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Abstract

The contributions of coding mutations to tumorigenesis are relatively well known; however, little 

is known about somatic alterations in noncoding DNA. Here we describe GECCO (Genomic 

Enrichment Computational Clustering Operation) to analyze somatic noncoding alterations in 308 

pancreatic ductal adenocarcinomas (PDAs) and identify commonly mutated regulatory regions. 

We find recurrent noncoding mutations are enriched in PDA pathways, including axon guidance 

and cell adhesion, and novel processes including transcription and homeobox genes. We identify 

mutations in protein binding sites correlating with differential expression of proximal genes and 

experimentally validate effects of mutations on expression. We developed an expression 

modulation score that quantifies the strength of gene regulation imposed by each class of 

regulatory elements, and find the strongest elements are most frequently mutated, suggesting a 

selective advantage. Our detailed single-cancer analysis of noncoding alterations identifies 

regulatory mutations as candidates for diagnostic and prognostic markers, and suggests novel 

mechanisms for tumor evolution.

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDA) is a highly lethal malignancy with a 5-year 

survival rate of 6%, due to therapy resistance and late stage at diagnosis1. A detailed 

understanding of the molecular alterations underlying PDA is required to uncover 

mechanisms of tumorigenesis and enable development of effective therapies. Exome 

sequencing efforts have revealed genes (KRAS, TP53, CDKN2A, SMAD4) and pathways 

(Wnt/Notch, transforming growth factor-β (TGF-β, axon guidance, cell adhesion) important 

for PDA progression2,3. However, the exome comprises less than 2% of the human genome. 

Whole-genome sequencing (WGS) analyses have uncovered an average somatic mutation 

rate of 2.64 mutations per megabase in PDA indicating that PDA tumors often carry 
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thousands of mutations, the vast majority of which are located in noncoding regions and are 

completely uncharacterized.4

Relevance of noncoding mutations (NCMs) to cancer development was previously 

established with the discovery of highly recurrent mutations in the telomerase reverse 

transcriptase (TERT) promoter in sporadic and familial melanoma5,6. These mutations create 

binding motifs for ETS transcription factors and lead to increased TERT transcriptional 

activity5,7. Subsequent reports identified TERT promoter mutations in a wide-range of 

human tumors, including glioblastoma and hepatocellular carcinoma8. TERT promoter 

mutations are the most common genetic alterations in bladder cancer and correlate with 

recurrence and survival, demonstrating the potential of NCMs to act as clinical biomarkers9. 

NCMs have also been demonstrated to drive tumor progression from intergenic elements. 

Somatic mutations in a subset of T-cell acute lymphoblastic leukemia cases generate binding 

sites for the MYB transcription factor, creating a super-enhancer driving expression of the 

TAL1 oncogene10. Recent analyses have pooled WGS data from multiple cancer types and 

hundreds of patients, identifying recurrent mutations in regulatory elements of several genes, 

including TERT11–15. While multi-cancer studies can identify ubiquitous cancer variants, in-

depth analysis of individual cancer subtypes is required for uncovering disease-specific 

alterations16.

To detect somatic NCMs in PDA, we developed a computational pipeline to analyze WGS 

data of 308 PDA tumors from the International Cancer Genome Consortium (ICGC)17. We 

used FunSeq218,19 to initiate prioritization of noncoding mutations, which revealed hundreds 

of thousands of noncoding somatic mutations with potential functional implications. To 

discriminate amongst this large number of NCMs, we developed GECCO (Genomic 

Enrichment Computational Clustering Operation) to identify candidate NCMs that drive 

differential gene expression. This approach reduced the number of putative gene-proximal 

regulatory regions by three orders of magnitude to a set of high confidence calls.

Using GECCO, we identify novel recurrent mutations and interrogate expression data from 

matched tumors to find variants associated with changes in mRNA levels. We find 

significant differential expression of 16 genes associated with NCMs. For two of these 

genes, PTPRN2 and SLC12A8 we uncover previously unidentified clinical relevance in 

PDA. Specifically, we find that PTPRN2 expression level is an independent prognostic 

variable for overall patient survival. Pathway analysis of the genes associated with recurrent 

NCMs identifies known and novel PDA pathways. Furthermore, we find enrichment for 

mutations in specific regulatory regions, suggesting that NCMs may be acted upon by 

selection during tumor formation. Our analysis provides a model for tumor evolution via the 

formation and selection for alterations in noncoding regulatory elements of specific genes as 

a means of control over specific biological pathways.

