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Breakdown of magnons in a strongly spin-orbital
coupled magnet
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The description of quantized collective excitations stands as a landmark in the quantum

theory of condensed matter. A prominent example occurs in conventional magnets, which

support bosonic magnons—quantized harmonic fluctuations of the ordered spins. In striking

contrast is the recent discovery that strongly spin-orbital-coupled magnets, such as α-RuCl3,
may display a broad excitation continuum inconsistent with conventional magnons. Due to

incomplete knowledge of the underlying interactions unraveling the nature of this continuum

remains challenging. The most discussed explanation refers to a coherent continuum of

fractional excitations analogous to the celebrated Kitaev spin liquid. Here, we present a more

general scenario. We propose that the observed continuum represents incoherent excitations

originating from strong magnetic anharmonicity that naturally occurs in such materials. This

scenario fully explains the observed inelastic magnetic response of α-RuCl3 and reveals the

presence of nontrivial excitations in such materials extending well beyond the Kitaev state.
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From magnons in ordered magnets to phonons in periodic
crystals, the appearance of bosonic collective excitations is
ubiquitous in condensed phases of matter1. For this reason,

special attention is given to those states that support more exotic
collective modes, for which the conventional paradigm breaks
down. In the context of magnetic phases, the breakdown of
magnons is commonly thought to require closeness to an
unconventional state such as a quantum spin liquid2–4. A notable
example occurs in Kitaev’s exactly solvable honeycomb model5,
for which strongly anisotropic and bond-dependent interactions
fractionalize conventional spin excitations into Majorana spinons
and fluxes. This Kitaev state has recently risen to prominence due
to the suggestion that it may be realized in heavy metal 4d5 and
5d5 insulators via a specific interplay between the crystal field and
strong spin-orbit coupling6, and, consequently, a variety of can-
didate materials based on Ir4+ and Ru3+ have been intensively
explored7. Encouragingly, evidence of a continuum of magnetic
excitations that is inconsistent with conventional magnons was
found in the majority of such materials, including the two-
dimensional (2D) honeycomb Na2IrO3

8, 9 and α-RuCl310–14, as
well as the three-dimensional (3D) analogs β-,γ-Li2IrO3

15, despite
all of them having magnetically ordered ground states.

While the observed excitation continua in these systems have
been interpreted in terms of signatures of the Kitaev state, the
low-symmetry crystalline environment of the real materials also
allows various additional interactions beyond Kitaev’s model16–
18, which are thought to be large based on both experimental19, 20

and theoretical18, 21, 22 considerations. In this sense, under-
standing the mechanism for the breakdown of magnons and the
appearance of a broad continuum of magnetic excitations remain
a key challenge.

In this work, we study a representative case α-RuCl3, which
forms a layered 2D honeycomb lattice and displays zigzag mag-
netic order below TN ~7 K12, 13, 23. We specifically address the
recent inelastic neutron scattering (INS) measurements, which
have revealed low-energy magnons24 coexisting with an intense
excitation continuum12. The latter continuum possesses a dis-
tinctive six-fold star shape in momentum space, and large
intensity at the 2D Γ-point over a wide energy range
E= 2–15 meV12. To resolve the nature of this continuum, we take
two complementary approaches. We first theoretically investigate
the neutron spectra over a range of relevant magnetic interactions
in order to determine the correct spin Hamiltonian for α-RuCl3,
which has been a subject of intense recent discussion18, 25–28.
Second, we identify the conditions that lead to the breakdown of
conventional magnons in the presence of strongly anisotropic and
frustrated interactions, revealing that nontrivial excitations
naturally persist well beyond the Kitaev spin liquid.

