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Abstract

Many viruses trigger innate and adaptive immune responses and must circumvent the negative 

consequences to successfully establish infection in their hosts. Human Cytomegalovirus (HCMV) 

is no exception, and devotes a significant portion of its coding capacity to genes involved in 

immune evasion. Activation of the NFκB signalling pathway by viral binding and entry results in 

induction of antiviral and pro-inflammatory genes that have significant negative effects on HCMV 

infection. However, NFκB signalling stimulates transcription from the Major Immediate Early 

Promoter (MIEP) and pro-inflammatory signalling is crucial for cellular differentiation and viral 

reactivation from latency. Accordingly, HCMV encodes proteins that act to both stimulate and 

inhibit the NFκB signalling pathway. In this Review we will highlight the complex interactions 

between HCMV and NFκB, discussing the known agonists and antagonists encoded by the virus 

and suggest why manipulation of the pathway may be critical for both lytic and latent infections.
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Viruses and the NFκB Signalling Pathway

The innate immune response to virus infection results in activation of the NFκB 

transcription factors, which regulate a vast array of antiviral and pro-inflammatory effector 

functions. Viruses often trigger the NFκB signalling pathway either through activation of 

Pattern Recognition Receptors (PRRs) or in response to membrane fusion events. In order to 

successfully establish an infection viruses encode genes to subvert or utilize this ubiquitous 

signalling pathway to their own advantage [1]. Some viruses, such as Human 

Immunodeficiency Virus (HIV) and Herpes Simplex Virus (HSV) utilize NFκB signalling to 

stimulate viral gene expression [2,3]. Oncogenic gamma-herpesviruses like Kaposi’s 

Sarcoma-Associated Herpesvirus (KSHV) and Epstein Barr Virus (EBV) encode proteins 

that activate NFκB signalling in order to utilize pro-survival signals during latency [4,5]. 

More commonly, viruses inhibit the NFκB signalling pathway using a diverse array of 
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strategies [1,6]. Many RNA and DNA viruses target the PRRs and their adaptors either via 
downregulation or blocking their activities [7–10]. Others target downstream components of 

the signalling pathway [11–14] or the NFκB subunits themselves [15–18]. While strategies 

for manipulation of the NFκB signalling pathway using viral proteins are diverse, new 

approaches, most recently using viral non-coding RNAs [19–23], are regularly being 

discovered.

NFκB signalling is a paradigm for the principles of signal transduction and transcriptional 

activation. Transcriptional regulation is mediated by the NFκB subunits (the transcriptional 

activators p65/RelA, RelB and c-Rel and the DNA binding proteins p105/p50 and p100/

p52), which are abundant, potent, broadly expressed and modulate numerous important 

cellular functions allowing the cell to respond and adapt to environmental changes. 

Activation of the NFκB subunits requires phosphorylation- induced ubiquitination and 

proteasomal degradation of the inhibitor of NFκB proteins (most commonly IκBα, IκBβ 
and IκBε) that retain the NFκB subunits in the cytosol. For example, phosphorylation on the 

Ser32 and Ser36 residues results in degradation of IκBα via the 26S proteasome and 

releases the NFκB subunits to transit to the nucleus, homo- and heterodimerize and bind 

specific κB binding sites in the promoters of regulated genes. Canonical NFκB signalling is 

initiated by ligand binding to upstream cell surface receptors (including IL1β, TNFα and 

TLR receptors), which transduce these extracellular signals via activation of both kinases 

and ubiquitin ligases. Multiple upstream signalling pathways converge at the IκB kinase 

(IKK) complex composed of the catalytic subunits IKKα and IKKβ and the structural 

component IKKγ (or NEMO). Linear ubiquitination of NEMO assembles the IKK complex 

and activation is the result of phosphorylation of IKKα or IKKβ on serine residues in their 

activation loops either by upstream kinases or through trans-autophosphorylation. The 

activated IKK complex plays a critical role by phosphorylating the IκBs and thus activation 

of this complex is a highly regulated step in the NFκB signalling cascade [24]. In contrast, 

the non-canonical NFκB signalling pathway is induced by lymphotoxin B, B Cell Activating 