RESULTS

To analyze NCMs in PDA, we selected all 405 patients with WGS data from the ICGC 

Pancreatic Cancer Genome Project. We determined the total number of somatic single 

nucleotide variants (SNV) and small insertions or deletions (indels) for each patient, and 
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retained those with mutation load no greater or less than 3 standard deviations from the 

mean (mean=7,937; range=1–440,471) to exclude the hyper-mutated tumors with 

unlocalized replication defects (Fig. 1a, Supplementary Fig. 1). In total, 2,248,158 SNVs/

indels from 308 PDA patient samples were kept for analysis.

General features of GECCO

To discover the effect of noncoding mutations on PDA progression and patient outcome we 

developed the computational pipeline GECCO (Fig. 2). GECCO begins by selecting 

noncoding mutations falling within The Encyclopedia of DNA Elements20 (ENCODE)-

defined transcription factor binding peaks – hereby referred to as cis-regulatory regions 

(CRRs) as not all proteins profiled are transcription factors and may be part of larger 

regulatory complexes – and then proceeds with downstream processing in two parallel 

modules. We define a “CRR class” to be all CRRs that are bound by the same DNA-binding 

protein (i.e. CTBP2, with 1781 CRRs across the genome) or proteins involved in DNA-

binding complexes (i.e. SUZ12, with 1618 CRRs across the genome). The first module of 

GECCO associates NCMs with proximal genes and uses permutation testing to identify 

highly mutated clusters that correlate significantly with changes in gene expression. The 

second module calculates the mutation rate of each CRR to determine which specific CRR 

classes are more commonly mutated in PDA.

In the second module, GECCO computes an expression modulation score (EMS) using 

coupled gene expression data to determine the regulatory impact of each CRR class. The 

EMS can be used to generate a rank sorted list of CRRs based on the strength of their 

relative gene regulatory impact (such that the strongest activators and repressors fall at both 

ends of the list). Taken together, the results generated from GECCO provide information on 

the impact of NCMs on the expression level of individual genes and identifies potential 

driver transcription factors. Finally, GECCO merges the results of both modules to perform 

pathway and clinical survival analysis, allowing novel insights into PDA biology and 

patterns of somatic mutations in cancer.

Prioritization of non-coding mutations

We first identified NCMs in the exact same genomic position in multiple patients and 

removed common human variants (MAF > 5% in 1000 Genome Phase I) (Supplementary 

Table 1). This identified several variants reaching over 2% incidence (n ≥ 7 out of 308 

patients) in the patient cohort (Supplementary Table 1). Among the 11 genes associated with 

these variants, 6 have been implicated in tumorigenesis, including WASF321, BNC222, 

ELMO123, GPR9824, PDE3B25 and SOX526. Interestingly, 10 of 11 of these mutations were 

found in introns. However, none of the exactly recurrent mutations disrupted, or created, 

transcription factor-binding motifs (as defined by the JASPAR transcription factor binding 

profile database27) or fell within known regulatory elements. This analysis is consistent with 

several pan-cancer analyses that found few exactly recurrent mutations outside of the well-

characterized TERT promoter mutations11,12.

We extended this analysis by prioritizing NCMs by their association with functional 

annotations and clustering within regulatory elements. We used the FunSeq2 computational 
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pipeline18,19 as a high-level filter to remove common variants and identify putative somatic 

regulatory mutations with functional impact. One important benefit of this approach is that it 

relies on functional information and thus drastically reduces any biases resulting from non-

homogeneous mutation rates across the genome. This initial round of filtering identified 

301,596 potential somatic drivers across all 308 patients (mean=1,988; range=203–17,902) 

(Fig. 1b). 264,488 of the somatic NCMs fell within ENCODE-defined transcription factor-

binding peaks, with the majority of the remaining mutations within enhancers (19,608) or 

DNaseI hypersensitive sites (DHSs) (14,572) (Fig. 1b). We focused our analysis on the 

264,488 NCMs within the ENCODE-defined CRRs. There was a direct correlation between 

CRR mutation rate and total SNVs (Fig. 1c). In contrast, no correlations between CRR 

mutation rate and coding mutations in KRAS, TP53, CDKN2A, SMAD4, and ARID1A 
were observed (Supplementary Fig. 3).

