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Abstract

Dual spectral computed tomography (DSCT) has a superior material distinguishability than the 

conventional single spectral computed tomography (SSCT). However, the decomposition process 

is an illposed problem, which is sensitive to noise. Thus, the decomposed image quality is 

degraded, and the corresponding signal-to-noise ratio (SNR) is much lower than that of directly 

reconstructed image of SSCT. In this work, we establish a locally linear relationship between the 

decomposed results of DSCT and SSCT. Based on this constraint, we propose an optimization 

model for DSCT and develop an iterative method with image guided filtering. To further improve 

the image quality, we employ a preprocessing method based on the relative total variation (RTV) 

regularization. Both numerical simulations and real experiments are performed, and the results 

confirm the effectiveness of our proposed approach.
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1. Introduction

In X-ray dual spectral computed tomography (DSCT), also known as dual energy computed 

tomography (DECT), a specimen is scanned with two different X-ray energy spectra. The 

collected polychromatic projections from this procedure are utilized to perform energy- and 

material-selective reconstructions (Alvarez and Macovski, 1976, Alvarez and Seppi, 1979, 

Kalender et al., 1986, Vetter et al., 1986, Kalender et al., 1988, Chuang and Huang, 1988). 

Compared with the conventional single spectral computed tomography (SSCT), DSCT has a 

superior material distinguishability. Therefore, it has wide potential applications in both 

medical and industrial fields, such as bone mineral density and liver iron concentrations 

measurements, beam-hardening correction and contrast enhancement of soft tissue, positron 
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emission tomography (PET) attenuation correction, calculation of pseudo-monochromatic 

images, and so forth (Coleman and Sinclair, 1985, Fessler et al., 2002, Zhang et al., 2006, 

Kinahan et al., 2006, Ying et al., 2006, Zhang et al., 2008, Noh et al., 2009, Johnson et al., 

2011).

The existing methods to perform decomposition of DSCT can be classified into three 

groups: image based methods, projection based methods, and iterative methods. Image based 

methods treat the projection data sets of different spectra as being independent until the 

images are reconstructed. Then, images from both spectra are linearly combined to obtain 

two decomposed images (Maaβ et al., 2009a). Some filter-based modifications are proposed 

by employing the conventional low-pass filter (Rutherford et al., 1976, Johns and Yaffe, 

1985), structural filter or statistical prior based filter (Kalender et al., 1988, Warp and 

Dobbins, 2003, Zeng et al., 2016b). These upgraded methods can somewhat further suppress 

the noise. However, the improvement of decomposition accuracy is still limited. Because 

such methods fail to describe the real nonlinearity relationship between the decomposed 

results and polychromatic projections, the decomposition results will suffer from artifacts 

(Brooks and Di Chiro, Coleman and Sinclair, 1985). Projection based methods treat the 

available information by passing the projection data through a high order decomposition 

function, followed by image reconstruction (Flohr et al., 2006, Stenner et al., 2007). 

Generally speaking, they can obtain better decomposition results than image based ones. 

However, the combination of polychromatic projections requires satisfying a geometrical 

consistency. Several iterative methods are proposed based on statistical models and 

nonlinear optimizations (Elbakri and Fessler, 2002, Xu et al., 2009, Maaβ et al., 2009b, Niu 

et al., 2014, Zeng et al., 2016b, Zhang et al., 2017, Zhang et al., 2014). By introducing prior 

knowledge or establishing an approximate model, these methods improve the decomposed 

image quality effectively. However, their convergence rates are slow and their computational 

costs are high. Recently, an extended algebraic reconstruction technique (E-ART) for DSCT 

was proposed by Zhao et al. (Zhao et al., 2015). It models the DSCT reconstruction as a 

nonlinear system and extends the classic ART method to solve the model iteratively. While it 

can produce high quality decompositions, the computational costs are high, too. In 2016, Hu 

et al. extended the E-ART method into an simultaneous version, i.e. E-SART (Hu et al., 

2016). This method is based on the matrix inversion and has a high degree of parallelism. 

Thus, the convergence speed of its parallel implementation is improved dramatically. 

However, the illposedness of the decomposition process renders it noticeably sensitive to 

noise, resulting in reduced signal-to-noise ratio (SNR).