Factor (BAFF) or CD40 ligand and results in phosphorylation of IKKα dimers by the NFκB 

Inducing Kinase (NIK). Stimulation of the non-canonical NFκB signalling pathway results 

in the release of RelB and p52 heterodimers [25]. Termination of the NFκB response is 

complex and occurs in part through a negative feedback loop resulting in NFκB-dependent 

expression of the IκB proteins. Newly synthesized IκB relocalizes the NFκB subunits from 

the DNA to the cytosol thus resulting in a self-limiting inflammatory response.

Human Cytomegalovirus Modulation of the NFκB Signalling Pathway

Herpesviruses have co-evolved with their hosts over millions of years in order to succeed in 

establishing a life-long infection in the face of constant immune surveillance. In order to 

persist for the lifetime of the host, herpesviruses have evolved myriad strategies to utilize 

and evade the host innate and adaptive immune responses. Human cytomegalovirus (HCMV/

HHV-5) is a member of the beta-herpesvirus family with high prevalence in the human 

population; in the United States 50–90% of adults are seropositive and seropositivity is 

closer to 100% in developing countries [26]. While HCMV infection is generally subclinical 

in healthy individuals, serious disease can arise when the host immune system is 

compromised and viral reactivation occurs. HCMV replicates in numerous cell types 
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including macrophages, dendritic cells, fibroblasts, epithelial and endothelial cells as well as 

smooth muscle cells, neuronal cells, hepatocytes and trophoblasts. In these cell types, 

HCMV undergoes a lytic replication cycle involving viral binding and entry of the capsid 

into the cytoplasm releasing tegument proteins that act to immediately disarm intrinsic 

cellular immune responses. After injection of the viral DNA into the nucleus, cellular 

transcriptional trans activators act to stimulate transcription from the Major Immediate Early 

Promoter (MIEP), which results in the transcription of multiple Immediate Early (IE) genes 

including the major isoforms IE protein 72 (IE72/IE1) and IE86/ IE2. Expression of IE1 and 

IE2 is critical for the efficient launch of the lytic replication cycle [27,28]. The MIEP 

enhancer region is highly complex, containing an array of positive and negative cis-acting 

elements including binding sites for numerous cellular transcription factors such as CREB/

ATF, AP-1, Elk-1, SRF and NFκB [29]. These Cis-acting elements work both cooperatively 

and independently to initiate RNA polymerase II transcription from the MIEP thus ensuring 

activation of the promoter by a variety of cellular signalling pathways regardless of the 

differentiation and activation state of the cell. IE proteins help to stimulate expression of 

Early (E) phase proteins, many of which are involved in DNA replication. E proteins also 

help to stimulate Late (L) gene expression, whose products are involved in virion assembly 

and release. HCMV replicates poorly in less differentiated cell types such as CD14+ 

monocytes and CD34+ Hematopoietic Progenitor Cells (HPCs). In these cells most viral 

genes are not expressed and the viral genome is maintained in the absence of progeny virus 

production. The limited viral proteins and non-coding RNAs expressed during latency play 

important roles in suppressing viral gene expression and regulating intracellular signalling 

pathways [30]. To uncover how HCMV successfully evades host innate and adaptive 

immunity in such a diverse array of cell types and during fundamentally disparate lifecycles 

an understanding of the role of both viral proteins and non-coding RNAs in manipulating 

cellular signal transduction pathways is required.