Results
The model. Based on previous ab initio studies18, 25–28, the lar-
gest terms in the spin Hamiltonian of α-RuCl3 are generally
expected to include nearest neighbor Heisenberg J1, Kitaev K1,
and off-diagonal Γ1 couplings, supplemented by a third neighbor
Heisenberg J3 term:

H ¼ P
i;jh i

J1 Si � Sj þ K1S
γ
i S

γ
j þ Γ1 Sαi S

β
j þ Sβi S

α
j

� �

þ P
i;jh ih ih i

J3 Si � Sj
; ð1Þ

where i; jh i and i; jh ih ih i refer to summation over first and third
neighbor bonds, respectively (see Fig. 1). The bond-dependent
variables {α, β, γ} distinguish the three types of first neighbor
bonds, with {α, β, γ}= {y, z, x}, {z, x, y}, and {x, y, z} for the X-
bonds, Y-bonds, and Z-bonds, respectively. The third neighbor

interactions are bond-independent. The phase diagram of this
model has been discussed previously17, 18, 26, 29, and is further
detailed in Supplementary Note 1; here we review the key aspects.

In the limit J1= Γ1= J3= 0, the ground state is a gapless Z2
spin liquid for either positive or negative K1, as demonstrated in
Kitaev’s seminal work5. Small perturbations from the pure K1

limit may induce various magnetically ordered states, such as the
zigzag antiferromagnetic (AFM) state observed in α-RuCl3 and
shown in Fig. 1. The simplest perturbation is the introduction of a
finite J1, which yields the well-studied (J1, K1) nearest neighbor
Heisenberg-Kitaev (nnHK) model. This model hosts zigzag order
in the region K1> 0, J1< 0, as discussed in Supplementary Note 1.
Accordingly, previous analysis of the powder INS experiments
within the context of the nnHK model13 suggested that K1 ~+7
meV, and J1=K1j j � 0:3� 0:7 for α-RuCl3. On this basis, the
excitation continua observed experimentally were initially inter-
preted in terms of proximity to the AFM K1> 0 spin liquid12, 13.
However, the further consideration of finite Γ1 and J3 interactions
in Eq. (1) significantly expands the experimentally relevant
region, as both interactions generally stabilize zigzag order.
Indeed, recent ab initio studies18, 25–28 have suggested that the
zigzag order in α-RuCl3 emerges from J1 � 0; K1<0; Γ1>0, and
J3> 0, with Γ1=K1j j � 0:5� 1:0 and J3=K1j j � 0:1� 0:5, as
reviewed in Supplementary Note 2. That is, K1 is ferromagnetic,
and supplemented by significant Γ1 and J3 interactions. Such
interactions would represent large deviations from both Kitaev’s
original model and the region identified by initial experimental
analysis. Before discussing the origin of the excitation continua, it
is therefore crucial to first pinpoint the relevant interaction
parameters.

In order to address this issue directly, we have computed the
neutron scattering intensity Iðk;ωÞ for a variety of interactions
within the zigzag ordered phase via both linear spin-wave theory
(LSWT) and exact diagonalization (ED). For the latter case, we
combine results from various periodic 20-site and 24-site clusters
compatible with the zigzag state in order to probe a wider range
of k-points (see “Methods” section). Full results for the complete
range of models are presented in Supplementary Note 5. Here, we
highlight the key results for two representative sets of interac-
tions. Within the (J1, K1) nnHK model, we focus on Model 1 (J1
= −2.2, K1= +7.4 meV; J1=K1j j= 0.3), which lies on the border of
the region initially identified in ref. 12, close to the spin liquid.
Beyond the nnHK model, we consider Model 2 (J1= −0.5, K1=
−5.0, Γ1= +2.5, J3= +0.5 meV) for which parameters have been
guided by recent ab initio studies18, 25–28, and further optimized
to improve agreement with the experimental spectra. Results for
Models 1 and 2 are first presented in Figs. 2 and 3, which show
detailed ω-dependence and k-dependence of Iðk;ωÞ, along with
the evolution of the spectra upon changing parameters toward the
K1> 0 or K1< 0 spin liquid regions.

