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Abstract

This paper presents a 6-DOF pose estimation (PE) method and an indoor wayfinding system based 

on the method for the visually impaired. The PE method involves two graph SLAM processes to 

reduce the accumulative pose error of the device. In the first step, the floor plane is extracted from 

the 3D camera’s point cloud and added as a landmark node into the graph for 6-DOF SLAM to 

reduce roll, pitch and Z errors. In the second step, the wall lines are extracted and incorporated 

into the graph for 3-DOF SLAM to reduce X, Y and yaw errors. The method reduces the 6-DOF 

pose error and results in more accurate pose with less computational time than the state-of-the-art 

planar SLAM methods. Based on the PE method, a wayfinding system is developed for navigating 

a visually impaired person in an indoor environment. The system uses the estimated pose and 

floorplan to locate the device user in a building and guides the user by announcing the points of 

interest and navigational commands through a speech interface. Experimental results validate the 

effectiveness of the PE method and demonstrate that the system may substantially ease an indoor 

navigation task.

I. Introduction

Visual impairment reduces a person’s independent mobility and severely deteriorates quality 

of life. According to the World Health Organization, there are ~285 million people with 

visual impairment, of which 39 million are blind. Because age-related diseases (such as 

glaucoma, macular degeneration, and diabetes) are the leading cause of vision loss and the 

world population is rapidly aging, more people will go blind in the coming decades. 

Therefore, there is a dire need in developing navigation aids to help the visually impaired 

move around and live independent lives. The issue of independent mobility of a visually 

impaired individual includes object/obstacle detection and wayfinding. Obstacle detection 

helps the traveler avoid bumping into anything, tripping, or falling, while wayfinding is to 

plan and follow a path towards the destination. Object detection may enhance wayfinding by 

providing waypoints for path planning and points of interest for situation awareness. In spite 

of substantial advancements in robotics and computer vision in the past decades, a 

navigation aid that can effectively address both object/obstacle detection and wayfinding is 

still beyond our reach. As a result, white cane remains the most popular mobility tool due to 

its powerful haptic feedback and low cost. However, a white cane cannot provide a “full 

picture” of its surroundings for object/obstacle detection and location information for 

wayfinding. Guide dog has also been used to guide a visually impaired person from one 

place to another. Unfortunately, a guide dog needs costly training and may be unaffordable 
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to the blind. To address these limitations, a number of Robotic Navigation Aids (RNAs) 

have been introduced as alternative mobility tools. Most of the existing RNAs are intended 

for obstacle detection [1]–[5] only. These devices send out a beam of ultrasonic wave [1]–[3] 

or laser [4], [5] and determine the range and other object information based on the reflection 

of the beam. The object information is then conveyed to the user for obstacle avoidance. Due 

to the use of simple range sensors, these devices are incapable of object detection. RNAs 

with wayfinding function have been introduced in [6], [7]. They use GPS to guide a blind 

traveler and therefore only function well in an outdoor environment. The literature of RNA 

with indoor wayfinding capability is scarce and only limited success has been made. 

Moreover, none of the existing RNAs has successfully addressed both object detection and 

wayfinding problems at the same time. The main technical challenge is that both problems 

must be solved in a small platform with limited resources. In [6], a portable RNA is 

introduced. It is a computer-vision-enhanced white cane that uses a cane-fitted 3D time-of-

flight camera for both object/obstacle [9] detection and wayfinding [12] in indoor 

environments.

This paper is concerned with independent mobility for the visually impaired in indoor 

environments. An indoor environment usually has a higher obstacle density than an open 

outdoor space and often contains overhanging objects. Therefore, 3D perception is needed 

for obstacle/object detection. Also, an indoor environment is GPS-denied. The existing GPS-

based blind navigation technology [6] cannot be used. However, an indoor environment may 

offer off-board computing support for real-time computation. To address the challenges and 

take the advantage of indoor navigation, we introduce an RNA with a client-server 

architecture (described in III) for real-time wayfinding in this paper. The RNA is a computer 

vision enhanced white cane that uses a 3D camera— SwissRanger SR4000—for perception. 

It provides two navigational functions—wayfinding and 3D object detection—to its user. 

This paper will focus itself on the wayfinding function that uses a new Pose Estimation (PE) 

method to locate the user in a floorplan and guides the user to the destination. The PE 

problem is also known as Simultaneous Localization and Mapping (SLAM). An overview 

on the related work in RNAs and SLAM is given in this Section.

A. Related Wayfinding Methods for RNAs

In the literature, researchers have attempted to address wayfinding problem in GPS-denied 

environments. But no substantial successes have been made up to date. Kulyukin et al. [13] 

introduce a Robotic Guide Dog (RGD) to lead the way for a blind traveler. They use a 

number of RFID tags, deployed at some waypoints, to navigate the RGD from one point to 

another. Each RFID tag stores the information about its location and the directions to the 

neighboring tags. The RGD uses an RFID reader to detect a tag and retrieve the stored 

information, based on which it determines its location and the desired movement towards the 

next tag until arriving at the destination. The RGD lacks portability and the wayfinding 

method requires reengineering the environment. Hesch et al. [14] propose a portable indoor 

localization aid for 6-DOF PE. An Extended Kalman Filter (EKF) is employed to estimate 

the device pose by fusing the data of three disparate sensors: a 3-axis gyro, a 2D LIDAR and 

a pedometer. The gyro and LIDAR are installed on the device while the pedometer is user-

worn. The EKF predicts the next device pose based on the gyro and pedometer data and 
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computes the prediction (the laser scan for the predicted pose). The actual laser scan is then 

acquired and the innovation is used to update the device pose. This method requires corner 

features for laser scan matching. It may fail in a geometrically featureless environment (e.g., 

flat floor). Also, it assumes that a map of the environment is available and the environment 

is vertical in order to compute the prediction.