The role of NFκB signalling in the HCMV lifecycle is exceedingly complex and evidence 

suggests that the virus activates both canonical and non-canonical signalling pathways. In 

turn, HCMV encodes both agonists and antagonists of NFκB signalling in order to aid in 

viral replication and dissemination, establishment of latency and reactivation. Early work 

examining regulation of the MIEP identified multiple 18 nucleotide repeats within the MIEP 

enhancer region containing consensus NFκB binding sites [31–33]. It was postulated that 

induction of the NFκB signalling pathway at early times after infection could enhance 

expression from the MIEP and thus help initiate the lytic cascade of gene expression 

[32,34,35]. It was shown that TNFα, a potent inducer of the NFκB signalling pathway, 

enhances expression from the MIEP via increased binding of p50 and p65 to the 18 

nucleotide repeat [36]. In fact, later work demonstrated that activation of the NFκB 

signalling cascade is initiated by viral binding [35,37] mediated by gB and gH interacting 

with their cognate receptors in human fibroblasts [38,39] and monocytes [40] at least in part 

via interactions with TLR2 [41,42]. The signalling initiated by viral binding results in 

depletion of preformed cytosolic stores of p50 and p65. Subsequently, de novo synthesis of 

p50 and p65 occurs through a positive feedback signalling [34] and transactivation by IE 

proteins [37] involving regulation of the SP1 transcription factor [43]. In addition, Casein 

Kinase II (CKII) packaged in the virion has been proposed to rapidly phosphorylate IkBα 
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following viral entry, allowing for an additional means of releasing the NFκB subunits 

which may be necessary for infection of diverse cell types [44]. Interestingly, studies of 

NFκB activation in primary Monocyte-Derived Macrophages (MDMs) determined that 

although canonical p50/p65 heterodimers are present at the MIEP very early after viral 

infection [40,45], complexes composed of p52 and Bcl-3 are found at the MIEP at 5 days 

post-infection, suggesting context dependent changes in NFκB signalling in different 

cellular environments [45]. Similar stimuli are known to activate distinct NFκB complexes 

in cell-type dependent manners [46,47], but how and why the non-canonical NFκB 

signalling pathway is activated in MDMs remains unclear. p52/Bcl-3 heterodimers are not as 

efficient at stimulating expression from MIEP reporter constructs [45]; therefore one 

possibility is that non-canonical NFκB signalling may act to limit MIEP expression in 

MDMs.

This early work clearly indicated that viral binding and entry induces activation of NFκB 

signalling and results in expression from the MIEP. However, the MIEP contains numerous 

binding sites for additional cellular transcriptional activators and repressors and thus the 

relative importance of NFκB in the overall stimulation of the MIEP and ultimately virus 

replication was unclear. Additionally, activation of NFκB signalling results in induction of 

numerous cellular genes, including cell adhesion molecules, complement and acute phase 

proteins as well as pro-inflammatory cytokines and chemokines which can have antiviral 

effects on HCMV replication. Thus, the contribution of the NFκB signalling pathway to full 

viral replication has been studied extensively in vitro - with conflicting results. Growth 

curves of AD169 and Toledo HCMV strains in human fibroblasts overexpressing a 

Dominant Negative (DN) mutant of IκBα, suggested that blocking NFκB signalling in 

fibroblasts was neutral to viral replication [48]. Additionally, when an NFκB site-mutated 

HCMV MIEP replaces its MCMV counterpart in the MCMV genome the resulting virus 

replicates with Wild Type (WT) kinetics in fibroblasts [48]. In contrast, using 

pharmacological inhibition of the NFκB pathway, as well as the IκBα DN mutant, it was 

suggested that blocking NFκB signalling resulted in a modest increase in AD169 

replication, and prevented exogenous TNFα and IFNγ from negatively affecting virus 

replication [49]. In addition, this study utilized a constitutively active mutant of IKKβ and 

showed that constitutive activation of canonical NFκB signalling inhibited viral replication 

through the production of IFNβ. In order to directly test the requirement of NFκB signalling 

in regulation of the MIEP during viral infection, Gustems et al. [50] constructed an HCMV 

AD169 mutant containing point mutations in all 4 NFκB binding sites within the MIEP and 

showed no deleterious effects on IE expression or viral replication in human fibroblasts. This 

work indicated that in the context of lytic AD169 infection of fibroblasts, transactivation of 

the MIEP can be accomplished through the additional transcription factor binding sites 

found within the enhancer region [29]. In fact, our work and that of others (unpublished 

observations, [51,52]) suggest that AD169 does not trigger or modulate the NFκB signalling 

pathway in the same manner as clinical strains of HCMV and may account for the relative 

resistance of AD169 replication to inhibition of the NFκB signalling pathway.