Nearest neighbor Heisenberg-Kitaev model. We begin by ana-
lyzing the spectra Iðk;ωÞ within the zigzag phase of the (J1, K1)

Y–bond

X–bond

Z–bond

z
y

x
J30 a

b

Fig. 1 From material to model. Within the honeycomb ab-layer of α-RuCl3
are illustrated the RuCl6 octahedra, magnetic zigzag ordering pattern, and
definition of the underlying magnetic interactions. Crystal axes are labeled
with respect to the C2/m structure
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nnHK model, starting with Model 1 (Fig. 2). Despite proximity to
the spin liquid, the ED calculations on Model 1 (Fig. 2b) show
sharp dispersive modes appearing over the majority of the Bril-
louin zone that are consistent with the conventional magnons of
LSWT (Fig. 2a). Indeed, for energies below the main spin-wave
branch (ω= 1.3–2.3 meV), intensity is localized around the
M-points and Y-points, corresponding to the pseudo-Goldstone
modes of the zigzag order (Fig. 2c). ED calculations show clear
spin-wave cones emerging from such points and extending to
higher energies. Large deviations from LSWT are observed only
for the highest energy excitations, which appear near the 2D Γ-
point for energies ω> 5 meV. Here, the ED calculations display a
broad continuum-like feature centered at ω � K1 that resembles
the response expected for the K1> 0 Kitaev spin liquid, as shown
in Fig. 2d. However, comparison with the experimental IðΓ;ωÞ
shows poor agreement, while the experimental intensity extends
from 2 to 15 meV, the ED results for Model 1 predict intensity
only at high energies >5 meV. Indeed, the evolution of the Γ-
point intensity with J1=K1j j is shown in Fig. 2e. On approaching
the K1> 0 spin liquid by decreasing J1=K1j j, excitations at the Γ-
point shift to higher energy, such that none of the parameters in
the vicinity of the spin liquid reproduce the experimental ω-
dependence of IðΓ;ωÞ. Similar conclusions can also be drawn
from recent Density Matrix Renormalization Group (DMRG)
studies of the nnHK model30. We therefore conclude that the
broad features observed experimentally in IðΓ;ωÞ at relatively
low energies12 are incompatible with the nnHK model with J1< 0
and K1> 0.

Extended ab initio guided model. In order to treat the effect of
interactions beyond the nnHK model, we consider now the ab
initio guided Model 2. In contrast to Model 1, ED calculations on
Model 2 (Fig. 3b) show large deviations from standard LSWT
(Fig. 3a) over a wide range of k and ω. This model reproduces
many of the experimental spectral features12, 24. In particular,
sharp single-magnon-like peaks appear only near the pseudo-
Goldstone modes at the M-points and Y-points. Elsewhere in the

Brillouin zone, broad continuum-like features are observed within
the ED resolution. As demonstrated in Fig. 3c, we find significant
intensity at low energies (ω< 2.3 meV), at both the Γ-points and
(M,Y)-points. For the intermediate energy region (ω= 5.5–8.5
meV), IðkÞ resembles the six-fold star shape observed in ref. 12.
At higher energies (ω> 10.5 meV) scattering intensity is mainly
located at the Γ-point, also in accord with experiment. Further-
more, the ED results for the Γ-point intensity IðΓ;ωÞ show a
broad range of excitations peaked around 4 and 6 meV, and
extending up to ~15 meV (Fig. 3d). Therefore, ED calculations on
Model 2 reproduce all of the main experimental spectral features,
validating the range of interactions indicated by ab initio calcu-
lations. The only aspect that is not quantitatively reproduced
within the Model 2 is the magnitude of the gap at the M-point
(~0.8 meV at the level of LSWT vs. ~2 meV experimentally13, 24).
This discrepancy may result from deviations from C3 symmetry,
which are allowed within the C2/m space group18, 31, but not
considered here for simplicity (see Supplementary Fig. 11).
Interestingly, the spectral features at the Γ-point become dra-
matically sharper on approaching the K1< 0 spin liquid, as shown
in the evolution of IðΓ;ωÞ with the ratio Γ1=K1j j (Fig. 3e). This
result reveals that the broad continuum may not be directly
associated with a proximity to the Kitaev state.