Although the SSCT has weaker capability for material distinguishing, the achieved SNR is 

dramatically higher than that of DSCT. Moreover, there is an interesting relationship, i.e., 

the decomposed results of DSCT can be viewed as modifications of reconstructed images of 

SSCT by removing some components and adjusting gray values. Furthermore, this structure-

based feature can be mathematically described as a locally linear relationship. By 

incorporating this constraint into an optimization model, the reconstructed image of SSCT 

could work as a reference to effectively improve the smoothness of DSCT decomposed 

results. Motivated by the aforementioned facts, we will develop an iterative method to 

improve the image quality of material decomposition, and the image guided filtering 

technique (He et al., 2010, He et al., 2013) will also be utilized.
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When using the locally linear relationship, the SSCT images are employed as guidance to 

introduce both structural knowledge and smoothness constraint. This means their image 

quality plays a crucial role, i.e., any merit and fault will affect the final results of DSCT. 

Thus, we develop an additional preprocessing step to further improve the image quality of 

SSCT. The purpose of this preprocessing step lies in two aspects: well keeping all the 

structures and suppressing the noise. In the field of digital image processing, many methods 

can be used to achieve this goal, such as regularization based methods (Tikhonov et al., 

1977, Rudin and Osher, 1994, Rudin et al., 1992), transform domain filtering methods 

(Ghael et al., 1997, Mallat, 1999), statistical methods (Deledalle et al., 2009, Besag, 1986), 

local filtering methods (Buades et al., 2005, Goossens et al., 2008), and so forth. However, 

in our problem, there are some specific characteristics: strong edges (between different 

materials) and weak edges (between similar materials) exist simultaneously. Particularly, the 

weak edges may have the same amplitude with noise. Thus, many methods fail to keep these 

fine structures. By analyzing the features of weak edges, we find they can be well described 

by a locally statistical property, i.e., windowed inherent variation. The relative total variation 

(RTV) for extracting structure from texture (Xu et al., 2012) is extended for weak edge 

detection in this paper. Thus, by using the preprocessed SSCT image as a good reference, 

the SNR of decomposed results is further increased.

The remainder of this paper is organized as follows. In section 2, the mathematical model of 

DSCT is presented, and the E-SART method, image guided filtering technique and RTV 

regularization are briefly reviewed. In section 3, we present the locally linear constraint 

based optimization model for DSCT and develop an iterative method with image guided 

filtering. We also present a RTV based preprocessing method for SSCT. In section 4, both 

numerical simulations and real experiments are performed to verify the effectiveness of the 

proposed methods. In last section, we discuss some related issues and conclude this paper.

2. Theory

In this section, we first present the mathematical models of SSCT and DSCT. Then, we 

briefly review the E-SART method, image guided filtering and RTV as preliminaries for 

next section.

2.1. Mathematical model

In the conventional SSCT, by considering the facts that X-ray spectrum is polychromatic and 

scattering is negligible, we describe the physical process as follow,

(1)

where μ(E, x) is the linear attenuation coefficient of a specimen at a spatial position x and 

energy E, ℘(·) represents the ray transform which is a linear operator, S(E) is the normalized 

emission spectrum, and P represents the acquired information frequently named projection 

data. Based on the model (1), images can be directly reconstructed,
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where f represents a reconstructed image, and ℘−1(·) is the inverse operator of ℘(·), i.e., ℘−1 

∘ ℘ = ℐ, where ℐ stands for the identity transform. It is obvious that f is an approximation 

of μ(E, x) when X-ray obeys a polychromatic distribution, and the case of equivalence 

occurs only under an ideal condition that X-ray is monochromatic. Thus, the SSCT usually 

suffers from a weak capability of distinguishing specific materials and beam-hardening 

artifacts.

In DSCT, two projection data sets are acquired under different X-ray spectra. Assuming that 

the collected raw data sets are geometrically consistent, we modify (1) into a DSCT version,

(2)

where k is the index of spectrum, and l ∈ ℒ represents an X-ray path. For DSCT, μ(E, x) is 

usually considered splittable with respect to variables E and x,

(3)

where ψi(E) is a function of energy and gi(x) is a function of position. There are two 

commonly physical explanations for (3): basis material based decomposition and effect 

based decomposition. For the former, ψi(E) is the mass attenuation coefficient for material i, 
and gi(x) is the correlative density distribution. For the latter, ψ1(E) = E−3 and ψ2(E) = 

KN(E) (Klein-Nishina function) correspond to the photoelectric effect and Compton 

scattering, respectively, and gi(x) represents the correlative effect distribution. The aim of 

DSCT is to reconstruct images of distribution functions gi(x), i = 1, 2, for specific materials 

or effects. Thus, it can reveal superior distinguishability and enhanced contrast.