In contrast to the studies described above, work by several groups [53–59], using both 

AD169 and clinical strains of HCMV and various NFκB inhibitors as well as DN IκBα, 

IKKα and IKKβ constructs demonstrate that IE and subsequent gene expression as well as 
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viral yields are reduced when NFκB signalling is blocked in fibroblasts and endothelial 

cells. Intriguingly, expression of the IκBα DN protein had the greatest deleterious effect on 

MIEP transactivation compared to DN IKKα and IKKβ constructs [59]. These observations 

suggest that there are multiple signalling pathways activated by HCMV infection that 

converge at the phosphorylation of IκBα, some of which do not include activation of the 

IKK complex, such as direct phosphorylation of IκBα by tegument-associated CKII [44]. 

These studies also indicated that IKKα plays a more important role in MIEP transaction 

than IKKβ [59] and hints at the involvement of the non-canonical NFκB signalling pathway 

in fibroblasts as has been observed in MDMs [45]. Interestingly, when the later phase of 

NFκB signalling that occurs as a result of IE1 transactivation of the p50 and p65 promoters 

[37] was blocked by addition of pharmacological inhibitors, viral replication was still 

impaired [58], suggesting an essential role for sustained NFκB signalling during HCMV 

infection. The apparently contradictory observations about the importance of NFκB 

signalling during viral infection could be at least partially resolved by studies which 

examined the role of NFκB signalling in replicating and growth arrested cells [55]. Using 

DN IKKβ constructs and viruses lacking the NFκB target sequences within the MIEP the 

authors demonstrate that virus replication is only restricted in growth arrested, and not 

proliferating fibroblasts and endothelial cells. These data suggest that the differentiation and 

activation state of the infected cell plays a significant role in NFκB-mediated MIEP 

transactivation and lytic replication. Further experimentation to address the contradictory 

requirement of NFκB signalling to the HCMV lifecycle is required to resolve this essential 

question. Finally, the role of NFκB signalling in regulating gene expression at other stages 

of the HCMV lifecycle has not been thoroughly investigated. US3 contains NFκB binding 

sites [60,61] that may contribute to the requirement of NFκB at later times in the infection 

cycle and additional κB binding sites exist within the HCMV genome [55].

Whether NFκB signalling and transactivation of the MIEP is essential to virus replication 

both in vitro and in vivo remains an ongoing question, but microarray data indicates that 

expression of NFκB-inducible genes is more robust when viral gene expression is inhibited 

[62], suggesting that some viral gene products act to dampen the NFκB response. It was first 

reported that different lab-adapted and clinical strains of HCMV could block signalling 

through the canonical NFκB pathway initiated by IL1β or TNFα at or above the point of 

convergence of the NFκB signalling pathways [63,64]. IκBα phosphorylation and 

degradation was abrogated and expression of several pro- inflammatory cytokines was 

prevented in infected fibroblasts and endothelial cells treated with IL1β or TNFα after 72 h 

of infection [63,64]. Similarly, phosphorylation and degradation of IκBα was not detected at 

5 days post-infection in MDMs [45]. In fact, IκBα transcript [40] and protein levels [45] are 

increased during infection of MDMs, suggesting that canonical NFκB signalling is also 

actively blocked in this cell type at later times of infection [65]. The antagonism of NFκB 

signalling requires expression of both early [64] and late gene products [63,64]. 