Analysis of cis-regulatory mutations

Starting with 264,488 candidate mutations, we used GECCO to focus our analysis on CRRs 

within 2kb of each gene (many of which overlap promoters), seeking to identify clusters of 

mutations in CRRs that directly impact gene expression (Fig. 3a). The requirement to be 

within 2kb of a gene excludes many distal enhancer regions but increases the likelihood that 

a given CRR topologically associates with, and therefore regulates, the expression of its 

proximal gene. The most frequently mutated CRR (17 patients, 5.52% of cohort) was in a 

TCF12-binding region proximal to LHX8 (LIM homeobox 8) (Fig. 3a). LHX8, a homeobox 

gene and regulator of craniofacial development, modulates the Hedgehog pathway, a known 

regulator of PDA pathogenesis28. We observed a cluster of mutations in a E2F1-binding 

region in proximity to BMP7 (bone morphogenetic protein 7). BMP7 is a TGF-β family 

member, with pleiotropic roles in development and cancer progression29. GECCO did not 

detect any recurrent variants in the TERT promoter, in concordance with a previous study 

that failed to detect TERT promoter mutations in 24 PDA samples8. To determine if the 

identified NCMs were within active promoters or enhancers in pancreatic cells, we 

interrogated H3K4me3 and H3K27ac regions from ENCODE in pancreatic carcinoma-

derived PANC-1 cells. In PANC-1 cells, 37.6% of all transcription factor-binding peaks were 

found within active PANC-1-predicted promoters or enhancers. In contrast, 58.9% of 

recurrent NCMs (>5 patients) were found within at least one PANC-1-predicted active 

promoter or enhancer. The CRRs with recurrent NCMs did not differ significantly in size 

from those lacking recurrent NCMs. Therefore, recurrent NCMs are enriched in 

transcriptionally active regions of the genome in pancreatic cancer cells.

We identified clusters of NCMs in regulatory regions of long intergenic non-protein coding 

RNAs (lncRNAs), including the oncogenic lncRNA Metastasis Associated Lung 

Adenocarcinoma Transcript 1 (MALAT1)30, and in microRNAs, including the oncogenic 

miR-2131 (Fig. 3a). To infer functional consequences of the most recurrently mutated gene-

proximal CRRs, we used data from a published in vitro short hairpin RNA (shRNA) screen, 

which monitored survival in 102 cell lines, of which 13 were pancreas cancer-derived32. 

Knockdown of 6 (LHX8, LMX1B, PAX6, DMRTA2, VAX2, CDH15) of the top 15 genes 

was found to decrease cancer cell survival, providing potential functional relevance for these 

genes as cancer drivers (Fig. 3a). Knockdown of two genes, LMX1B and CDH15, showed 
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selective killing of PDA cell lines amongst all cancers, suggesting tumor-specific 

vulnerabilities.

To control for variable CRR size, we calculated a mutational frequency for each cluster 

harboring at least 5 mutations, defined as the number of mutations across all patients divided 

by the number of nucleotides spanning the cluster (Fig. 3b). The highest scoring result was 

an exactly recurrent mutation in the same genomic position in 5 patients, flanking the acyl-

CoA oxidase-like gene ACOXL, a known susceptibility locus for chronic lymphocytic 

leukemia33. This mutation was not found to be within a known transcription factor-binding 

site as defined by JASPAR. We also identified a cluster of 5 mutations within 19 nucleotides 

proximal to the neuronal cell adhesion gene NRXN3, a regulator of glioma cell proliferation 

and migration34.

While multi-cancer recurrent NCMs have been described11,12, we lack an understanding of 

their mutational patterns. For example, it is unknown if NCMs cluster near the same genes 

that show recurrent coding mutations for a given disease. Therefore, we looked for clusters 

of NCMs in association with known PDA genes, present in at least 5 patients 

(Supplementary Table 2). We did not detect any recurrent NCMs in CRRs within 2kb of 

KRAS, TP53, CDKN2A, SMAD4, ARID1A and MLL3, in addition to 24 of 26 other PDA 

genes identified from previous whole exome analyses (Supplementary Table 2)2,3. This 

result is consistent with defects in protein function, rather than alterations in expression, in 

the pathogenesis of these PDA genes.

