
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E. Evaluation Metrics

Although many evaluation metrics are possible, this study focused on clinical absolute 

measures of perfusion (ml/g/min), which have been shown to be more robust than relative or 

surrogate indices such as time-to-peak or up-slope gradient [39]. Since the calculation of 

perfusion only requires motion corrected images, many methods do not calculate contours 

on the images. Thus, contour-based distance metrics traditionally used to evaluate 

segmentation error, such as the Dice metric and Hausdorff distance, cannot be used in this 

application.

Perfusion measures were extracted using a two-compartment model, as described in [13]. 

The reference contour region of interest was applied to the registered dataset to create tissue 

intensity curves for six equiangular myocardial regions. The regions were defined using the 

centroid of the contours as the center of the left ventricle short-axis slice. Regions were 

assigned numbers in an anti-clockwise fashion with the boundary of the first region located 

at the manually-marked anterior insertion of the right ventricle (Fig. 2).

An arterial input function (AIF) was required for the perfusion model to indicate the 

characteristics of the contrast agent bolus entering the tissues. Voxels located within the 

endocardial contour with signal intensity between 85–95% of the maximum were averaged 

to determine the AIF [40]. The use of a large contrast bolus, as was used in this study, 

resulted in saturation effects that cause the peak intensities of the AIF to be underestimated. 

Saturation correction was applied to the AIF in all cases prior to calculation of perfusion 

measures. The non-saturated AIFs were determined from the measured AIF using previously 

described techniques [40], [41].

In addition to the saturation correction, the tissue intensity curves and AIFs were corrected 

to more accurately represent the changes in gadolinium concentration in the tissues (see Fig. 

2). The frames prior to contrast agent uptake were averaged to estimate the pre-contrast 

signal. The number of frames used to determine pre-contrast signal depended on whether the 

study was performed at stress or rest, owing to differences in the rate of contrast agent 

uptake The resulting signal difference curves were fit to the extended Kety-Tofts model 

(Equation (1)) and the Ktrans parameter reported as the perfusion index (in units of ml/g/

min). MPR was calculated as the ratio of Ktrans at stress to rest.

In addition to the Ktrans parameter, we also sought to evaluate a metric that does not rely on 

the pharmacokinetics of perfusion quantification. Therefore we computed the RMSE of 

tissue intensity curves between the manual and automated analysis from all regions of 

myocardium. Since some methods could shift the curves temporally, the metric was 

performed after matching two time intensity curves using the Dynamic Time Warping 

method [42], which is denoted by intensity curve dissimilarity in this paper.

F. Statistical analysis

In this study, we are interested to know if there are differences between motion correction 

algorithms based on their motion model and the similarity metric used to match two images. 

We performed the non-parametric Kruskal-Wallis tests for differences due to motion model 

or similarity metric.
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To compare perfusion values (Ktrans and MPR) with the ground truth estimates, we 

performed non-parametric Wilcoxon signed-rank tests between each method and the ground 

truth. Mauchly’s sphericity test was applied to assess the dispersion of Ktrans biases between 

rest and stress studies. The correlations of the Ktrans values for each method with the ground 

truth were assessed using Pearson’s correlation coefficient. We computed the root mean 

squared errors (RMSE) of Ktrans values to assess each method’s biases. All the statistical 

analyses were calculated by using R [43], accompanied with the Companion to Applied 

Regression (CAR) package [44], the multicomp package for multiple comparison test [45] 

and the Dynamic Time Warping package [46].

III. Results

The average of Ktrans, MPR, curve dissimilarity and the biases from ground truth, grouped 

based on motion models and similarity metrics, are shown in Table II. We found no 

significant differences comparing Ktrans values at rest and stress, and MPR values among 

different motion models, or among different similarity measures. However, there were 

significant differences in Ktrans biases for local deformation (p<0.05) and for sum-of-

squared differences metric (p<0.05) in both rest and stress. For intensity curve dissimilarity, 

there were no significant differences. Individual performance of all methods in determining 

Ktrans per region is shown in Fig. 3 in terms of biases, while the distributions are shown in 

Fig. 4. The Ktrans biases for each method differed significantly with the general trend being 

that the methods faced more difficulty in correcting motion artifacts at stress than at rest. 

Mauchly’s test showed a violation of sphericity against contrasts spanned by studies (rest 

and stress) and the methods (W=9.1e-67, p<0.001). This means that there was a highly 

significant difference in the dispersion of regional Ktrans biases between rest and stress. 

Regionally, there were no significant differences between motion model methods, except in 

the inferolateral region (p<0.05) for stress studies. For regional comparison between 

similarity metrics, we found no significant differences for either rest or stress studies.