Interestingly, when infected cells are treated with IL1β a near-complete block in IkBα 
degradation is observed, while treatment of infected cells with TNFα resulted in residual 

IkBα phosphorylation and degradation, suggesting that HCMV antagonism of the NFκB 

signalling pathway is dependent upon which upstream signalling pathway triggers IκBα 
phosphorylation [63]. Using AD169 mutants the ability to block TNFα-mediated NFκB 
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signalling could be genetically separated from blocking IL1β-mediated signalling [64]. To 

date, the viral gene product(s) necessary for this late block in NFκB signalling have not been 

identified, but several gene products have been implicated in interfering with the NFκB 

signalling pathway.

HCMV-Encoded Antagonists of the NFκB Signalling Pathways

Viral proteins involved in blocking NFκB signalling

Figure 1 Illustrates the HCMV proteins and non-coding RNAs that interfere with the NFκB 

signalling pathway.

The tegument protein pp65 was the first HCMV protein shown to interfere with NFκB 

signalling [66]. Using DNA arrays, it was demonstrated that pp65-deficient viruses induced 

anti-viral and pro-inflammatory genes to a greater extent than WT virus and exogenous 

expression of pp65 could block type I IFN signalling. pp65-deficient viruses induce NFκB 

subunit binding to a greater extent than WT, but have no effect on IRF3 binding, suggesting 

that pp65 interferes specifically with the NFκB signalling pathway.

The immediate early protein IE86 also blocks NFκB signalling in infected cells [67–69]. 

IE86 attenuates the production of IFNβ during HCMV infection either by preventing NFκB 

subunit binding to the IFN promoter [68] or by blocking interactions between the subunits 

and other transcriptional activators [70]. In addition, expression of IE86 blocks NFκB-

dependent gene expression in response to external stimuli, such as Sendai virus and TNFα 
treatment indicating that IE86 alone is sufficient to block NFκB signalling [67]. These 

studies examined the effects of IE86 in isolation or at early times post-infection, well before 

the late block to NFκB signalling observed in studies by Jarvis et al. [63] and Montag et al. 

[64]. Thus HCMV likely encodes multiple gene products from different kinetic classes that 

block NFκB signalling. It remains an intriguing question as to why HCMV encodes an 

inhibitor of canonical NFκB signalling that is expressed with IE kinetics when the MIEP is 

transactivated by NFκB subunit binding. Perhaps this is a mechanism of negative feedback 

utilized by the virus to prevent over-activation of NFκB signalling and pro-inflammatory 

cytokine production, given the functional redundancy of transcription factor binding to the 

MIEP.

HCMV cmv-IL-10 (UL111a) is a functional homolog of cellular IL-10, itself a potent 

inhibitor of pro-inflammatory responses. Like cellular IL-10, recombinant cmv-IL-10 

treatment of THP-1 cells can block NFκB signalling at or above the level of IκBα 
degradation, although the exact mechanism for the inhibition has not been further elucidated 

[71].

The tegument protein UL26 has most recently been demonstrated to possess NFκB 

inhibiting functions [52]. Expression of UL26 can block TNFα and Sendai-virus-induced 

IKK activation, IκBα degradation and IL6 production, suggesting that it functions at or 

above the point of convergence of multiple NFκB signalling pathways and may contribute to 

the late block in NFκB signalling observed in HCMV-infected cells [63,64]. An UL26-

mutant virus induces canonical NFκB signalling with similar kinetics to WT infection, 
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suggesting tegument-associated UL26 does not block early induction of the pathway. 

Interestingly, the UL26 mutant virus induces higher expression of the RelB NFκB subunit, 

especially at later time of infection, suggesting that UL26 may play a role in suppressing 

non-canonical NFκB signalling.