Novel clinical outcomes from pathway analysis

Pathway analysis of recurrently mutated PDA genes has been used to identify signaling 

networks and biological processes underlying disease pathogenesis2,3. To detect patterns in 

NCM localization at the pathway level, we utilized The Database for Annotation, 

Visualization and Integrated Discovery (DAVID), a functional annotation enrichment 

algorithm for large-scale biological datasets35. Pathway analysis of genes near CRRs 

containing clusters of mutations (>5 patients) identified significant enrichment of several 

gene families and regulatory processes, including transcriptional regulation, homeobox 

genes, axon guidance, cell adhesion and Wnt signaling (Fig. 3c). The involvement of three 

of these pathways (axon guidance, cell adhesion, Wnt signaling) in PDA has been identified 

from previous exome sequencing studies2,3. Furthermore, several homeobox genes and 

transcription factors have been implicated in PDA pathogenesis, including PAX636, 

HOXB237, HOXB738 and RUNX339. Therefore, NCMs display preferential patterns of 

localization in the PDA genome and, although not found near canonical PDA genes, may act 

through modulation of canonical PDA pathways. In addition, we uncover a previously 

unrecognized localization of NCMs near transcriptional regulators and homeobox genes, 

suggesting a role for these factors in PDA.

The availability of matched gene expression data from a large number (n=96) of patient 

samples allowed association studies between specific clusters of mutations and changes in 

gene expression. For each of the 124,075 CRRs we determined differential gene expression 

between patients with mutations in a proximal CRR compared to patients without mutations. 

Using permutation testing we identified NCMs that significantly impacted expression of 
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their proximal gene and calculated their false discovery rates (for details, see Online 

Methods). Many of the genes with the greatest number of mutations (Fig. 3a) did not reveal 

significant changes in gene expression. However, this analysis yielded 16 NCMs associated 

with significant changes in gene expression (≥3 patients, p<0.05, FDR<0.25) (Fig. 4a). Eight 

of the 16 NCMs were present in regions marked by H3K4me3 and H3K27ac in PANC-1 

cells. None of the statistically significant mutations were associated with increases in gene 

expression. Three of the genes with statistically significant decreases in expression 

(KCNQ1, IKZF1, TUSC7) have been implicated as tumor suppressors40,41, while two 

(PTPRN2, SNRPN) are frequently hypermethylated42,43. Next, we looked for correlations 

between NCM-associated differential expression and clinical correlates in PDA. The small 

sample size precluded identification of specific NCMs associated with differences in patient 

outcome. Therefore, we looked for associations between expression of these 16 genes and 

patient outcome. Low mRNA expression of the phosphatase PTPRN2 and the ion transporter 

SLC12A8 were associated with decreased overall survival and decreased disease-free 

survival in a univariate analysis, respectively (Fig. 4b,c). Furthermore, a multivariate 

analysis revealed PTPRN2 as an independent prognostic variable for overall survival 

(Supplementary Table 3).

Mechanisms of NCM-modulated expression

To uncover mechanisms by which expression-correlated SNPs may influence transcription, 

we annotated mutations with their predicted influence on local DNase hypersensitivity using 

the software Basset44 (see Online Methods). The predicted influences of these 55 SNPs 

were significantly greater in magnitude after Bonferroni correction than a null model of 

sampling from the full set in 160 out of 164 examined cell types. For example, two different 

mutations in IRF1 and PRDM1 motifs altered critical positions that likely debilitate binding 

within an intron of SLC12A8 (Fig. 4d). Additional mutations modulate an NRF1 motif in 

the promoter of SNRPN and a GATA motif adjacent to a PU.1 binding site in an intron of 

LSAMP (Supplementary Fig. 4). Therefore, GECCO enriches for NCMs with predicted 

effects on DNase hypersensitivity and transcription factor binding.