Magnon stability beyond LSWT. To gain further insight into the
reason for such a drastic contrast between the stability of
magnons in Models 1 and 2, it is useful to consider possible
magnon decay channels in the zigzag ordered phase. At the level
of LSWT, the spin-wave Hamiltonian is truncated at quadratic
order, and can be written H2 ¼

P
k;m ϵk;m a†k;mak;m in terms of

magnon creation (annihilation) operators a† (a), where ϵk;m
denotes the dispersion of the mth magnon band. In this harmonic
approximation, magnons represent sharp, well-defined excita-
tions. However, when higher-order anharmonic terms are
included, the total magnon number Ntot ¼

P
k;m a†k;mak;m is

typically not a conserved quantity, such that the stability of
magnons is not guaranteed beyond quadratic order. Quantum

 0

 2

 4

 6

 8

 10

 12

 14

 0  5  10  15
Energy (meV)

 0  5  10  15

ED

0.0

0.2

0.4

0.6

0.8

1.0 Intensity (arb. units)E
ne

rg
y 

(m
eV

)

E = [1.3, 2.3] meV [6.0, 9.0] [10.5, 20.0]

J1 K1

–2.2 +7.4

–4.2 +6.4

0 +7.7

–1.1 +7.6

AFM spin liquid 
Model 1: ED 

Experiment

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

In
te

ns
ity

 (
a.

u.
, o

ffs
et

)

Model 1: ED

 0

 2

 4

 6

 8

 10

 12

 14

E
ne

rg
y 

(m
eV

)

b 

a c 

d 

Energy (meV)

e 

Model 1: LSWT

X K Y MΓ ΓΓ′

Γ′X K Y MΓ

Γ

Γ

Γ′Y

M
K

X

Fig. 2 Neutron scattering intensity Iðk;ωÞ within the nnHK model. a–c Detailed results for Model 1 (J1= −2.2, K1= +7.4 meV): a Iðk;ωÞ computed via
LSWT; results are averaged over the three zigzag ordering wavectors, parallel to the X-bonds, Y-bonds, and Z-bonds. Inset: Definition of Brillouin zone and
high-symmetry k-points. b ED results, combining data from several 20-site and 24-site periodic clusters (see “Methods”). c ED k-dependence of Iðk;ωÞ
integrated over the indicated energies, as obtained from a single 24-site cluster respecting all symmetries of Eq. (1) (see “Methods”). d Comparison of Γ-
point intensities for the K1= +7.7 meV AFM spin liquid (exact results53, 54), Model 1 (ED), and the experimental data for α-RuCl312. e Evolution of the ED Γ-
point intensity with decreasing J1=K1j j, showing absence of low-energy intensity close to the K1> 0 spin liquid. The top three interaction sets correspond to
zigzag order, while the bottom is the K1> 0 spin liquid. For all spectra, a Gaussian broadening of 0.5 meV has been applied
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fluctuations associated with the higher-order anharmonic decay
terms may mix sharp single-magnon modes with the multi-
magnon continuum32–34. Similar considerations also apply to the
breakdown of other collective modes, such as phonons in
anharmonic crystals35, 36. From this perspective, a large decay
rate is expected for any single-magnon mode that is energetically
degenerate with the multi-particle continuum, unless there are
specific symmetries guaranteeing that the two do not couple. It is
therefore useful to consider the prerequisites for magnon break-
down in the presence of the strongly anisotropic interactions of
Eq. (1).