HCMV Non-coding RNAs Involved in Blocking NFκB Signalling

Along with viral proteins, HCMV also expresses non-coding RNAs that interfere with 

different aspects of NFκB signalling. MicroRNAs (miRNAs) are small, ~22 nucleotide 

RNAs that act to post-transcriptionally regulate gene expression. miRNAs normally interact 

with short regions of complementarity in the 3′ UTR of targeted transcripts which results in 

recruitment of cellular protein complexes that ultimately lead to translations repression 

and/or mRNA degradation [72]. Thus, by targeting regions of complementarity in genes 

involved in the NFκB signalling pathway, HCMV miRNAs could participate in the late 

block to NFκB signalling observed in HCMV infected cells [63,64]. In fact, most HCMV 

miRNAs are expressed with early kinetics, accumulate throughout the course of lytic 

infection [73,74] and are abundant at the late stages of infection. Additionally, several 

HCMV miRNAs are expressed during latency in CD34+ HPCs [75] and could act to 

modulate NFκB signalling when most viral proteins are no longer expressed. HCMV miR-

US5-1 and miR-UL112-3p have recently been demonstrated to block NFκB signalling 

induced by IL1β and TNFα at late times post-infection [20]. Both miRNAs target IKKα and 

IKKβ, limit the phosphorylation and degradation of IκBα and attenuate the downstream 

expression of the pro-inflammatory cytokines RANTES, IL6 and TNFα in fibroblasts, 

endothelial cells and THP-1 cells. Infection of cells with an HCMV TB40/E mutant lacking 

expression of miR-US5-1 and miR-UL112-3p results in higher levels of IKKα and IKKβ 
proteins compared to WT-infected cells, allows for partial IκBα degradation following 

exogenous IL1β or TNFα treatment and increased secretion of pro-inflammatory cytokines 

compared to WT infected cells. By replacing the miRNA sequences with shRNAs targeting 

IKKα and IKKβ, the expression and secretion of pro- inflammatory cytokines could be 

reduced to WT levels, indicating that the mutant phenotype was due to the loss of IKK 

complex targeting [20]. In addition, miR-UL112- 3p also targets the TLR2 receptor, thereby 

blocking TLR2-induced IRAK1 activation and subsequent expression of pro-inflammatory 

cytokines [21]. Given that TLR2 signalling results in activation of the IKK complex, it is 

likely that at least some of the observed effects of miR-UL112-3p on pro-inflammatory 

cytokine expression is also due to its effects on IKKα and IKKβ expression [20]. miR-

US5-1 and miR-UL112-3p also work in concert with a third HCMV miRNA, miR-US5-2, to 

interfere with the endocytic recycling compartment and severely attenuate the secretion of 

pro-inflammatory cytokines [76]. Additionally, miR-UL112-3p may target IL-32, an inducer 

of NFκB signalling [77]. Finally, HCMV miR-UL148D targets RANTES [78] and ACVR1B 

of the activin signalling axis which promotes increased IL6 secretion upon activin 

stimulation [75]. These studies underscore how HCMV miRNAs can interfere with NFκB 

signalling at numerous steps to limit the deleterious effects of pro-inflammatory cytokine 

production.
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HCMV-encoded agonists of NFκB signalling pathways

Paradoxically, while encoding numerous proteins and non-coding RNAs that block NFκB 

signalling in fibroblasts, endothelial cells and monocytes, HCMV also encodes several 

agonists of NFκB signalling. It has long been postulated that certain NFκB- responsive 

genes and the effects of activation of the NFκB signalling pathway could also be beneficial 

to viral replication and spread, especially in vivo [79]. Pro-inflammatory cytokines and 

chemokines recruit cells to the site of lytic infection that can be used for dissemination and 

seeding new viral infections [80]. Additionally, anti-apoptotic genes induced by NFκB 

signalling may help to prolong the life of the cell for efficient virus production [81]. Finally, 

an intriguing possibility is that HCMV encodes proteins that help to enhance NFκB 

signalling specifically in latently infected cells in order to augment transactivation of the 

MIEP to promote reactivation of the virus from latency. Figure 2 highlights the proteins that 

act to stimulate signalling through the NFκB pathway.