Individual correlations of Ktrans determined using each method with the ground truth were 

all high at rest (R>0.8, all p<0.001). However, half of the methods (52.6%) did not show the 

same high correlation coefficients of Ktrans values in the stress study (Fig. 5a). The 

differences observed between rest and stress affected the correlation coefficients of the MPR 

values, which range from 0.38 to 0.93, with an average of R=0.72 ± 0.14. All methods had 

lower RMSE values when correcting motion during rest as compared with stress. As shown 

in Fig. 5b, the range of RMSE values during rest was 0.29–0.54, while at stress the range 

increased to 0.99–2.23.

IV. DISCUSSION

Each of the cases showed some motion throughout the frames captured during the CMR 

acquisition. This motion was particularly problematic when the heart was under adenosine-

induced stress, where the ability of the patient to breathe shallowly or to maintain a breath-

hold for the duration of the first pass of contrast agent was most compromised. Image 

registration methods are used to correct for the misregistration resulting from motion 

between images acquired at different time points. Motion-corrected datasets can 
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subsequently be used for the automated quantification of myocardial perfusion measures, 

such as Ktrans and MPR. The registration methods used in this study should correct for the 

motion that is observed during a perfusion CMR acquisition. However, they act on a single 

slice and do not account for motion through the plane of the image, where portions of the 

heart outside of the slice move into the imaging slice or vice versa. Such motion will likely 

lead to errors in the estimated perfusion since the tissue imaged is different across time.

The small regions of interest in the myocardium, coupled with the fact that neighboring 

blood or lung tissues have very different properties, means that any small errors in 

registration could result in contamination of the signal intensity curve. Contamination with 

lung tissue will cause the measured signal to be hypointense, resulting in the perfusion and 

Ktrans being underestimated. Similarly, contamination of the region of interest by 

hyperintense pixels in the blood pool will likely result in overestimation of tissue perfusion 

in the myocardium.

The accurate representation of the frame where the tracer first enters the myocardium is 

particularly important in quantifying Ktrans [47]. In these early frames immediately 

following the bolus injection, accurate registration is challenging since there is little or no 

contrast agent in the myocardial tissue. The low signal in the myocardium makes it difficult 

to distinguish from neighboring regions such as the lungs and the unenhanced ventricular 

blood. This effect is most likely to be seen in the free wall of the LV, resulting in difficulties 

for algorithms to effectively track the wall motion. When the heart is under stress and the 

heart rate is increased, the patient will likely have a compromised ability to control their 

breathing throughout the duration of the scan, further exacerbating the problems with motion 

correction.

The results show that the RMSE for the cases at stress were consistently higher than 

equivalent cases at rest (Fig. 5b). The variance of biases seen in stress was much larger than 

at rest (p<0.001). At stress, almost all methods had difficulty in correcting motion in the 

inferoseptal, inferior and anterolateral regions as compared to the other regions (Fig. 4). This 

effect is most evident in regions of the myocardium where the image features that are 

exploited to register motion, such as high-contrast tissue boundaries, are not present.

A. Is non-rigid registration helpful?

Registration is likely to perform best when correcting for small changes in shape and 

location. Other studies have indicated that non-rigid techniques that exploit local 

deformations may provide more accurate quantification than other methods [7]. We did not 

find significant differences between motion models; however this result may be affected by 

confounding factors including sequential and reference based registration, the influence of 

interpolation and the registration metric used. We also found that local deformation methods 

produced small but significant biases with respect to the ground truth. There was large 

variation of the Ktrans biases within the non-rigid methods, particularly for stress studies. As 

shown in Fig. 3, the methods using rigid registration and global affine techniques performed 

consistently better than those using local deformation in the rest cases. In the stress cases 

however, the distributions of the Ktrans biases seen with some of the rigid methods were 

wider than some of the local deformation methods. The variable performance of these rigid 
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techniques suggests that there was substantial motion in some of the stress cases. The 

methods that maintained high Ktrans correlation coefficients for both rest and stress cases 

were M1–4, M7, M11, M16, M17, M19 (see Fig. 5a).