2.2. E-SART method

By substituting (3) into (2) and discretizing the correlative result, we get

(4)

where Jk is the energy bin number of spectrum k, ΔE represents the bin length, Sk,j and ψi,j 

are the samplings of Sk(E) and ψi(E) within bin j, and gi is a one dimensional column vector 

representing the discretized distribution function. The 1st order Taylor expansion of (4) at 

point (g1(n); g2(n)) is
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(5)

where n indicates the current iteration step and

By solving the system of linear equation (5), for k=1,2, we can get the projection of 

distribution function in an iteration form,

where

By using the conventional Simultaneous Algebraic Reconstruction Technique (SART), 

distribution function g1 and g2 are updated iteratively.

Comparing with the E-ART, the parallel implementation of E-SART improves the 

convergence speed dramatically. However, the illposedness of the inverse problem renders 

this matrix inversion based decomposition process sensitive to inevitable systematic noise. 

Thus, some prior knowledge or constraints are needed to improve the robustness against 

noise.

2.3. Image guided filtering

Guided filter (He et al., 2010, He et al., 2013) is edge-preserving with a great variety of 

applications, of which the key assumption is a locally linear model between a reference 

image f and the filtering output g*,
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(6)

where ωk is a window centered at pixel k, and (ak, bk) are constant coefficients in ωk. Let us 

model the output g* as the input g to remove some unwanted noise or textures t:

By minimizing the difference between g* and g within a window ωk while maintaining the 

linear model (6), a correlative optimization model is established as follow,

where ε is a regularization parameter penalizing large ak. The solution given by (He et al., 

2013) reads,

where f̄k and  are the mean and variance of f in ωk, |ω| is the number of pixels in ωk, and 

ḡk is the mean of g in ωk. The filtering output g* can be computed by employing eq. (6). 

Because a pixel i is involved in all the covered windows, by averaging all the possible output 

values, we get

Here āi and b̄i are the average coefficients of all windows covering the pixel i. By using the 

image guided filtering, the input g is refined by the reference image f based on the locally 

linear relationship between them.

2.4. Relative total variation

Relative total variation (RTV), a local variation measure, is proposed by Xu et al. to 

accomplish texture removal (Xu et al., 2012). Its performance is superior to total variation 

when both structural edges and texture have strong contrast. As an anisotropic regularization 

term, it computes the ratio of windowed total variation ( d(·)) to windowed inherent 

variation (ℐd(·)) in each direction (d ∈ {x, y})
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(7)

where κ is a small positive number to avoid division by zero, and

where ∇ represents the gradient operator, ωk is a window centered at pixel k, wi,k is a 

weighting function based on spatial affinity, and δ controls the spatial scale of the window. 

By employing the windowed inherent variation, structural edges and texture are 

distinguished in light of local statistical property. Although total variation regularization has 

limited ability to distinguish strong structural edges and textures, the introduction of 

windowed inherent variation as a reweighting overcomes this defect effectively.

3. Methods

In this section, we first propose a locally linear constraint based optimization model for 

DSCT and develop an iterative method with SSCT image guided filtering. Then, we extend 

the RTV to weak edge detection and incorporate it into the SSCT reconstruction to improve 

the quality of guided images.

3.1. Locally linear constraint based optimization model

Although the directly reconstructed images of SSCT have a weak capability to distinguish 

materials, their quality is significantly better than the decomposed results of DSCT, 

especially when the noise level is relatively high. Moreover, there are structure-based 

relationships between them. An intuitionist character is that the decomposed results of 

DSCT can be viewed as modifications of reconstructed images of SSCT by removing some 

components and adjusting gray values. When analyzing this feature in detail, as is illustrated 

in Fig. 1, we find that a linear relationship usually holds in small patches. Its discrete version 

reads,

where f represents a decomposed result of DSCT, g represents a reconstructed image of 

SSCT, and j and k are pixel indexes.

Based on this constraint, we propose an optimization model for DSCT as follows,
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(8)

where gfi is a selected result of SSCT corresponding to fi; ξi and εi are regularization 

parameters.

In model (8), for each searched-for decomposed result, we employ a correlative locally 

linear constraint. Thus, the smoothness knowledge from SSCT is effectively incorporated 

into the decomposition process. By weakening the illposedness, the noise is noticeably 

suppressed, and the SNR is dramatically improved.

3.2. Iterative decomposition algorithm for DSCT

Considering the facts that the data term is measured in projection domain and the regularized 

terms are measured in image domain, we split model (8) into two sub-optimization problems 

and develop an iterative scheme as follows,

(9a)

(10b)

(11c)

(12d)
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(13e)

(14f)

where (9c)–(9f) are implemented for i = 1, 2, respectively. We use the E-SART method for 

(9a) and (9b), and the image guided filtering for (9c)–(9f).