B. Related Work in SLAM

Existing SLAM methods in the robotics literature can be used for wayfinding. These 

methods can be broadly classified into two categories: state filter based SLAM [15] and 

pose- graph SLAM [17], [18], [19], [20], [21]. The latter is preferred in this work, because it 

can effectively reduce the pose error at a loop-closing point. A number of SLAM algorithms 

have been used by wearable RNAs [28]–[30]. Saez et al. [28] propose a Visual-SLAM 

(VSLAM) algorithm for 6-DOF PE of a wearable RNA with a stereo camera. In the front-

end, the camera’s egomotion (pose change between two camera views) is estimated by a 

Visual Odometry (VO) algorithm [31] and in the back-end, the camera’s pose is determined 

by minimizing an entropy-based cost function. In [29], a metric- topological SLAM method 

is proposed to estimate the pose of a stereovision-based wearable RNA. The method extracts 

and tracks features in the stereo camera’s images step by step and uses a FastSLAM [16] 

algorithm to update the local metric maps and the global topological relations between the 

maps. As a stereo camera cannot provide complete depth data of the scene, these RNAs are 

not suitable for object detection. To address this problem, an RGB-D camera is used in a 

wearable RNA in [30] due to its capability in providing more reliable depth data in a feature-

sparse environment. Similar to [28], visual features are extracted and associated across 

images for egomotion estimation and a bundle-adjustment [32] algorithm is employed to 

estimate the camera’s pose. In [19], real-time camera pose estimation is made possible by 

splitting tracking and mapping into two separate tasks and processing them in two parallel 

threads on a dual-core computer. Most recently, SLAM methods based on whole image 

alignment, instead of visual feature matching, are introduced for real- time camera tracking 

and reconstruction on GPU [20] and CPU [21]. However, this type of methods, aka direct 

methods, usually results in less accurate pose estimate than a feature based SLAM method.

The abovementioned SLAM methods accrue pose error over time. Loop-closure [17], [18] 

technique may be used to remove the accrued error at a loop-closing point if one exists. 

However, the pose error accumulated before such a point is detected may be large enough to 

break down the RNA’s wayfinding function. To address this problem, geometric features of 

the operating environment have been incorporated in an EKF-SLAM process in [11], [12], 

[33] and a pose-graph SLAM process in [22], [23] to mitigate the accumulative pose error. 

The methods in [22], [23] require extraction of multiple intersecting planes from 3D point 

data, a time-consuming process in case of data with a low inlier ratio. Therefore, they are not 

suitable for an RNA that needs real-time PE.

In this paper, we propose a 2-step pose-graph SLAM method for real-time wayfinding of an 

RNA. In the first step, the method extracts the floor plane from the 3D point cloud of the 

RNA’s 3D camera and incorporates the floor plane as a landmark in a 3D pose-graph SLAM 

process to reduces Z error as well as roll and pitch errors (see Fig. 1 for coordinate 
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definition). In the second step, the data points are projected onto the floor plane for wall line 

detection. The detected wall lines are then used by a 2D SLAM process (implemented on 

XOY plane) to reduce X, Y and yaw errors. The 2-step SLAM method reduces the device’s 

6-DOF pose error with a smaller computational time than the plane-based SLAM method 

[22]. Using the proposed SLAM method, we developed a wayfinding system that can be 

used to navigate a visually impaired person in an indoor environment.

II. RNA Prototype and 3D Camera

The RNA, called Smart Cane (SC), is depicted in Fig. 1. It uses a SwissRanger SR4000 for 

3D perception. The SR4000 is a 3D time-of-flight camera. It has a spatial resolution of 

176×144 pixels and a field-of-view of 43.6°×34.6°. The camera illuminates its environment 

with modulated infrared light. Based on phase shift measurement, it detects a range up to 5 

meters (with a ±1 cm accuracy) for every pixel on the imaging plane. The SR4000 produces 

both range data and intensity image simultaneously at a rate up to 50 FPS. The capability of 

producing complete range data and the small dimension (50×48×65 mm3) makes the 

SR4000 ideal for the SC. Its modulation frequency is programmable to allow simultaneous 

use of multiple cameras without interference. The SR4000 is mounted on the white cane 

with a 18° tilt-up angle to keep the cane out of the camera’s field-of-view. The camera is 

configured at the software-trigger-mode. It sends out a frame of intensity and range data 

when an acquisition command is received. A client-server architecture is used to allow real-

time wayfinding computation. A HP Stream 7 32GB Windows 8.1 tablet computer is used as 

the client. It performs tasks with light computation, These include acquiring data from the 

camera, relaying the data to the server computer, and providing a speech interface for 

human-device interaction. A Lenovo ThinkPad T430 laptop computer (with an Intel Core 

i5-3320M CPU and 8GB memory) is used as the server. It performs the computation-

intensive wayfinding task—the proposed SLAM method. The laptop’s graphics card (NVS 

5400M with 96 CUDA cores) is used to speed up the SLAM computation. The laptop runs 

Ubuntu 12.04 64-bit as its OS. The client accesses the server via WiFi for wayfinding 

service. The software of the wayfinding system is described in III. The camera, world, and 

floor plane coordinate systems, XcYcZc, XwYwZw, Xf Yf Zf of the SC are defined in Fig. 1. 

For simplicity, we drop subscript w and use XYZ to denote the world coordinate system 

from now on. In this work, we use Euler angle with z-x-y rotation sequence (i.e., yaw-pitch-

roll angles) to represent orientation.

III. Wayfinding System Description

The wayfinding system’s software is depicted in Fig. 2. A client-server architecture is 

adopted. The client acquires data from the camera and sends it to the server via WiFi. It also 

communicates with the user through a speech interface. The server performs SLAM, uses 

the SLAM result to locate the user in a floorplan, plans the optimal path, and sends to the 

client a navigational command and POI message. The client then announces the command 

and message to the user by the speech interface. Some key modules of the wayfinding 

software are detailed as follows.
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A. Speech Interface

A speech interface is developed for human-device interaction. On one hand, it receives an 

audio instruction from the user, converts it into a navigational message (e.g., “go to room 

555”) by speech recognition, and sends the message to the server to start the wayfinding 

service. On the other hand, it receives a navigational command and POI message from the 

server, performs text-to-speech conversion, and makes announcement to the user. A 

navigational command indicates the needed action from the user, e.g., “go forward for 1 

meter”, “turn left slowly”, etc. while a POI message indicates to the user what is nearby, 

e.g., “room 530 is on your left”.