Magnon decay channels for the nnHK model. We first examine
the stability of magnons in the nnHK model. For pure J1 and K1

interactions, the total spin projections Sγtot ¼
P

i S
γ
i are conserved

along the cubic axes γ= {x, y, z} modulo two. Since the ordered
moment also lies along one of the cubic axes in the zigzag
phase20, 37 (see Fig. 4c), the possible magnon decay channels are
restricted. In the local picture, the relevant quantum fluctuations
are local singlet Sxi S

x
j "#j i ¼ #"j i and triplet Sxi S

x
j ""j i ¼ ##j i

fluctuations shown in Fig. 4a, with ΔSztot ¼ 0 and 2, respectively.
In the magnon picture, the Hamiltonian can only contain even-
order terms (i.e., H ¼ H2 þH4 þ :::), analogous to conventional
Heisenberg antiferromagnets with collinear ordered spins32, 34.
For example, the fourth-order decay process due to H4 mixes the
one-magnon states with the three-magnon continuum (ΔNtot=
±2), where

H4 ¼
X
1�4

V4
123 a

†
1a

†
2a

†
3a

†
4 δ k1 þ k2 þ k3 � k4ð Þ þH:c: ð2Þ

Here, the bold index (n≡ kn, mn) labels both momentum and
magnon band. This process is pictured in Fig. 4b. As noted above,
the effect of such terms depends crucially on the availability of
low-energy three-magnon states in which to decay.

The density of three-magnon states for Model 1 is shown in
Fig. 4d, based on the one-magnon dispersions obtained in LSWT.
At each k-point, the lowest energy three-magnon state

a†q1a
†
q2
a†q3 0j i (with q1 + q2 + q3= k) is obtained by placing two

particles in the pseudo-Goldstone modes at opposite M-points
(q1 + q2= 0), and the third particle at q3= k, with total energy
Emin
3 ðkÞ ¼ ϵk;1 þ 2ϵM;1. This implies Emin

3 ðkÞ � ϵk;1. That is, the
three-magnon states lie above the lowest one-magnon band at
every k-point. As a result, every magnon in the lowest band
remains kinetically stable, due to the absence of low-energy three-
particle states in which to decay. Precisely this condition ensures
the stability of low-energy magnons in conventional isotropic
antiferromagnets, and explains the sharp magnon-like peaks
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observed in Fig. 2b for Model 1. Strong spectral broadening in the
nnHK model can occur only for high-lying excitations with
ϵk;m>ϵk;1 ¼ Emin

3 , where the density of three-magnon states is
finite, such as at the 2D Γ-point. On approaching the spin liquid
(at J1/K1= 0), this condition is relaxed due to the vanishing
dispersion of the lowest magnon band (i.e., ϵk;1→0), which
corresponds to a vanishing energy cost the singlet fluctuations
shown on the left of Fig. 4a. The relevant fluctuations in the limit
J1/K1→0 therefore correspond to ΔNtot=±2. For other values of
J1/K1, the majority of magnons are expected to remain stable due
to the absence of low-energy three-magnon states.

Magnon decay channels for the extended model. In Model 2, the
character of the quantum fluctuations away from zigzag order is
notably different (Fig. 5). The finite Γ1 interaction reduces the
local symmetry and leads to rotation of the ordered moments
away from the cubic axes20, 37 (Fig. 5c). In the local picture, this
allows additional single-spin fluctuations Sxi S

z
j ""j i ¼ #"j i

(Fig. 5a), which correspond to odd-order anharmonic terms
H3;H5; ::: in the magnon Hamiltonian, where33, 34:

H3 ¼
X
1�3

Λ3
12 a

†
1a

†
2a3 δ k1 þ k2 � k3ð Þ þH:c: ð3Þ

At lowest order, such terms mix the single-magnon states with
the two-magnon continuum (ΔNtot=±1), via the scattering
process depicted in Fig. 5b. The density of two-magnon states is
shown in Fig. 5d, for the zigzag domain with Q= Y. In this case,
at each k-point the lowest energy two-magnon state a†q1a

†
q2
0j i is

obtained by placing one particle in the pseudo-Goldstone mode at
an M-point, and the second particle at q2= k −M, with total
energy Emin