When used clinically, the purpose of perfusion CMR is to establish deficits in perfusion 

when the heart is under stress as compared to rest. The MPR is the index used for assessing 

this deficit. The MPR is the ratio of the perfusion at stress to the perfusion seen at rest over 

the myocardium. We found that there was no significant difference between all registration 

methods. The smallest MPR biases were shown by methods applying local deformation 

methods. Ultimately, the clinical application of any of the techniques investigated in this 

study will require independent validation. Animal models [48] and comparisons with 

invasive techniques [49] have been used for validation of MR-based cardiac perfusion 

techniques previously. Alternatively, the use of simulated benchmarks and phantoms would 

be very useful for validation [50]

B. Metrics used for image registrations

We investigated the differences of motion correction algorithms using different minimisation 

criteria to match two images. Three approaches were used: cross-correlation (2 methods), 

mutual information (2 methods) and sum-of-squared differences (15 methods). Although 

sum-of-squared differences is the most popular choice, methods using sum-of-squared 

differences produced significant biases, while cross-correlation and mutual information 

methods did not show any significant differences with the ground truth. Ktrans values 

estimated using sum-of-squared differences were significantly lower in stress studies 

compared to cross-correlation and mutual information. Although the methods using sum-of-

squared differences show a significant bias as compared to ground truth, these methods 

differ in the motion model used. The local deformation model used in many of these 

methods also shows a significant bias. Future work should include experiments designed to 

specifically isolate these effects.

C. The influence of reference images and interpolation

In addition to the motion model and the similarity metric used, there are number of factors 

which could be investigated in the future using an open benchmark. While such analyses are 

beyond the scope of the current paper, we note that methods could be further characterized 

according other aspects of the registration method, such as the interpolation strategy, and the 

treatment of the reference frame.

The methods evaluated in this study used different strategies for interpolation. The majority 

of the locally deformed models used splines to interpolate the data following registration. 

Other methods used techniques such as Bezier curves (M17). The choice of interpolation 

strategy would influence the overall accuracy of the registration, especially at the high-

contrast interfaces around the myocardium. Partial volume effects may result in blurring at 

these interfaces, with the nature of the blurring depending on the interpolation.

For the ground truth data, the reference frame was determined manually based on a frame 

with high contrast between myocardium and the surrounding tissue. Most of the methods 

registered all other frames to this specific reference frame. However, there were two other 
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approaches used by some methods: 1) using the pre-defined reference mask to register the 

adjacent frame and sequentially shifting the reference mask to register subsequent frames 

(M17, M18), and 2) using knowledge about the myocardial perfusion to create synthetic, 

knowledge-based reference images (M1, M2).

Using a sequentially adapted reference mask avoids sudden pixel intensity changes around 

the myocardial border when the contrast enters the left ventricle. This strategy may be 

particularly useful for registration of a deforming object, but there were no significant 

differences in both Ktrans and MPR calculations between reference-based and sequential 

image registration (M17, M18). Also, no significant differences were found with knowledge-

based reference image registration methods (M1, M2). The idea of generating reference 

images specific to each time frame using a compartment model is promising and could avoid 

the accumulated errors that are possible when using a sequential reference.

D. Regional Ktrans estimations

In Table II, non-rigid and rigid methods do not show significant differences to estimate 

global Ktrans values, except that non-rigid slightly underestimated Ktrans values at rest. No 

significant differences were found if we compared the Ktrans bias. However, regional 

distribution of Ktrans biases show slight variations between rigid and non-rigid methods as 

depicted by Fig. 4. Ktrans bias median values of inferolateral and anterolateral regions at 

stress for non-rigid methods are smaller than rigid methods. Statistically, there is only one 

region (inferolateral at stress) with significant difference (p<0.05) of Ktrans bias distribution 

between rigid and non-rigid methods. In the inferoseptal region, the variance of Ktrans errors 

of non-rigid methods is smaller than rigid methods. This indicates that non-rigid methods 

can be helpful to reduce the Ktrans errors under stress condition in some regions.

E. Limitations

The number of cases was limited, with seven healthy subjects and two patients, acquired 

with two different imaging protocols. Although this was designed to test a variety of 

methods against a mixture of image acquisitions, more cases would be needed to evaluate 

benefits of different image acquisition protocols or the ability to identify disease. Each 

image was acquired at approximately the same time point in the cardiac cycle, and thus the 

motion artifacts seen in the data were only those resulting from breathing motion, which 

may be more severe in patients. Also, to some extent, the presence of coronary artery disease 

may affect the behavior of a motion correction algorithm due to regional myocardial 

perfusion defects. The effect of perfusion defects requires further study by expanding the 

benchmark data set to include additional diseased cases.

The compartment model is only one measure of perfusion, and a variety of quantification 

methods are possible [51]–[53]. It is possible that the conclusions could be different with 

different pharmacokinetic models. Further, the cases used in the study only contained a 

single, mid-ventricular slice. To fully assess the clinical relevance of any differences 

between the types of motion correction algorithms, basal and apical slices would need to be 

included in the analysis. Finally, ground truth from several independent observers would 

enable quantification of variation in the ground truth.
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V. Conclusions

Motion correction is an important pre-processing step before accurate and robust 

quantification of myocardial perfusion analysis. The aim of this work was to provide a 

multi-center benchmark dataset of cardiac MR perfusion images for testing motion 

correction algorithms, and compare a large number of algorithms. This study shows that 

there was no benefit to apply local deformation to reduce bias among the methods 

compared, although some local deformation methods may improve precision at stress. 