While the Basset analysis identified NCMs predicted to affect DNase hypersensitivity, we 

sought to uncover NCMs directly modulating gene expression. To determine the functional 

relevance of specific NCMs, we performed luciferase reporter assays in non-transformed 

HEK-293 cells and the MiaPaCa2 and Suit2 PDA cell lines, comparing gene expression 

driven by wild type (WT) and mutant (MUT) sequences (Fig. 5). Among 11 regions tested, 7 

(293) and 4 (MiaPaCa2, Suit2) mutations significantly altered luciferase expression. 

Importantly, NCMs associated with PTPRN2, PDPN, TUSC7, SNRNP and MTERF4 
significantly decreased luciferase expression in one or multiple cell lines, consistent with 

decreased expression of these genes associated with NCMs in patient samples (Fig. 4a). Our 

validation rate was greater or comparable in terms of hit rate, and greater in terms of fold 

change, than other recent attempts to identify NCMs driving differential expression15,16, 

highlighting the power of GECCO to identify functionally significant NCMs from millions 

of candidate mutations.
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Mutational and expression patterns of CRR classes

The second module of GECCO focuses on CRR classes, rather than individual genes, to 

identify mutational patterns and overall effects on gene expression of each CRR class 

(Figure 6). We computed the mutation rate for each CRR class correcting for element size 

and abundance in the genome. We found no significant effect of GC content on CRR class 

mutation rate. Noncoding mutations were specifically enriched in certain classes of gene-

proximal CRRs (see Supplementary Note). Next, we sought to understand the molecular 

characteristics of each CRR class in terms of effect on gene expression. We calculated an 

expression modulation score (EMS) for each CRR class reflecting the impact of the presence 

of that CRR on the expression of the neighboring gene in relation to all other genes. This 

method compared, for each CRR class, mean expression of genes proximal to a CRR to 

those that are non-proximal. CRRs with strong predicted activating or repressing activity 

would be proximal to genes with expression levels substantially higher (for activators) or 

substantially lower (for repressors) than the basal genome expression level (Supplementary 

Table 4, see Online Methods). To determine if the strongest activators and repressors were 

enriched for those CRRs with the highest mutational frequencies, we considered any 

activator or repressor that was greater than 1 standard deviation from the mean EMS (12 

activators, 9 repressors) (Fig. 6, green and orange bars). The mutational frequencies for 

each group (activators, repressors, all others with balanced expression) were then calculated 

and activators and repressors compared to the balanced group (p=0.02077 for activators vs. 

balanced; p=0.04982 for repressors vs. balanced). The CRR classes with the highest 

percentage of mutations across all PDA patients were enriched on either end of the spectrum 

(most repressive or most active), suggesting that recurrent NCMs are preferentially located 

in CRR classes with the strongest impact on gene expression. These highly active CRR 

classes have the largest effect on gene expression and may, therefore, confer a selective 

advantage to the cell. In addition, we noted that the 6 genes identified from the shRNA 

survival screen (Fig. 3a) were all associated with NCMs in highly repressive CRRs. In 

contrast, every gene that failed to score in the shRNA survival screen was associated with 

highly active CRRs (Fig. 3a).

Pathway dynamics between activating and repressing CRRs

Next, we investigated the patterns of noncoding SUZ12 mutations in our patient cohort, as 

SUZ12 had the highest repressive score and SUZ12 sites were frequently mutated 

(Supplementary Table 4, Fig. 6). We generated two distinct lists of SUZ12-associated genes. 

The first list contained those genes associated with recurrently mutated SUZ12 sites. The 

second list contained those genes associated with SUZ12 sites that never harbored recurrent 

NCMs. We then performed pathway analysis on each gene set to identify differences in 

biological functions (Fig. 7a). We found that genes without recurrent SUZ12 mutations were 

enriched in glycoproteins, intracellular signaling as well as the axon guidance/neuron 

differentiation pathway. In contrast, genes with recurrent SUZ12 mutations were more 

significantly enriched in homeobox genes, transcription factors, Wnt signaling, proto-

oncogenes and the axon guidance/neuron differentiation pathway. Surprisingly, several 

categories, including glycoproteins, intracellular signaling and extracellular matrix, were 

completely absent within the mutant SUZ12 gene set. Therefore, there is specificity for the 
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location of NCMs in PDA, not only for certain CRRs, but also for the corresponding cancer-

associated genes and pathways.