3.3. Preprocessing method

In the proposed method, the SSCT images are employed to guide the decomposition process. 

Thus, both the useful structural knowledge and smoothness constraint and harmful artifacts 

and flaws would be introduced to the decomposed results simultaneously. To further 

improve the image quality of DSCT, a preprocessing method is desired for SSCT. However, 

different from the general denoising issue of natural images, there are some specific features 

in our target medical images: strong edges (between different materials) and weak edges 

(between similar materials) exist simultaneously. Particularly, the weak edges may have the 

same amplitude with noise. As illustrated in Fig. 2, the phantom contains some low-contrast 

water-like materials, which can only be distinguished within a narrow display window (e.g. 

[1.035, 1.065]). In this setting, the directly reconstructed image with high-energy spectrum 

suffers from noticeable noise, and some fine structures are submerged. Moreover, from the 

second row of Fig. 2, one can see that both gradient and windowed gradient images fail to 

detect these weak edges. Many other methods (e.g. TV minimization) cannot work well in 

this case, either. However, such fine features have a local statistical property. By employing 

windowed inherent variation, these weak edges can be distinguished successfully within a 

narrow display window (see the left image of Fig. 2 in the bottom row). To further enhance 

this property, we employ windowed inherent variation as a weight for windowed gradient 

images. In this way, the measurement of weak edges is more effective (see the right image of 

Fig. 2 in the bottom row).

This weak edge detection task can be achieved by using RTV regularization (7), which is 

proposed for structure extraction from texture (Xu et al., 2012). Thus, we can incorporate 

this constraint into an optimization model for SSCT as follow,

(15)

Based on the proximal forward-backward splitting algorithm (Combettes and Wajs, 2005, 

Zeng et al., 2016a, Zhang and Yu, 2016), we split model (10) into the following two sub-

problems and optimize them alternatively,
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(16a)

(17b)

where (11a) can be solved by the conventional reconstruction methods and the solution of 

(11b) was given in (Xu et al., 2012).

4. Results

To verify the effectiveness of the proposed method, experiments are performed with both 

simulated and real data sets. In the numerical simulations, we employ two phantoms to 

mimic different body components, i.e., head and thorax. For each phantom, both noise-free 

and noisy cases are considered, and the fan-beam geometry is assumed for simplicity. In real 

experiments, both basis material and effect based decompositions are implemented. For all 

the experiments, the preprocessed high-energy SSCT images are chosen as the references 

and employed in the proposed methods (see the bottom row of Fig. 3(C)). As comparisons, 

we also implement the image-based method, empirical dual energy calibration (EDEC) 

method (Stenner et al., 2007), nonlocal means filter based (NLM) method (Zeng et al., 

2016b), weighted least square and nonlocal means based (WLS-NLM) method (Zhang et al., 

2017), material decomposition from inconsistent rays (MDIR) (Maaβ et al., 2009b), and E-

SART method (Zhao et al., 2015, Hu et al., 2016), covering all the decomposition categories 

and including both conventional and state-of-the-art methods. The corresponding 

descriptions and comparisons are summarized in Table 1. For all the methods, we use the 

MATLAB GPU based parallel implementation to accelerate the computation. The computer 

configuration is single GPU of GeForce GTX TITAN X by NVIDIA (Santa Clara, CA, 

USA), 12 CPUs of Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz, and 64.0 GB RAM. And 

the iteration number is fixed to 6 for all the aforementioned iterative methods.

4.1. Numerical simulations

Two 2D phantoms are employed to mimic different body structures in simulated 

experiments. They are respectively the FORBILD head phantom without ears and the 

FORBILD thorax phantom (Lauritsch and Bruder, 2012, Sourbelle, 2015). For both cases, 

the employed basis materials, spectra, and scan setting are the same. Water and bone are 

chosen as two basis materials, and the corresponding mass attenuation coefficients at 

different energies are retrieved from the National Institute of Standard Technology (NIST) 

tables (Hubbell and Seltzer, 1995). A polychromatic spectrum of a GE Maxiray 125 X-ray 

tube is simulated by using an open source X-ray spectra simulator, SpectrumGUI 

(SpectrumGUI, 2014)(SpectrumGUI, 2014)(SpectrumGUI, 2014)(SpectrumGUI, 2014)

(SpectrumGUI, 2014). Two tube voltages, 80 kV and 140 kV, are chosen, where the latter is 

filtered with 1.0 mm copper. The corresponding spectra are shown in Fig. 3(A). The detector 

consists of 1024 channels and each has a length of 0.3 mm. The source-object distance 
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(SOD) is 1000 mm and the source-detector distance (SDD) is 1200 mm. With this 

configuration, projection data are uniformly collected from 720 views, and 1024 × 1024 

images are reconstructed with a pixel size of 0.249 × 0.249mm2.