B. Data Acquisition

A relatively larger camera integration time (8.3 ms) is used to produce intensity and range 

data with lower noise. A 3×3 Gaussian filter is applied to the data for noise reduction. To 

reduce WiFi data traffic, the camera’s 16-bit intensity image is converted into an 8-bit one 

and sent to the server along with the depth data. The depth data is then translated into a point 

cloud by using the camera model in the server side. These treatments result in a 594-Kb data 

size for each camera frame and thus a real-time data transmission over the 802.11g WiFi 

channel.

C. Visual-Range Odometry (VRO)

The VRO algorithm [25] is used to estimate the camera’s egomotion. The method extracts 

visual features from the current intensity image and matches them with those from the 

previous image to determine the camera’s egomotion between the two views. SIFT feature 

descriptors [35] is used for feature matching and siftGPU [24] is used to speed up feature 

extraction and matching and achieve a ~30-ms runtime for the VRO. A detailed description 

of the VRO is given in IV.

D. 2-STEP Graph SLAM

The 2-step SLAM method first extracts the floor plane from the camera’s point cloud data 

and incorporates the floor plane as a landmark in a 3D graph SLAM process to reduce pitch, 

roll and Z errors. It then projects the point data onto the extracted floor plane to detect the 

wall lines and incorporates them in a 2D graph SLAM (in XOY plane) process to reduce 

yaw, X and Y errors. The 2-step SLAM method exploits geometric features—floor plane 

and wall lines—to reduce the camera’s 6-DOF pose error. The 2-step SLAM method is 

detailed in V.

E. Global Path Planning

The global path planning module finds the shortest path between the starting point and 

destination by applying the A* algorithm to a POI-graph. The POI-graph takes the POIs 

(hallway junctions, rooms, etc.) of a floorplan as its nodes and each edge connecting two 

nodes has a weight equal to the distance between the nodes. Taking the floorplan of the 5th 

floor of the EIT building as an example, the POI graph is shown in Fig. 3. The shortest path 

from the copy room to RM 582 is depicted by the red arrows. At each POI, a navigational 

message is generated based on the current location and the next POI. For example, the next 
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POI for the T-junction labeled by C is RM 555. Therefore, the navigational message is “turn 

right slowly”. This message is dispatched to the speech interface in the client and translated 

into an audio message for the user.

IV. Visual-Range Odometry

The VRO algorithm estimates the egomotion (pose change) between two camera views. The 

estimated poses are then used to construct a pose graph for SLAM by the proposed method. 

The VRO’s operating principle and egomotion estimation performance are presented in this 

Section.

A. Operating principle

The VRO extracts SIFT features from the current intensity image and matches them to those 

from the previous intensity image based on the SIFT feature descriptors. SIFT descriptor is 

used in this work because it produces more reliable feature match than other scale-invariant 

descriptors [37]. As the matched features’ 3D coordinates are known from the camera’s 3D 

point data, the feature-matching process results in two 3D point sets, {ai} and {bi} for i = 1, 

⋯, N. The rotation and translation matrices, R and t, between the two images are determined 

by minimizing the following error residual

(1)

This least-squares data fitting problem is solved by the Singular Value Decomposition 

(SVD) method [36]. As the feature matching process may result in incorrect matches 

(outliers), the following RANSAC process is used to reject the outliers:

1. Detect SIFT features in two consecutive intensity images, find the matched 

features and form the corresponding 3D data sets {ai} and {bj}. Repeat steps 2 & 

3 for K times.

2. Draw a sample by randomly selecting 4 associated pointpairs, {am} and {bm} for 

m = 1, ⋯, 4, from the two point sets and find the least-squares rotation and 

translation matrices (Rk and tk) for {am} and {bm}.

3. Project the entire point set {bi} onto {ai} by using Rk and tk and compute error 

for each point-pair. Sk = Sk +1 if  is below a threshold (Sk is the score for this 

transform).

4. The transformation with max(Sk) is recorded. The corresponding point sets {aj} 

and {bj} for j = 1, ⋯, max(Sk), called inliers, are used to compute the maximum 

likelihood estimate R and t of the camera by the SVD method. The camera’s 

pose change is then determined.

Given the true inlier ratio ε, the minimum K required to ensure, with confidence ζ, that point 

sets {aj} and {bj} are outlier-free, is computed by
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(2)

In this paper, m = 4 and ζ = 0.99 are used. As ε is a priori unknown, it is estimated at each 

repetition using the sample with the largest support.

B. Accuracy and Repeatability

Noises in the SR4000’s intensity and range data may produce error in egomotion estimation. 

In this work, a 3×3 low-pass Gaussian filter (σ = 1) was applied to the camera’s intensity 

and range data. The filter reduces the overall noise levels (the mean noise ratio) of the 

intensity and range data by 57% and 63%, respectively.

Using an in-house built motion table to produce ground truth rotation and translation 

simultaneously for the camera, we characterized the VRO’s Pose Change Estimation (PCE) 

accuracy and repeatability. In this work, we use roll ϕ, pitch θ and yaw φ (Y-X-Z Euler 

angles) to represent camera orientation. Tables I and II summarize the PCE errors with 

individual movement in ϕ, θ, φ, X, and Y. In this study, we used a series of roll/pitch/yaw 

movements (range: 3°~18°, step size: 3°) or X/Y movements (range: 100~400 mm, step size: 

100 mm) for data collection. 540 frames were captured from the camera in a typical office 

environment before and after each rotation/translation movement for computing the mean 

and standard deviation of the errors. From the tables, we can see that most of the mean and 

standard deviations of the errors are within the SR4000’s angular resolution (0.24°) and 

absolute accuracy (±10 mm). The mean and standard deviation of a rotation measurement 

(the 2nd group of data in Table I) increase with an increasing pitch angle. This is because the 

pitch movement increases the incident angle of the light, causing a weaker reflection and 

larger noise and thus a larger mean error and standard deviation. This problem can accelerate 

the growth of pose error when the VRO-computed pose changes are integrated into the SC 

pose in the world coordinate. In this paper, the accumulative pose error is reduced by using 

geometric features (floor plane and wall-lines) extracted from the SR4000’s point cloud 

data.