However, all methods were able to quantify the myocardial perfusion reserve values 

comparable to the ground truth estimates, regardless the registration approaches or the 

metrics to minimise the registration process. In the future, this work can be extended into 

other strategies for motion correction, the inclusion of more patient data suffering perfusion 

defects, and a benchmarking tool to assess myocardial perfusion diagnosis, which is 

important to translate automated methods into clinical settings. This resource provides a 

valuable framework for evaluating these additional methods in the future.
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Fig. 1. 
Two sequences of cardiac MR perfusion images: (a) unregistered sequence before motion 

correction and (b) ground truth registered sequence after manually-based motion correction. 

Reference masks are shown as an overlay (top: unregistered, bottom: registered). After the 

17th frame, motion artifacts caused by breathing start to appear, resulting in contamination 

of the signal for determination of Ktrans.
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Fig. 2. 
Figure (a) shows myocardial blood flow perfusion divided into six regions: 1) anteroseptal, 

2) inferoseptal, 3) inferior, 4) inferolateral, 5) anterolateral and 6) anterior. Figure (b) shows 

the arterial input function and (c) shows the tissue intensity curves from each region.
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Fig. 3. 
Ktrans bias distributions from each myocardial region, shown by mean (squared box) and its 

standard deviation. Each method shows two distributions for rest (blue) and stress (red). 

Methods are grouped by rigid (R), global affine (G) and local deformation (L) registration 

types. The group definitions are listed in Table I.
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Fig. 4. 
Top: The Ktrans bias difference distributions (shown by Whisker’s boxplot) between rigid 

(R), global affine (G) and local deformation (L) registration algorithms. Bottom: The Ktrans 

bias difference distributions between cross-correlation (CC), mutual information (MI) and 

sum-of-squared distance (SSD) registration metrics as minimisation criteria. Each figure was 

grouped by region and rest/stress. The thick horizontal lines inside each box indicate the 

median values; the boxplot height ranges from the first and third quartiles; and the hinges 

indicate interquartile ranges.
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Fig. 5. 
Comparisons of correlation coefficient (a) and RMSE values (b) between rest and stress 

studies for each method.
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Table I

List of all methods with a short description

ID Algorithm name Registration Type Similarity Metric Description

M1 Deformable model-based fit Local deformation Cross-Correlation An iterative model-based registration 
method based on a compartment model 
[25]M2 Rigid model-based fit Rigid Mutual Information

M3 AllToOne scheme Local deformation Sum-of-squared difference

A package of linear and non-linear 2D + 
T motion compensation algorithms with 
different schemes [26]:

• ICA = Independent 
Component Analysis,

• PG = pseudo ground truth,

• QUASI-P = quasi-
periodicity,

• SERIAL = temporal 
succession,

• AllToOne = global one 
image registration

M4 ICA scheme + affine Global affine Sum-of-squared difference

M5 PG scheme + affine Global affine Sum-of-squared difference

M6 ICA scheme + affine + B-splines Local deformation Sum-of-squared difference

M7 ICA scheme + rotation Rigid Sum-of-squared difference

M8 PG scheme + rotation Rigid Sum-of-squared difference

M9 ICA scheme + rotation + B-splines Local deformation Sum-of-squared difference

M10 ICA scheme + B-splines Local deformation Sum-of-squared difference

M11 ICA scheme + translation Rigid Sum-of-squared difference

M12 PG scheme + translation Rigid Sum-of-squared difference

M13 ICA scheme + translation + B-
splines Local deformation Sum-of-squared difference

M14 QUASI-P scheme Local deformation Sum-of-squared difference

M15 SERIAL scheme Local deformation Sum-of-squared difference

M16 Local phase registration Local deformation Mutual Information Motion correction based on local phase 
features combined with object-based 
myocardial segmentation [27]

M17 Finite element warping Local deformation Sum-of-squared difference Image registration based on 2D lattice 
finite element grid deformation [28]

M18 B-Spline Symmetric Normalization Local deformation Cross-Correlation Explicit regularization of symmetric 
image registration algorithm using B-
splines approximation [29]

M19 Multi-level motion correction Local deformation Sum-of-squared difference A joint motion and intensity correction 
algorithm based on multi-level Gauss-
Newton minimization approach [30]
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