Under this setting, we test both the noise-free and noisy cases for each phantom, where all 

the methods listed in table 1 are employed. The emitted photon number is 5 × 106 for head 

phantom based noisy simulation, and 105 for thorax phantom based noisy simulation, 

respectively. Here more photons are used in the head phantom studies to improve the 

distinguishability between ultra-low-contrast tissues. The parameters of the proposed 

method are summarized in Table 2, where the employed parameters are the same for both 

basis materials. The decomposition results of bone density percentage and water density 

percentage images are shown in Figs. 4 and 5 for the head based simulations, and shown in 

Figs. 7 and 8 for the thorax based ones. We synthesize and illustrate the corresponding 

pseudo-monochromatic μ– images at 70 KeV as well (Hu et al., 2014, Zhao et al., 2015), 

seen Figs. 6 and 9. For all the results, we present some zoom-in patches (inside yellow 

boxes) and profiles (marked with green lines) to compare local details. Moreover, three 

quantitative image quality measures are employed, i.e., peak signal-to-noise ratio (PSNR) 

(Huynh-Thu and Ghanbari, 2008), normal mean absolute deviation (NMAD) (Zhu et al., 

2012) and structural similarity (SSIM) (Wang et al., 2004). Here the selected phantom is 

segmented by the threshold method to generate reference images of bone density percentage 

and water density percentage. Then, these two images are employed to synthesize a 

reference pseudo-monochromatic μ– image at 70 KeV. All the measurements are 

implemented on the images transformed into a display window according to the piecewise-

linear intensity level. In this way, low-contrast water-like materials achieve enhanced gray 

variation and contributes more percentage in the evaluations. The corresponding results are 

summarized in Tables 3–6. In terms of SSIM, the evaluations of bone density percentage 

images are higher than that of corresponding 70 KeV μ–images, because each measure here 

is implemented in the current display window. Thus, the gray variation of low-contrast 

water-like materials is enhanced in the synthesized images, which makes more contributions 

to the evaluation. Otherwise, the strong difference between different materials will submerge 

the low amplitude variance between similar materials, then reduce the significance of μ–

image based evaluations.

Comparing all the visual results and quantitative assessments, the employed methods can be 

divided into 3 groups according to the decomposition accuracy and the distinguishing ability. 

The first group represents the case of major incorrected decomposition and weak basis-

material distinction, which includes the image-based method, the NLM method, and the 

WLS-NLM method. All of them fail to keep the main homogenous material approximately 

constant in the decomposed results, i.e., the corresponding gray value changes in a wide 

range. Thus, the edges in the bone density percentage images are heavily eroded, especially 

in the head phantom studies. Moreover, only a portion of water can be observed in the water 

density percentage results, and the water-like materials can hardly be identified. In addition, 

the synthesized μ–images suffer from serious artifacts caused by incorrect decompositions. 

These unsatisfied performances consistently reveal a common weakness of the 3 methods --- 

mismatch in the data model. In our simulations, the emitted X-ray photons are not 

monochromatic. In fact, they obey a wide polychromatic spectral distribution. The 
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relationship between the achieved projection data and the searched-for images of linear 

attenuation coefficient is nonlinear. However, the main idea of all the 3 methods is the same 

as linear decomposition in image domain, which leads to a poor approximation to the 

achieved data and incorrect separation results. Although we employ the water correction to 

decrease the fitting inaccuracy, it still fails to eliminate the flaw in theory. As upgraded 

versions of the conventional image-based method, the NLM and WLS-NLM methods adopt 

the idea of nonlocal mean to improve the smoothness, and the later method further takes the 

noise property into consideration. However, these upgrades are not to reduce the data 

mismatch. Thus, the improvements are considerably limited.

The second group only contains the EDEC method. It stands for the case of minor incorrect 

decomposition and moderate basis-material distinction. From the results of head phantom 

studies, it can be seen that the major structures are correctly decomposed into basis material 

images. However, there are still some errors near edges between different materials. The 

degree of decomposition accuracy is dramatically decreased in the thorax phantom studies, 

which demonstrates the limitation of EDEC method on the empirical calibration selection. 