We have also characterized the VRO with combined rotation and translation movements. 

The first combination consists of pitch and yaw rotations and Y translation and the second 

combination consists of pitch and yaw rotations and X translation. The quantitative results 

we obtained are similar to Tables I and II, meaning that the overall PE accuracy and 

repeatability of the VRO with combinatory motion are equally good. For simplicity, the 

results are omitted here. Reader are referred to [37] for details. The histogram plots of the 

PCE error demonstrate that each PCE error follow a Gaussian distribution.

V. 2-STEP Graph SLAM

The SR4000’s tilt angle for the SC is a trade-off between the need of a large look-ahead 

distance for object/obstacle detection and the need of more visual features on the intensity 

image. With the 18° tilt angle, there will be spurious data points on the upper portion of the 
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image plane. This is because the SR4000 used in this work has a non-ambiguity range 

between 0 and 5 meters, meaning that a distance beyond 5 meters will be folded back to the 

non-ambiguity range due to the periodicity of the modulating signal. Fig. 4 shows the 

intensity and range data captured in an unobstructive hallway in the EIT building. There are 

noticeable noisy data within the rectangular area (marked in red in Figs. 4a and 4b). These 

data, with ambiguous range, forms a shape like a bowling pin when displayed as 3D point 

cloud (Fig. 4c). These spurious data can negatively impact wall plane extraction. In this 

work, we use an RANSAC based plane extraction algorithm [26]. After extraction of the 

floor plane (containing majority of the data points), the inlier ration of the remaining data 

become much lower. This may result in a long RANSAC process for wall plane extraction 

(according to (2)) and a less accurate extracted wall plane. To overcome this problem, we 

project the data points onto the extracted floor plane and extract wall lines in the 2D space. 

The wall line extraction process saves substantial computational time. We then use the floor 

plane in a 3D SLAM process and the wall line(s) in a 2D SLAM process to estimate the 

camera’s pose. Compare with a plane based graph SLAM algorithm [22], the 2-step SLAM 

method is more computationally efficient and results in a more accurate pose.

A. Graph SLAM

A graph SLAM method consists of two steps: pose graph construction and pose graph 

optimization. A graph G contains nodes (camera poses) and edges between nodes. Let x = 

(x1, …, xN)T be a vector consisting of nodes x1, …, xN, where xi for i = 1, …, N is the 

camera pose at i. Let zij and Ωij be the mean and information matrix of a virtual 

measurement between nodes i and j. The virtual measurement is a transformation (i.e., pose 

change) between xi and xj. Let ẑij be the expected virtual measurement given xi and xj. The 

measurement error eij = zij − ẑij and the information matrix Ωij are used to describe edge Eij 

= < eij, Ωij > connecting nodes i and j. By assuming that all measurements are independent, 

the overall error of G is given by:

(3)

The solution to the graph SLAM problem is to find a set of nodes x* that minimizes (3). A 

numerical solution to the non-linear cost function can be obtained by using the Levenberg-

Marquardt (LM) algorithm [34]. The LM approximates eij by its first order Taylor expansion 

around the initial guess x̃ for x*:

(4)

Here, Jij is the Jacobian of eij (x) computed at x̃. Substituting (4) into Fij (x) of (3), we 

obtain:

(5)
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where  and . Using this local approximation, (3) 

may be rewritten as

(6)

where a = Σij aij, b = Σij bij, and H = Σij Hij. It can be minimized in term of Δx by solving the 

linear system

(7)

where λ is a damping factor whose value is adjusted at each iteration by the LM algorithm. 

The linearized solution is then obtained by

(8)

The graph optimization process iterates the linearization in (6), the solution in (7) and the 

update step in (8) until an optimal x* is found.

B. Plane-Aided Graph SLAM (PAG-SLAM)

If the floor plane is detected at i with pose-node (P-node) xi, a floor-plane-node (FP-node) 

 is added to the graph. In this paper, k = 1 because there is only one floor plane. The edge 

 between xi and  are added into G. The cost function is then:

(9)

where λf is the ratio of the total number of edges between the FP-node and the P-nodes to 

the total number of edges between the P-nodes of the graph. λf is used to balance the 

influences of the two types of edges on graph optimization. The virtual measurement 

between xi and  is given by , where n is the floor plane’s normal vector and d 
is the distance between the floor plane and the origin of the camera’s coordinate system. n 
and d are computed from the extracted floor plane. We can follow the same graph SLAM 

procedure to minimize F (x) in (9) by using 

 and 

. The computation of Eij = < eij, Ωij > and 

 are detailed in the Appendixes A and B, respectively. Incorporating the 

floor plane in (9) for graph optimization reduces the camera’s pitch, roll and Z errors. The 

PAG-SLAM is a 3D (6-DOF) SLAM method.
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C. Line-Aided Graph SLAM (LAG-SLAM)

After the PAG-SLAM, a refined pose x = {x, y, z, ϕ, θ, φ} for each node is obtained. As the 

floorplan’s coordinate system is aligned with XOY, the values of x, y and φ are then used by 

the LAG-SLAM.

1) Wall Line Detection—We discretize the extracted floor plane into 300×300 grid cells 

and project the 3D points onto the floor plane. The number of times the projected points fall 

into cell Cij is recorded and denoted by hij. A cell Cij is classified as a wall cell if hij is above 

threshold Th, or a non-wall cell, otherwise. A RANSAC-based line extraction algorithm is 

then applied to extract line(s) from the wall cells. A line with a length above threshold Tl 

(1.5 meters in this paper) is accepted as a wall line. Fig. 5 shows the color-coded plot of 

array h = {hij} and wall line extraction result for a point cloud data of a hallway in the ETAS 

building (see the second experiment in VI).