In contrast to the NFκB-inhibiting functions of IE2, IE1 transactivates numerous cellular 

and viral genes utilizing the NFκB signalling pathway. Although many of its ascribed 

functions are due to positive feedback on the MIEP, IE1 alone induces NFκB signalling in 

several cell types [32]. IE1 transactivates the p65 promoter [37,38], IL6 promoter [82], 

TNFα promoter [83], and the IL8 promoter [84] through the NFκB signalling pathway. 

Interestingly, it was determined that IE1 selectively induces RelB/p50 subunits rather than 

the canonical p65/p50 complexes in smooth muscle cells and fibroblasts [85].

UL144 is a transmembrane protein with properties similar to the TNF Receptor (TNFR) 

family that potently activates the NFκB signalling pathway and expression of the chemokine 

CCL22 in a TRAF6- and TRIM23-dependent manner [86,87]. In light of the ability of IE86 

to block NFκB subunit binding, Poole et al. [88] determined that UL144- mediated 

activation of CCL22 was insensitive to IE86 expression during infection suggesting that the 

ability of IE86 to block NFκB subunit binding is promoter- and context-dependent.

UL76, a putative endonuclease, induces the NFκB signalling pathway through activation of 

ATM and the DNA damage response. Activation of ATM ultimately results in the 

phosphorylation of NEMO leading to p65 translocation to the IL8 promoter, increased IL8 

expression and enhancement of HCMV replication [89]. IL8 is an important chemokine for 

neutrophil attraction, which the authors postulate may be important for viral replication and 

dissemination [90,91].

US28 is a 7-transmembrane chemokine receptor that activates multiple cellular signalling 

pathways in ligand-dependent and -independent manners that is expressed during latency in 

CD34+ HPCs. US28 constitutively activates NFκB signalling utilizing Gq/11 protein-

dependent pathways [92]. US28 has been postulated to play a role inactivation of the MIEP 

through its NFκB signalling activity [93] and activation of the NFκB signalling pathway by 

US28 has been linked to increased COX2 expression and angiogenesis in endothelial cells 

[94].

UL138 was described in two reports to enhance TNFR1 expression on the cell surface 

[95,96]. UL138 physically interacts with TNFR1, prolonging its half-life and signalling 
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capacity [96]. Interestingly, in comparing a UL138 mutant virus to AD169 strains lacking 

the ULb’ region, additional TNF-regulating factors were postulated [96]. It is possible that 

during latent infection of CD34+ HPCs, UL138 acts to enhance the TNF- responsiveness of 

infected cells. Given the importance of TNF signalling to HCMV reactivation [65,97], and 

the role of NFκB signalling in enhancing MIEP expression [32,33,36,37,59], it is intriguing 

to postulate that the virus modulates NFκB signalling to regulate reactivation from latency.

Perspectives

While HCMV has evolved to utilize the NFκB signalling pathway to launch its lytic 

replication cycle it has also had to evolve to control the antiviral responses thus induced. 

Evidence suggests that NFκB signalling that is tightly controlled by the virus at early times 

post-infection is beneficial to viral replication. However, the virus has evolved mechanisms 

to block any strong NFκB signalling induced by extrinsic signals that could be detrimental 

to viral replication [20,52,63,64]. Moreover, HCMV modulates both canonical and non-

canonical NFκB signalling. At early times activation of the canonical pathway predominates 

[37,38], but evidence of both activation [45,85,87] and suppression [52] of the non-canonical 

signalling pathway at later times post-infection has also been demonstrated. Activation of 

the non-canonical NFκB pathways by exogenous stimuli results in IFNβ production [98] 

suggesting extrinsic activation of non-canonical signalling, like extrinsic activation of 

canonical signalling [20,52,63,64] can be detrimental to virus replication. The intricate 

modulation of these different arms of the NFκB pathways may allow HCMV to enhance the 

pro-viral effects, while limiting the antiviral effects of NFκB signalling.