Although the EDEC method employs a nonlinear fitting function to approximate the data 

model very well, the parameters are determined by a specifically known calibration with the 

same material composition and similar dimension. Thus, the inevitable differences between 

the calibration and the target specimen will increase the inaccuracy of the fitting model. In 

our simulations, we use the same yin-yang calibration for both phantoms. However, the 

corresponding decomposition performance varies considerably. This is because the head and 

thorax phantoms have significant differences in composing proportion and dimension. 

Moreover, even for the same head phantom, the performances between the noise-free and 

noisy cases are not consistent, either. This demonstrates the poor noise tolerance. Because 

there is no smoothness mechanism in the EDEC method, the determined fitting function will 

be greatly changed within the noise influence, which further leads to unstable decomposition 

results.

The rest 3 methods (the MDIR method, the E-SART method and the proposed method) can 

be classified into the third group --- correct decomposition and strong material distinction. 

Here the material distinction contains both basis material separation and soft tissue 

identification. All these methods basically can achieve accurate decompositions, because 

they consistently contain the polychromatic forward projection model to effectively solve the 

data match problem. However, the MDIR results suffer from shifted gray values, which are 

obvious in the representative profile plots. Moreover, both the MDIR and E-SART methods 

are sensitive to noise. In both noisy cases, some low-contrast soft tissues are submerged by 

noise and are not distinguished. Theoretically, the absence of smoothness constraint need to 

be blamed. Compared with the MDIR and the E-SART methods, the proposed method can 

effectively suppress the noise and its results have the highest SNR.

Considering all the methods in the third group belong to the iterative category, we further 

investigate the corresponding numerical convergence in light of the image quality 

measurements (PSNR, NMAD, and SSIM) of 70 KeV μ–images. For each method, we 

implement 50 iterations. The corresponding quantitative comparisons are illustrated in Fig. 

10. From the convergence curves, we can see that the proposed method reaches stable stages 
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within 5 iterations with remarkably improved image quality assessment indexes. However, 

both the MDIR and the E-SART methods converge very slow and achieve gradually 

degraded performances in the noisy case. In addition, we summarize the average 

computational cost in each iteration in Table 7. The average total computational time of the 

proposed method is about 7.48 minutes (89.53 seconds × 5 iterations = 447.65 seconds). 

Although the image-based method only spends 9.80 seconds, the corresponding results 

suffer from low decomposition accuracy. Considering the dramatic improvement of the 

proposed method in accurate decomposition with high image quality, it is worthy with 

acceptable extra computational cost. In our implementations, the time consumption in each 

iteration of the MDIR method is almost the same as that of the SART for both low- and 

high-energy reconstructions. Although the average computational cost of the proposed 

method is 4.7 times than the MDIR method and approximates the E-SART method in each 

iteration step, it produces images with dramatically improved quality, and the convergence 

rate is very fast. The proposed method considerably outperforms the competing methods.

4.2 Real experiments

In the real experiments, an X-ray source (YXLON 225 kV micro-focus tube) is operated at 

the tube voltage of 80 kV and 140 kV for low- and high-energy spectral scans, respectively. 

The tube currents of low- and high-energy scans are fixed as 0.33 mA and 0.09 mA, 

respectively. The integral time for each view is the same (0.33s). In this way, after gain 

calibration, the detector achieves similar performance for both voltages, i.e., similar noise 

level. The employed flat-panel detector (Varian 2520DX detector) has 1920×1536 detector 

cells each of which has a size of 0.127 mm. The SOD is 231.5 mm and the SDD is 696.7 

mm. By using a collimator, the data from the central slice are obtained to validate the 

proposed method. The iteration number is 10. In this setting, we scanned two specimens: the 

first is a bone submerged in water, and we employ the material-based decomposition 

method; the second consists of three different solutions (NaCl solution with NaCl density of 

1.33g/ml, pure water, and Iopromide solution with Iopromide density of 0.04 g/ml), where 

the NaCl solution and the Iopromide solution fail to be distinguished in SSCT results of both 

scanned cases (see Fig. 3(B)). To separate them, we employ the effect-based DSCT 

decomposition method. The parameters employed by the proposed method are summarized 

in Table 8. The material-based decomposed and synthesized results by the image-based 

method, the MDIR, the E-SART and the proposed methods are shown in Fig. 11. The 

corresponding zoom-in local details are presented as well. It is noticeable that the proposed 

method can effectively suppress the noise and dramatically improve the smoothness. The 

effect-based decomposition results are illustrated in Fig. 12. Although the NaCl solution and 

the Iopromide solution are hardly to be distinguished in SSCT reconstruction, they can be 

effectively separated in DSCT decomposition. Moreover, the proposed method can achieve 

results with the highest SNR.