2) 2D Graph SLAM—A 2D graph SLAM method is devised by incorporating wall line 

information in the graph consisting of P-nodes, line-nodes (L-nodes) and edges between 

them. As depicted in Fig. 6, a wall line is detected at pose-node xi = {x, y, φ}. As it is 

associated with a truth wall line Lk of a given floorplan, it is denoted lk and a line-node 

 is added into the graph. Here, αk is the angle between the normal vector of lk 

and X axis and dk is the distance between lk and the origin of the coordinate system. Given 

the truth wall line  of the floorplan, the mean virtual measurement between xi 

and  can be computed as . Its 

expectation is given by . The edge 

between nodes xi and  is then given by  with

(10)

The Jacobian matrix  is given by:

(11)

where

(12)

and
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(13)

The cost function of the graph is:

(14)

where  is an error vector containing the x, y and φ elements of eij,  is a sub-matrixes of 

Ωij containing entries related to x, y and φ, and λl is the ratio of the total number of edges 

between the L-nodes and the P-nodes to the total number of edges between the P-nodes of 

the graph. The computation of  is given in Appendix. C. We can use the same graph 

optimization procedure to minimize (14) by using 

 and 

. Here,  is a sub-matrixes of Jij containing entries 

related to x, y and φ. The use of wall line constraint in the graph helps to reduce x, y and 

yaw errors. The LAG-SLAM is a 2D (3-DOF) SLAM method.

3) Graph Construction—A graph of the PAG-SLAM consists of a set of P-nodes {x1, …, 

xN} and a FP-node . A P-node xi for i = 1, ⋯, N creates an edge Eij = < eij, Ωij > with 

each of the previous five P-nodes, denoted xj for j = i − 1, ⋯, i − 5, if one exists (i.e. if the 

VRO successfully compute a pose change between the two nodes). An FP-node  is added 

into the graph at the first time the floor plane is detected with P-node xi. Since then, an edge 

 is created whenever the floor plane is detected with P-node xi. A data 

association process is implemented for floor plane detection at time step i. First, the 

RANSAC plane extraction process finds the largest plane Pi = (n, d) (with the maximum 

data points) from the camera’s point cloud. Second, the predicted camera pose x̂i is obtained 

by using the pose estimates  (from the graph optimization process at time step i −1) and 

the predicted floor plane observation P̂
i = (n̂, d̂) is computed by using x̂i. Third, the 

innovation γi = Pi − P̂
i is used for floor plane detection as follows: The predicted variance 

for γi is computed by , where η is the observation noise. If γi < 

2sγ, Pi is detected as the floor plane; otherwise, it is not the floor plane. Fig. 7 depicts a 

graph with 5 P-nodes and 1 FP-node.

A graph of the LAG-SLAM consists of a set of P-nodes {x1, …, xN} and a set of L-nodes. 

The P-nodes and their edges are created in the same way as the PAG-SLAM. An L-node, 

for k = 1, ⋯, K, is added into the graph only if an extracted wall line is associated with a 

new truth wall line lk. An edge  between P-node xi and L-node  is 
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created whenever a wall line extracted from the point cloud data with pose xi is associated 

with lk. Given a floorplan, a set of truth wall lines {l1, …, lk} are computed, where lk = (αk, 

dk) for k = 1, ⋯, K. These wall lines are then used to perform line association for graph 

construction. Fig. 8 shows a graph with 5 P-nodes and 3 L-nodes. A wall line is detected at i 

= 1 with P-node x1. Because it is associated with l1, L-node  is added to the graph and 

edge  is created. At P-node x2, two wall lines are detected with one associated with a new 

truth wall line l2 and the other one still associated with l1. As a result, a new L-node  is 

added and two edges  and  are created. This process continues as a new camera data 

frame is acquired and processed. A data association process similar to that of floor plan 

detection is implemented for wall line detection. The details are omitted for conciseness.

VI. Experiments

We carried out experiments with the SC prototype in various indoor environments to validate 

the proposed method. First, the SIFT-based VRO method was compared with the direct VO 

algorithm of the LSD-SLAM [21] to show the advantage of the feature based method. 

Second, the proposed method was compared with the RGBD-SLAM [10] and planar SLAM 

[22] methods. Finally, we performed human subject study to test the efficacy of the 

wayfinding system as a whole.

1) Comparision of the SIFT-based and direct methods

Like other direct method, the LSD-SLAM method aligns two whole images by minimizing 

their photometric error (i.e., intensity difference) to determine the pose change between the 

two views. Due to the local minimums of the error function, the direct VO of the LSD-

SLAM method requires a good initialization (good initial motion estimate) and the pixel 

correspondences are not outlier-free. On the contrary, the VRO method does not need a good 

initialization and can completely remove outlier. As a result, the VRO results in a much 

more accurate PCE. In addition, the intensity of the SR4000’s image may change 

substantially as the camera’s orientation changes and make the direct VO less reliable. For 

performance comparison, we ran the VRO and direct VO on a data set collected by using the 

SC in our lab equipped with a motion capture system [12]. The SR4000’s ground truth 

trajectory (from the motion capture system) and trajectories produced by the two methods 

are depicted in Fig. 9. It can be seen that the VRO produced much more accurate poses than 

the direct VO. Using the ground truth pose changes, we determined the inliers and outliers 

for each pair of keyframes and the result of the direct VO is plotted in Fig. 10. We can see a 

substantial number of outliers at each keyframe. These outliers result in a larger PCE error. 

The plot for the VRO is not shown here as it is outlier-free. As the PCE errors generated by 

the VO are very big (Fig. 9) resulting in a graph with poor quality edges, it is not possible 

for the graph optimization process to illuminate the errors and produce accurate pose for 

each node. We ran the VRO based SLAM and LSD-SLAM methods in their entirety on the 

data collected from the human subject study (see VI.3). The results show that the pose graph 

optimization further deteriorated the pose estimates of the direct VO while improving that of 

the VRO. In the LSD-SLAM’s pose-graph, an edge with a large node-span (i.e., there are 

multiple nodes between the nodes of the edge) may incur a very large PCE error due to less 
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accurate initialization. The graph optimization process propagates the PCE error to the nodes 

in between and increases those nodes’ pose errors. The results of the SLAM methods are 

omitted for conciseness.