2 ðkÞ ¼ ϵk�M þ ϵM≠Emin
3 . It should be emphasized that

this condition differs from that of a conventional Heisenberg
antiferromagnet (for which Emin

2 ¼ Emin
3 )34. In the case of Model

2, the difference is directly related to the strong anisotropic K1

and Γ1 interactions, which shift the pseudo-Goldstone modes to
the M-points, such that only high-energy magnons remain at the
Γ-point or ordering wavevector Q38. This shift therefore leads to
an offset of the low-energy even and odd magnon states in

k-space such that Emin
2 ðkÞ<ϵk;1 over a wide region of the Brillouin

zone; there are many two-magnon states with equal or lower
energy than the one-magnon states. Provided there is a finite Γ1,
the spontaneous decay of single magnons into the two-particle
continuum is therefore allowed even for the lowest magnon band.
The decay rate is expected to be particularly large near the zone
center, which represents a minimum in Emin

2 . Similar kinematic
conditions may also occur in other systems34, 39. For Model 2, the
pseudo-Goldstone magnons near the M-points remain coherent
due to the absence of low-energy two particle states in which to
decay (Fig. 5d). This explains the experimental observation of
sharp magnon-like modes near the M-points24. In contrast, the
magnon bands in the remainder of the Brillouin zone directly
overlap with the two-particle continuum. It is therefore natural to
anticipate a large decay rate even for the lowest magnon bands.

To confirm this idea, we have computed the three-magnon
interactions and decay rates for all magnon bands for Model 2
using the self-consistent imaginary Dyson equation (iDE)
approach40. Within this approach, it is assumed that the real
part of the magnon self-energy is already captured by the LSWT
parameters, while the imaginary part is obtained self-consistently
(see “Methods” and Supplementary Note 3). The iDE approach
therefore represents an extension of LSWT, in which the one-
magnon excitations are broadened according to the momentum
and band-dependent decay rate γk,n, while other contributions to
the neutron intensity from multi-magnon excitations are also
absent41. As a result, comparison of LSWT, ED, and iDE results
(Fig. 6) allows for the identification of the origin of different
contributions to the spectra.

The predicted neutron scattering intensity within the iDE
approach (Fig. 6b) captures many of the most notable features
that are observed in the ED and experimental data, showing a
significant improvement over the LSWT results (Fig. 6a). First,
there is an almost complete washout of the two high-energy
one-magnon modes due to strong decays. This implies that the
higher-energy features >4 meV appearing in ED are primarily
multi-magnon in character (including the 6 meV peak at the
Γ-point). The appearance of these higher-energy features in the
inelastic neutron response may arise partly from direct contribu-
tions from the broadened two-magnon continuum via the
longitudinal component of the structure factor, which is not
included in the iDE approach (see Supplementary Note 3).
Second, the broadening of the two lower magnon bands in the
iDE results and the resultant variation of their intensities are in a
close agreement with the ED—particularly in a wide region near
the Γ-point (see also Supplementary Fig. 5). These are precisely
the features with which the LSWT results were most incompa-
tible. Over much of the Brillouin zone—and especially for the
higher magnon bands—the computed γk,n is on the same scale as
the one-magnon bandwidth, confirming the absence of coherent
magnons.

Discussion
The general requirements for strong two-magnon decays are less
restrictive than a proximity to a spin liquid state. Indeed, a large
decay rate is ensured by the following three conditions: large
anisotropic interactions, deviation of the ordered moments away
from the high-symmetry axes, and strong overlap of the one-
magnon states with the multi-magnon continuum (see Supple-
mentary Note 3). Of these, the first two conditions ensure that the
scattering vertex Λ3

12 is large—of the order of the underlying
interactions, i.e., Λ3

12 � O K1;Γ1ð Þ. For α-RuCl3, the strong
overlap with the multi-magnon continuum is ensured by shifting
of the low-energy magnons away from the Γ-point. Since the
bottom of the two-magnon continuum must always have an
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energetic minimum at the Γ-point, the shifting of the pseudo-
Goldstone modes to a finite momentum ensures the remaining
higher-energy magnons are degenerate with the continuum near
the zone center. Experimentally, these conditions are also likely to
be satisfied by the zigzag ordered Na2IrO3

9, and spiral magnets α-
Li2IrO3, β-Li2IrO3, and γ-Li2IrO3

42–44. This picture is also con-
sistent with recent indications that the magnetically disordered
phase observed at high pressure in β-Li2IrO3

45 is driven primarily
by large Γ1 interactions46.