On the surface, the apparently contradictory roles of NFκB signalling during HCMV 

infection are confusing, but likely underlie the complexity of the HCMV replication cycle in 

the host. During lytic infection, NFκB signalling is used to enhance MIEP expression and 

viral replication, prolong the life of the infected cell while aiding in viral dissemination by 

recruiting additional cell types to the site of infection. During HCMV infection of 

monocytes, NFκB signalling helps to initiate a differentiation program resulting in a unique 

macrophage phenotype [99,100]. Additionally, NFκB-mediated up-regulation of ICAM-1 

and ICAM-3 is essential for monocyte motility and firm adhesion to endothelial cells [101], 

a function key to the ability of monocytes to disseminate and seed new viral infections. 

Interestingly, HCMV-infected MDMs do not basally express high levels of NFκB-dependent 

cytokines, but can potentiate cytokine expression induced by lipopolysaccharide [102], 

suggesting that infected MDMs are poised to reactivate virus upon pro-inflammatory 

cytokine expression. Allogeneic T cell stimulation produces high levels of IL-6, TNFα and 

IFNγ and results in HCMV reactivation in monocytes from the peripheral blood [97]. 

Neutralization of TNFα or IFNγ prevents HCMV reactivation, suggesting that a highly 

inflammatory environment is critical for viral reactivation [65]. Thus, the virus must 

maintain a careful balancing act to manipulate the outcomes of NFκB activation for its own 

benefit depending on the cell type infected.

The role of NFκB signalling in latent HCMV infection of CD34+ cells has not been 

investigated. Whether viral binding and entry stimulates NFκB signalling in CD34+ HPCs 

as it does in other cell types is an intriguing question. NFκB signalling pathway components 
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are transcriptionally up regulated in HPCs protected from FAS-mediated apoptosis [103], 

suggesting that HCMV-induced NFκB signalling may help protect and prolong the life of 

infected HPCs [104]. Non-canonical NFκB signalling, which is induced by HCMV infection 

[45,85,87], has been implicated in CD34+ HPC differentiation towards the myeloid lineage 

[105]. In addition, TNFα-mediated activation of NFκB signalling in HPCs prevents 

erythropoiesis [106,107], which is markedly suppressed during HCMV infection of HPCs 

[108]. NFκB signalling is also critical for CD34+ -derived myeloid DC differentiation and 

function [109], which may highlight a critical link between NFκB signalling, myeloid 

differentiation and viral reactivation. UL138 and US28, two viral gene products essential for 

latency in CD34+ HPCs [110,111], stimulate the NFκB signalling pathway and thus may 

play a role in both transactivation of the MIEP and cellular differentiation in order to 

promote reactivation. HCMV miRNAs are also expressed during latency, and at least some 

HCMV miRNAs act to block NFκB signalling [20,21]. One possibility is that viral proteins 

help to poise the latently infected cell for reactivation, but viral miRNAs act as fine-tuners of 

the NFκB response, blocking any low-level signals that would result in sub-optimal 

differentiation and viral reactivation. The mechanistic details of how HCMV limits the 

antiviral effects while enhancing the pro-viral facets of NFκB signalling remain a mystery. 

What is clear is that both viral proteins and non-coding RNAs participate in altering the 

intracellular signalling pathways in HCMV-infected cells in order to successfully establish 

life-long infections in vivo.
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Figure 1. 
HCMV-encoded antagonists of the NFκB signalling pathway. NFκB signalling can be 

induced by activation of a variety of cell surface receptors as well as HCMV binding and 

entry. Upstream signalling cascades culminate at the activation of the IKK complex. Several 

HCMV proteins and miRNAs (shown in red) block activation of the IKK complex or 

downstream binding of the NFκB transcription factors to their cognate sequences.
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Figure 2. 
HCMV-encoded agonists of the NFκB signaling pathway. HCMV encodes three cell surface 

proteins (US28, UL138 and UL144, shown in red) that can activate or enhance NFκB 

signaling. In addition, HCMV UL76 and IE1 can activate NFκB signaling through unknown 

mechanisms.
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