2) Comparison with RGBD-SLAM and Planar SLAM

A number of experiments were performed in various environments. Two of them are shown 

here. The first environment was conducted on the 5th floor of the EIT building. The carpeted 

floor is feature-rich (Figs. 11b, 11c). The floorplan is depicted in Fig. 11a. The path-length 

for this experiment is 53.19 meters, from the start point (copy room) in the upper hallway to 

the end point (RM 555) in the middle hallway. The user walked with a speed of ~0.4 m/s and 

swung the SC while walking. The estimated trajectories of the RGBD-SLAM, planar SLAM 

and proposed methods are shown in red, green and blue, respectively. The Endpoint Position 

Error Norm (EPEN) of the proposed method (0.901 m or 1.69% of the path-length) is 

smaller than that of the planar SLAM (1.101 m or 2.07% of the path-length) and is much 

smaller than that of the RGBD-SLAM method (3.27 m or 6.15% of the path-length). Also, 

the estimate trajectory of the proposed method is the closest to the ground truth path. Using 

the poses estimated by each SLAM method, we registered the SR4000’s point data to build 

an octomap [27]. The octomaps (with the same view angle) generated by the three methods 

are shown in Figs. 11d, 11e and 11f. It can be seen that the map generated by the proposed 

method is of the best quality, indicating the most accurate PE along the path. The planar 

SLAM method results in less accurate poses than the proposed method due to the errors in 

the extracted wall planes.

The runtimes of the proposed method and the planar SLAM method are compared in Fig. 

12. The average runtime of the proposed method for one frame data is 59.4 ms (with a 

standard deviation of 16.0 ms) while that of the planar SLAM is 77.6 ms (with a standard 

deviation of 16.7 ms). The 30.6% runtime reduction was due to the fact that it took 42.9 ms 

to extract the floor plane and the wall plane(s) but only 25.4 ms to extract the floor plane and 

the wall line(s). The use of the proposed method resulted in a ~17Hz position update rate for 

the wayfinding system.

The second experiment was carried out on the 5th floor of the ETAS building. The floor is 

covered with patternless carpet and the path-length is 40.02 meters. There were numerous 

cardboard boxes at the wall lines along the hallways. This added more visual features to the 

intensity images and helped to operate the VRO more reliably. The user walked with a 

slower speed (~0.2 m/s). The estimated trajectories are shown in Fig. 13. The EPEN of the 

proposed method (0.39 m or 0.97% of the path-length) is smaller than that of the planar 

SLAM (0.48 m or 1.12% of the path-length) and the RGBD-SLAM method (2.45 m or 

6.12% of the path-length). The average one-frame runtimes of the proposed method and the 

planar SLAM method are 47.3 ms (standard deviation: 13.0 ms) and 63.2 ms (standard 

deviation: 13.2 ms), respectively. The runtime plots of this experiment are omitted for 

conciseness. The runtime reduction in this case is 33.6%. Once again, the results show that 

the proposed method is able to obtain a better PE result with a shorter computational time.
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3) Human Subject Test for RNA

Seven sighted human subjects were recruited outside the research team from our university 

to test the wayfinding system. We followed the protocol approved by the university’s 

institutional review board to recruit the human subjects. Each subject was blindfolded and 

performed a navigation task from the copy room to RM 582 (see Fig. 11) three times by 

using the SC. After that, he/she repeated the same task without a blindfold. This allowed the 

subject to memorize the destination’s orientation and the path towards the destination. 

He/she was then blindfolded to perform the same task by using a conventional white cane 

and stopped at the point deemed to be the destination. The path is 45.0 meters from the 

doorway of the copy room to the doorway of RM 582. The POIs along the path are copy 

room, faculty student space, RM 580, RM 506, RM 509, RM 511 and the destination (RM 

582). When the subject went by each POI, we recorded if it was announced by the 

wayfinding system. The results of this experiment are summarized in Table III. It can be 

seen that the system successfully made announcement for 95% of the POIs and the subject 

successfully arrived at the destination for 81% of the tests with an average EPEN of 0.29 

meter. In contrast, there was only one successful case (14%) with an EPEN of 0.50 meter by 

using the white cane. The result demonstrates that the SC is able to provide significant help 

in indoor wayfinding.

For those failed tests with a white cane, subjects 3 and 7 passed the first the first T-junction 

(requiring a left-turn) and got lost while subjects 2, 4, 5 and 6 ended with an endpoint with 

an EPEN ranging from 3 to 6 meters. All failed tests with the SC were caused by a too fast 

walking speed (over 0.6 m/s). This limitation will be addressed in our future work by 

improving the robustness of the PE method. One direction of investigation is IMU-aided 

graph-SLAM.

We also perform human subject experiments in the ETAS building. The results show that the 

RNA provided significant help to the subjects in getting to the destination for some cases but 

was not so helpful in other cases. Taking the case as depicted in Fig. 13 as an example, the 

navigation task is relatively simpler than that in Fig. 11 because the subject has no chance to 

miss a junction. In the cases that the destination is close to the T-Junction J2, the subject 

could simply turn right after the white cane hit the wall and then stop after walking a 

specific number of steps. In these cases, there were no significant differences between using 

the white cane and the SC. In other cases where the distance between the destination and the 

T-Junction was much longer, the SC produced more accurate arrival of destination than the 

white cane. In other words, the SC provides more significant assistance in wayfinding if the 

navigation task is more complicated.