5. Discussion and conclusion

In this work, we establish a locally linear constraint to describe the structure relationship 

between dual spectra based decomposed results and single spectrum based reconstruction. 

An optimization model and an iterative algorithm are proposed. By employing the image 
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guided filtering, the smoothness knowledge of SSCT image is effectively introduced into the 

decomposition process. Because this method reduces the illposedness of the DSCT, the noise 

in the decomposition process is significantly suppressed. Moreover, to further refine this 

approach, we incorporate a preprocessing method for SSCT. By employing RTV 

regularization, both strong and weak edges are well preserved, and the smoothness is 

effectively enhanced meanwhile. With this improved reference image, the proposed method 

produces superior results with higher SNR. Both numerical simulations and real experiments 

demonstrate the merits of the proposed method.

On one hand, the proposed method suppresses the noise effectively, and the quality of 

decomposed results is dramatically improved. On the other hand, it further improves the fast 

convergence speed of the E-SART. Further quantitative analyses and comparisons are 

needed to optimize the reference image, which will be fully studied in our future work.
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Figure 1. 
Illustration of the locally linear relationship. Image directly reconstructed from single 

spectrum is shown in the middle column, dual spectra based decomposed results are shown 

in the left (bone density) and the right (water density) columns.
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Figure 2. 
Comparison of weak edge detection.
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Figure 3. 
Experimental setting in numerical simulations and real experiments. (A) The X-ray spectra 

used in the numerical simulations. (B) SSCT images of solution specimen scanned with 

different voltages (80 kV and 140 kV). The specimen consists of three different solutions 

(NaCl solution with NaCl density of 1.33g/ml, pure water, and Iopromide solution with 

Iopromide density of 0.04 g/ml), where the NaCl solution and the Iopromide solution fail to 

be distinguished in both results. (C) High-energy SSCT images without/with preprocess, 

where the results in the bottom row are employed as references in the proposed method.
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Figure 4. 
Decomposed bone density percentage results from the head phantom studies.
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Figure 5. 
Decomposed water density percentage results from the head phantom studies.
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Figure 6. 
Synthesized 70 KeV μ–images from the head phantom studies.
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Figure 7. 
Decomposed bone density percentage results from the thorax phantom studies.
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Figure 8. 
Decomposed water density percentage results from the thorax phantom studies.
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Figure 9. 
Synthesized 70 KeV μ–images from the thorax phantom studies.
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Figure 10. 
Numerical convergence of the MDIR, E-SART, and the proposed methods in numerical 

simulations. Three image quality assessment indexes (PSNR, NMAD, and SSIM) are 

calculated for 70 KeV μ–images in 50 iterations.
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Figure 11. 
Real experiments for material-based decomposition by using the image-based method (the 

first column), the MDIR method (the second column), the E-SART method (the third 

column), and the proposed method (the fourth column).
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Figure 12. 
Real experiments for effect-based decomposition by using the image-based method (the first 

column), the MDIR method (the second column), the E-SART method (the third column), 

and the proposed method (the fourth column).
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Table 2

Parameters of the proposed method in numerical simulations.

ξ ω ε

Head phantom
Noise-free case 0.625 3 × 3 10−8

Noisy case 1.67 5 × 5 10−8

Thorax Phantom
Noise-free case 1.67 3 × 3 10−8

Noisy case 3.33 5 × 5 10−6
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Table 3

Quantitative evaluation results of the head phantom studies with noise-free projections.

PSNR NMAD SSIM

Bone percentage

Image-based Method 19.48 0.8836 0.9363

EDEC Method 24.73 0.3482 0.9372

NLM Method 19.63 0.8681 0.9388

WLS-NLM Method 19.52 0.8836 0.9378

MDIR Method 23.92 0.4975 0.9531

E-SART Method 29.80 0.1865 0.9565

Proposed Method 32.54 0.0806 0.9833

Water density

Image-based Method 11.99 0.8412 0.6795

EDEC Method 24.17 0.1406 0.7324

NLM Method 11.98 0.8426 0.6781

WLS-NLM Method 12.11 0.8067 0.6517

MDIR Method 26.75 0.1114 0.7292

E-SART Method 27.54 0.1009 0.7419

Proposed Method 32.85 0.0259 0.9473

70 KeV μ–image

Image-based Method 13.32 0.5146 0.6520

EDEC Method 17.95 0.2498 0.6716

NLM Method 13.36 0.5190 0.6615

WLS-NLM Method 13.41 0.5070 0.6539

MDIR Method 21.85 0.1607 0.6820

E-SART Method 22.77 0.1459 0.6891

Proposed Method 30.21 0.0349 0.8824
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Table 4

Quantitative evaluation results of the head phantom studies with noisy projections.