With this in mind, there are two general scenarios that can
explain the observed continuum excitations in α-RuCl3 and the
iridates A2IrO3. In the first scenario, which has been advanced by
several studies, the excitations can be treated as free particles with
a small number of flavors. Such excitations are weakly interacting
and have well-defined dispersions, but possess quantum numbers
(e.g., ΔStot=±1/2) or topological properties inconsistent with the
experimental neutron scattering selection rules (i.e., ΔStot= 0,
±1). The appearance of the broad continuum in energy therefore
results only from the fact that these fractional excitations must be
created in multiples. If they could have been created individually,
they would have represented long-lived and coherent quasi-
particles with sharply peaked energies. This scenario indeed
describes the Kitaev spin liquid, where the special symmetries of
the Hamiltonian allow an exact description in terms of two
flavors of particles: non-interacting Majorana spinons and loca-
lized fluxes5. Such excitations are long-lived, but belong to non-
trivial topological sectors, and therefore cannot be created
individually by any local operations. For the Kitaev spin liquid,
the predicted continuum therefore represents coherent multi-
particle excitations.

In contrast, upon moving away from the pure Kitaev point, the
relevant symmetries that protect the spinons and fluxes are lifted
both by additional magnetic interactions and by spontaneous
symmetry breaking of the magnetic order. This tends to confine
spinons into gauge neutral objects such as magnons47, 48. Despite
this latter tendency, we have argued that coherent magnons are
unlikely to appear at large Γ1 due to the strong anharmonicity in
the magnon Hamiltonian. While this leaves open the possibility
that nearly free Majorana spinons persist into the zigzag ordered
phase in some regions of the Brillouin zone, a more general
scenario is that the observed continua represent fully incoherent
excitations. In this second scenario, the excitations are not
describable in terms of any type of free particles with small decay
rates and well-defined dispersions. The broad continua therefore
reflect the absence of coherent quasiparticles altogether, rather
than particular experimental selection rules related to fractiona-
lization. At present, it is not clear which of these scenarios applies
to the iridates and α-RuCl3, although a key role must be played by
both the Kitaev K1 and off-diagonal couplings such as Γ1. In any
case, the study of these materials calls into question the stability of

magnetic quasiparticles in the presence of strongly anisotropic
interactions.

In summary, we have shown that all main features of the
magnetic excitations in α-RuCl312, 13, 24 are consistent with
strongly anisotropic interactions having signs and relative mag-
nitudes in agreement with ab initio predictions. The ferromag-
netic Kitaev coupling (K1< 0) is supplemented by a significant
off-diagonal term (Γ1> 0) that plays a crucial role in establishing
both the zigzag order and the observed continua. In the presence
of such interactions, the conventional magnon description breaks
down even deep in the ordered phase, due to strong coupling of
the one-magnon and two-magnon states. This effect is expected to
persist over a large range of the phase diagram suggesting that the
observed continua in α-RuCl3 and the iridates A2IrO3 represent a
rich and general phenomenon extending beyond the Kitaev spin
liquid. For this class of strongly spin-orbital-coupled magnets, the
presence of complex and frustrated anisotropic interactions leads
naturally to dominant anharmonic effects in the inelastic magnetic
response. Fully describing the dynamics of these and similar
materials therefore represents a formidable challenge that is likely
to reveal aspects not found in conventional isotropic magnets.