We surveyed the subjects after the experiments. The average ratings for the SC idea, 

usefulness of wayfinding function, usefulness of speech interface, functional enhancement 

of white cane, and comfortability of weight are 4.3, 4.0, 4.4, 4 and 2.7, respectively (5-

highest, 1-lowest). The 4.0 score for the wayfinding function is quite pleasing considering 

that there is room to improve the system’s robustness in the future. There was a major 

complain on the weight of the SC (a low score of 2.7), which caused discomfort when a 

subject did the three experiments without a break. The survey results suggest the directions 

for improvement in the future.
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We recruited two blind subjects from the World Service for the Blind to test the wayfinding 

function on the 5th floor of the EIT building. In addition to the task from the copy room to 

RM 582 (task 1), the following two wayfinding tasks were used for the study: Task 2 (25.0 

m)—from the copy room to RM 571 with copy room, faculty student space, RM 571 as the 

POIs and Task 3 (30.0 m))—from the copy room to RM 539 with copy room and rooms 526, 

532, 536, 537 and 539 as the POIs. Each subject performed each of the three tasks by first 

using the SC and then using the white cane. He was allowed to memorize the destination 

location (e.g., count the number of steps) when doing the experiment with the SC. He was 

also allowed to use the white cane but not his hands to explore the surroundings (e.g., touch 

the walls). The experimental results are tabulated in Table IV. The NST for the SC is 100% 

except for task 1 performed by human subject 2. In that experiment, he walked too fast by 

pointing the cane ~45° to the left of the straight-ahead direction. This caused the SLAM 

method to fail in estimating the SC’s pose. The experimental results demonstrate the 

effectiveness of the SC to the end users—the visually impaired. In addition, the 20% NST 

for the tests with a white cane tends to indicate that a blind subject has the same path 

integration (localization) ability as a blind-folded sighted subject. This is consistent with the 

finding in [38]. (To be conclusive on this, more experiments with blind subjects will be 

carried out in our future study.) The subjects indicated an overall satisfaction with the SC 

except for the device’s weight.

VII. Conclusion

A new 6-DOF pose estimation method is introduced for indoor localization of an RNA for 

the visually impaired. The method takes two graph SLAM processes to reduce the 

accumulative pose error of the RNA. In the first step, the floor plane is extracted from the 

3D camera’s point cloud and added as a node into the graph for 6-DOF SLAM to reduce 

roll, pitch and Z errors. In the second step, the wall lines are extracted and incorporated into 

the graph for 3-DOF SLAM to reduce X, Y and yaw errors. As a result, the 6-DOF pose 

error is reduced by using the floor and wall information of the operating environment. 

Experimental results validate that the proposed method obtain a more accurate pose with 

less time than the state-of-the-art plane-based SLAM methods. Based on the pose estimation 

method, we developed a real- time wayfinding system (with a pose update rate of ~17 Hz) 

for guiding a visually impaired person in indoor environments. Human subject tests have 

been conducted and the experimental results demonstrate the usefulness of the wayfinding 

system.

In term of future work, we will employ a loop-closure detection algorithm [42] in the 

proposed SLAM method. This will allow the SLAM method to reduce the accumulative 

pose error in case that the smart cane user walks in the looped trajectory.
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Appendix

A. Computation of Edge Eij

Node xi represents the ith camera pose in the world coordinate system. The transformation 

matrix that transforms the world coordinate system to the camera coordinate system is 

, where Ri is the rotation matrix determined by the Euler angle ϕi, θi, φi and ti 
is the translation vector. The transformation matrix from node xi to node xj is computed by

(15)

The expected virtual measurement between node xi and node xj is 

, where function Π (·) computes the Euler angles and 

translation vector from T̂
ij. The mean virtual measurement zij is computed by zij = Π (Tij), 

where Tij = υ(xi, xj) is the transformation matrix between xi to xj as determined by the VRO 

algorithm [37] (see IV.A). Function υ(·) represents VRO computation. The measurement 

error is then given by  The Jacobian matrix Jij of edge Eij can be 

numerically calculated by Jij = [0 … 0 Ji 0 … 0 Jj 0 … 0], where Ji = ∇eij and Jj = ∇eij are 

computed at xi and xj, respectively.

With the SR4000’s configuration in our application, the range error’s repeatability is about 

±0.01 m. The covariance matrix of the 3D point corresponding to a SIFT feature at (ui, υi) 

on the image plane can be estimated by , where 

 and . (ox, oy) is the location of the intensity 

image’s central pixel. fx and fy are the focal lengths. These intrinsic parameters of the 

camera are obtained by a camera calibration process. Assuming there are m inliers in υ(xi, 
xj), the covariance matrix of zij can be estimated by using the standard law of error 

propagation:

(16)

with Fa = ∇zij, Fb = ∇zij computed at {al } and {bl }, respectively. Σal and Σbl are the 

covariance matrices for SIFT feature points al and bl, respectively. The information matrix is 

then computed by .
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B. Computation of Edge 

An FP-node is represented by  in the world coordinate system. If the floor 

plane is observed at node xi, the expected normal vector in the camera coordinate system is 

 while the expected distance is . Therefore, the 

expected virtual measurement is formed as . The mean virtual measurement 

 is computed by using the method in [33]. The measurement error is then 

calculated by . The Jacobian is given by Jik = [0 … 0 Ji 0 … 0 Jk 0 … 0], 

where Ji and Jk are computed by using the method in [22].

The covariance matrix Cik of  for a m-point plane can be estimated by the following first-

order approximation [39]:

(17)

where Σqj for j = 1 … m is the covariance matrix of 3D point qj and 

is computed at qj for j = 1 … m. To reduce the computational cost, Fq is computed at only a 

number of representative points (instead of all points) by the following procedure: 1) the 

intensity image associated with the floor plane is evenly divided into a number of regions; 2) 

the element of Fq for a 3D point associated with a pixel in each image region is computed by 

using the 3D point corresponding to the central pixel of the region. The above scheme trades 

a little accuracy for computational reduction if a suitable size of image region is used. The 

accuracy loss can be described by the Kullback-Leibler or Bhattacharyya distance between 

the covariance matrices computed by using all points and part of them. Fig.14 depicts 

accuracy loss versus the size of image region. It can be seen from Fig. 14a that the accuracy 

loss is very little when the region size is no greater than 44×36. In this case, the 

computational time cost is 16 times lower. It can also be observed from Fig. 14b that the 

covariance matrix computed by (17) (using a region size of 44×36) is accurate. Finally, the 

information matrix is given by .