PSNR NMAD SSIM

Bone density

Image-based Method 19.48 0.8836 0.9362

EDEC Method 22.59 0.5145 0.9342

NLM Method 19.63 0.8681 0.9388

WLS-NLM Method 19.52 0.8833 0.9378

MDIR Method 22.91 0.5592 0.9508

E-SART Method 27.99 0.2504 0.9491

Proposed Method 29.15 0.1488 0.9655

Water density

Image-based Method 11.99 0.8365 0.6603

EDEC Method 19.87 0.2639 0.6802

NLM Method 11.98 0.8408 0.6652

WLS-NLM Method 12.13 0.8032 0.6516

MDIR Method 20.08 0.2704 0.6724

E-SART Method 19.77 0.2815 0.6719

Proposed Method 29.29 0.0485 0.9037

70 KeV μ–image

Image-based Method 13.44 0.5051 0.6512

EDEC Method 16.04 0.3227 0.6512

NLM Method 13.42 0.5143 0.6602

WLS-NLM Method 13.43 0.5051 0.6537

MDIR Method 16.75 0.3091 0.6645

E-SART Method 15.22 0.3818 0.6646

Proposed Method 27.02 0.0633 0.8242
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Table 5

Quantitative evaluation results of the thorax phantom studies with noise-free projections.

PSNR NMAD SSIM

Bone percentage

Image-based Method 23.04 0.9729 0.9877

EDEC Method 28.14 0.6629 0.9797

NLM Method 21.51 1.3479 0.9841

WLS-NLM Method 21.32 1.3692 0.9842

MDIR Method 31.72 0.1516 0.9967

E-SART Method 34.70 0.2025 0.9942

Proposed Method 40.39 0.0840 0.9984

Water density

Image-based Method 17.05 0.6341 0.8552

EDEC Method 20.24 0.3839 0.8825

NLM Method 17.18 0.6120 0.8639

WLS-NLM Method 17.10 0.6247 0.8547

MDIR Method 25.48 0.1962 0.8714

E-SART Method 25.50 0.1263 0.9107

Proposed Method 29.19 0.0597 0.9637

70 KeV μ–image

Image-based Method 25.10 0.3839 0.9192

EDEC Method 16.66 0.9887 0.8959

NLM Method 22.03 0.6364 0.9274

WLS-NLM Method 22.09 0.6293 0.9107

MDIR Method 33.20 0.1506 0.9137

E-SART Method 30.82 0.1122 0.9569

Proposed Method 35.30 0.0512 0.9825
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Table 6

Quantitative evaluation results of the thorax phantom studies with noisy projections.

PSNR NMAD SSIM

Bone density

Image-based Method 23.09 0.9797 0.9819

EDEC Method 24.44 0.7131 0.9824

NLM Method 21.62 1.3316 0.9793

WLS-NLM Method 21.49 1.3630 0.9714

MDIR Method 22.41 1.0439 0.9759

E-SART Method 28.57 0.3509 0.9925

Proposed Method 35.60 0.1714 0.9948

Water density

Image-based Method 15.65 0.7818 0.8432

EDEC Method 14.07 0.9839 0.8459

NLM Method 15.92 0.7509 0.8425

WLS-NLM Method 15.63 0.7846 0.8432

MDIR Method 15.21 0.8332 0.8514

E-SART Method 16.41 0.6931 0.8497

Proposed Method 24.92 0.1957 0.8824

70 KeV μ–image

Image-based Method 21.86 0.5966 0.8684

EDEC Method 18.11 1.0058 0.8566

NLM Method 20.52 0.7732 0.8687

WLS-NLM Method 19.78 0.8404 0.8642

MDIR Method 17.62 1.0110 0.8532

E-SART Method 21.06 0.7141 0.8571

Proposed Method 31.73 0.1575 0.9370
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Table 7

Average computational cost in each iteration step (unit: s).

MDIR Method E-SART Method Proposed Method

18.70 88.16 89.53
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Table 8

Parameters of the proposed method in real experiments.

ξ ω ∊

Material-based decomposition 1.67 3 × 3 10−9

Effect-based decomposition 1.67 3 × 3 10−8
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