Methods
Exact diagonalization. The neutron scattering intensity was computed via:

Iðk;ωÞ / f 2ðkÞR dt P
μ;ν

δμ;ν � kμkν=k2
� �

´
P
i;j

Sμi ðtÞSνj ð0Þ
D E

e�ik� ri�rjð Þ�iωt
; ð4Þ

where f(k) is the atomic form factor of Ru3+ from ref. 49. ED calculations were
performed using the Lanczos algorithm50, on several 20-site and 24-site clusters
with periodic boundary conditions. Such periodic clusters are detailed in Supple-
mentary Note 4. Excitations were computed using the continued fraction
method51. Further details and additional results are presented in the Supplemen-
tary Notes 4 and 5; these extensive calculations go beyond previous ED
studies16, 17, 20, 26, 29, which focused mainly on the static properties, or a limited
portion of the phase diagram. ED results shown for the high-symmetry Γ, M, Y, X,
and Γ′ points were averaged over all clusters. The ED k-dependence of Iðk;ωÞ,
integrated over the energy windows E= 1.3–2.3, 5.5–8.5, and 10.5+ meV (Figs. 2c,
3c), was obtained from a single 24-site cluster respecting all symmetries of the
model. The discrete ED spectra were Gaussian broadened by 0.5 meV, consistent
with the width of experimental features12. The intensities were also averaged over
the same range of out-of-plane momentum as in the experiment12.

Linear spin-wave theory. LSWT results shown in Figs. 1 and 2 were obtained with
the aid of SpinW52. Following the approach with the ED data, the discrete LSWT
spectra were as well Gaussian broadened by 0.5 meV and the intensities were also
averaged over the same range of out-of-plane momentum as with ED and in the
experiment12.

Imaginary self-consistent Dyson equation approach. In order to calculate
magnon decay rates γk,n, we have evaluated three-magnon interaction vertices by
performing rotation to local reference frames of spins. The obtained value of the
real–space interaction is quite large, about ~3meV. Next, the Born approximation
calculation of the decay rates results in unphysical divergencies34, thus the self-
energy Σk,n needs to be regularized. We have used the so-called iDE approach: a

 0

 2

 4

 6

 8

 10
E

ne
rg

y 
(m

eV
)

a 

 0

 2

 4

 6

 8

 10

E
ne

rg
y 

(m
eV

)

b 

 0

 2

 4

 6

 8

 10

E
ne

rg
y 

(m
eV

)

c 
Model 2: LSWT Model 2: iDE Model 2: ED

0.0

0.2

0.4

0.6

0.8

1.0 Intensity (arb. units)

X K MΓ Γ′ X K MΓ Γ′ X K MΓ Γ′

Fig. 6 Effects of two-magnon decays in Iðk;ωÞ for extended model. Results are shown for Model 2 computed via a LSWT, b self-consistent iDE approach,
and c ED. Results in a and b are averaged over the different zigzag domains. The white and pink dashed lines indicate the bottom of the two-magnon
continuum, Emin

2 ðkÞ for the different zigzag domains. In the iDE results, the effects of two-magnon decays strongly broadens any magnon bands overlapping
with the two-magnon continuum

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01177-0

6 NATURE COMMUNICATIONS |8:  1152 |DOI: 10.1038/s41467-017-01177-0 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


self-consistent solution on the imaginary part of the Dyson’s equation,
Σk;n ϵk;n þ iγk;n

� � ¼ �iγk;n, see ref. 40. We have obtained the regularized broad-
ening for the magnon spectrum and have calculated the transverse part of the
dynamical structure factor, shown in Fig. 6, by adding the calculated decay rates to
experimental resolution of 0.25 meV. The spectral function is approximated as a
Lorentzian. More technical details can be found in the Supplementary Note 3.

Code availabilty. Custom computer codes used in this study are available from the
corresponding author upon reasonable request. Documentation of the codes is not
available.

Data availability. Data are available from the corresponding author upon rea-
sonable request.
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