C. Computation of  for Edge 

From the floor plane  observed at node xi with normal vector , we can 

compute the rotation matrix Q that transform the camera coordinate system to XlYlZl that is 

parallel to the floor plane by letting . A point  in the camera coordinate 

system can now be transformed into one in XlYlZl by . The projection of , 

denoted , on the floor plane (for wall-line detection) can be obtained by simply removing 
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the Z coordinate of . The covariance matrix of  can be computed by , 

where  is the covariance matrix of , and the covariance matrix  of  is a sub-

matrix of  containing the entries related to x and y. If the RANSAC step finds m inlier 

points in the line-extraction process, the covariance matrix  of the extracted wall-line is 

estimated by:

(18)

where  for j = 1 … m is the covariance matrix of  and  is 

computed at  for j = 1 … m. The information matrix is then given by .
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Fig. 1. 
The Smart Cane and its coordinate systems: the camera, floor plane and world coordinates 

are denoted by subscripts c, f, and w, respectively.
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Fig. 2. 
Wayfinding system software: navMSG—navigational message, navCOM—navigational 

command, FP-Node—floor plane node.
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Fig. 3. 
POIs based graph for path planning
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Fig. 4. 
Intensity image (left), range image (middle); and color-coded point cloud data (right) of the 

SR4000.
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Fig. 5. 
Wall line extraction by projecting data points onto the extracted floor plane. Spurious data, 

noise and the data of a box nearby the wall line on the floor are determined as outliers.
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Fig. 6. 
Geometry of 2D Line
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Fig. 7. 
A graph with 5 P-nodes and 1 FP-node for PAG-SLAM.
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Fig. 8. 
A graph with 5 P-nodes and 3 L-nodes for LAG-SLAM.
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Fig. 9. 
The ground truth trajectory (yellow) and the trajectories generated by the VRO (red) and 

direct VO (green). The green trajectory is under the ground after point a due to large pose 

errors.
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Fig. 10. 
Inliers and outliers of the direct VO: the image alignment produced correspondences 

between the two 3D point sets. One point set was projected onto the other by using the 

ground truth pose change to determine outliers.

Zhang and Ye Page 30

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 11. 
Experiemnt 1 (5th floor, EIT building). (a) Trajectories produced by the three SLAM 

methods: RGBD-SLAM (red), planar SLAM (green), the proposed method (blue); (b) 

Human subject was turning left (at the 1st T-juntion) to the faculty student space; (c) Human 

subject was walking nearby RM 582; (d) Octomap of RGBD-SLAM; (e) Octomap of the 

planar SLAM; (f) Octomap of the proposed method;
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Fig. 12. 
Runtime comparison of the planar SLAM and the proposed method
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Fig. 13. 
Experiment 2 (5th floor, ETAS building). Left: Trajectories estimated by RGBD-SLAM 

(red), planar SLAM (green) and the proposed method (blue); Right: Human subject at the 

starting point.
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Fig. 14. 
Pces computed by real data of the SR4000 with a floor plane. Cg is the covariance matrix 

estimated by Monte-Carlo approach with 5000 samples while Ci is the matrix computed by 

using (17) with various region sizes: 176×144, 88×72, 44×36, 22×18.
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TABLE I

PCE Errors in Rotation Measurement

MV: (μ, σ)
Roll ϕ (°) Pitch θ (°) Yaw φ (°)

TV: (ϕ, θ, φ)

(3, 0, 0) (0.17, 0.11) (0.06, 0.07) (0.04, 0.06)

(6, 0, 0) (0.16, 0.10) (0.02, 0.06) (0.03, 0.07)

(9, 0, 0) (0.07, 0.10) (0.07, 0.06) (0.05, 0.06)

(12, 0, 0) (0.02, 0.11) (0.09, 0.07) (0.01, 0.07)

(15, 0, 0) (0.00, 0.10) (0.05, 0.08) (0.11, 0.09)

(0, 3, 0) (0.05, 0.03) (0.42, 0.06) (0.08, 0.05)

(0, 6, 0) (0.06, 0.04) (0.40, 0.10) (0.08, 0.06)

(0, 9, 0) (0.08, 0.04) (0.53, 0.16) (0.10, 0.07)

(0, 12, 0) (0.13, 0.06) (0.76, 0.22) (0.31, 0.13)

(0, 15 0) (0.25, 0.06) (0.91, 0.34) (0.26, 0.15)

(0, 0, 3) (0.02, 0.07) (0.09, 0.13) (0.17, 0.11)

(0, 0, 6) (0.02, 0.08) (0.09, 0.14) (0.21, 0.11)

(0, 0, 9) (0.01, 0.08) (0.18, 0.16) (0.14, 0.16)

(0, 0, 12) (0.03, 0.09) (0.18, 0.20) (0.15, 0.22)

(0, 0, 15) (0.01, 0.12) (0.22, 0.22) (0.23, 0.27)

MV: Measured Values, TV: True Values, μ: mean error, σ: standard deviation, ϕ, θ, and φ mean Δϕ, Δθ and Δφ (Δ is dropped for simplicity).
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TABLE II

PCE Errors in Translation Measurement

MV: (μ, σ)
X (mm) Y (mm) Z (mm)

TV: (X, Y, Z)

(100, 0, 0) (9.8, 4.0) (0.4, 1.4) (3.3, 2.4)

(200, 0, 0) (5.6, 5.5) (2.7, 1.7) (3.9, 2.9)

(300, 0, 0) (10.5, 5.2) (3.4, 1.6) (7.7, 3.6)

(400, 0, 0) (2.8, 8.9) (4.7, 2.7) (6.9, 6.8)

(0, 100, 0) (1.4, 2.8) (4.3, 1.7) (3.4, 2.7)

(0, 200, 0) (2.8, 2.8) (6.2, 1.7) (2.5, 3.1)

(0, 300, 0) (0.9, 2.7) (7.7, 1.8) (0.3, 3.5)

(0, 400, 0) (3.3, 3.1) (9.5, 1.8) (3.3, 3.7)

MV: Measured Values, TV: True Values, μ: mean error, σ: standard deviation, X, Y, Z: changes of position (Δ is dropped for simplicity).
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