To further characterize pathways downstream of commonly mutated repressive CRRs, we 

performed pathway analysis on genes with and without associated CTBP2 mutations (Fig. 

7a). Genes without CTBP2 noncoding mutations showed a similar pattern of pathway 

regulation as SUZ12. These pathways were markedly enriched in the gene set associated 

with CTBP2 mutations, while alternative splicing and glycoproteins were completely absent. 

We extended this analysis to another repressive CRR with a high mutational frequency, 

SETDB1 (Fig. 6a). Genes associated with recurrent NCMs in SETDB1 binding sites were 

enriched in axon guidance/neuron differentiation, cell adhesion and disease mutation 

pathways. Therefore, mutations in highly repressive CRRs are enriched in PDA and 

selectively associated with genes regulating a core set of biological processes.

We performed a similar analysis for the commonly mutated activator CRRs, including 

KAT2A, BCLAF1, TAF7 and WRNIP1 (Fig. 7b) and again found specificity for the genes 

and pathways that are commonly mutated. For all CRRs, there were significant differences 

in the pathways regulated by genes with or without mutations in a given CRR. KAT2A, 

BCLAF1 and TAF7 shared a very similar pattern of pathway regulation, with significant 

increases in nucleosome assembly/organization, methylation and ubiquitin conjugation, all 

processes involved in chromatin dynamics. This suggests that genes associated with NCMs 

in transcriptional repressors regulate homeobox genes and PDA-associated pathways, while 

genes associated with NCMs in transcriptional activators may regulate transcriptional 

dynamics through modulation of chromatin states.

DISCUSSION

We developed a new computational method, GECCO, to systematically analyze the 

noncoding genome of PDA to uncover recurrent regulatory somatic mutations. We find 

patterns of NCMs associated with genes regulating canonical PDA pathways, but not 

associated with commonly mutated PDA genes. Therefore, NCMs may serve as a novel 

mechanism in cancer cells for regulating pathways critical for tumorigenesis. Furthermore, 

GECCO uncovers mutations correlated with changes in gene expression, including several 

known tumor suppressors and aberrantly methylated genes. GECCO produces a set of high 

confidence calls that enrich for predicted effects on DNase hypersensitivity and transcription 

factor binding, as well as functional effects on gene expression, as experimentally 

demonstrated by luciferase reporter assays. We find enrichment for NCMs in specific CRRs 

and distinct subsets of pathways associated with NCMs in highly repressive and 

transcriptionally active CRRs as identified by our EMS algorithm. To our knowledge, this is 

the first comprehensive analysis of noncoding alterations in PDA, providing novel insights 

into PDA pathogenesis and serving as a counterpart to the information gleaned from large-

scale exome sequencing projects2,3.

Mutational analysis of patient tumors is increasingly informing treatment decisions, whereas 

complimentary techniques, including microarray, RNA sequencing, fluorescence in situ 
hybridization and immunohistochemistry are required to analyze changes in gene or protein 
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expression of cancer drivers that lack coding mutations. As somatic mutations in DNA 

regulatory elements can alter gene expression of cancer drivers, targeted or whole genome 

sequencing may provide clinically useful information for these patients, both in terms of 

therapeutic decisions and clinical prognosis. Our analysis provides the first collection of 

NCMs that correlate with changes in gene expression in PDA. Furthermore, we uncover 

clinical outcome relationships for PTPRN2 and SLC12A8, neither of which has previously 

been implicated in PDA.

Functional validation of NCM-gene expression associations is a critical step in evaluating 

the robustness of an analysis pipeline. Our luciferase reporter assay experiments 

demonstrated that GECCO has a higher validation rate in cancer cell lines than any recent 

study of NCMs15,16. Furthermore, the validation rate in HEK293 cells, a standard cell line 

for luciferase assays, was 64%, concordant with the expected false discovery rate. Finally, 

GECCO accurately predicted the directionality of gene expression changes associated with 

NCMs. NCMs associated with PTPRN2, PDPN, TUSC7, SNRNP and MTERF4 
significantly decreased luciferase expression in one or multiple cells lines, consistent with 

decreased gene expression of these genes associated with NCMs in patient samples. This is 

in contrast to a recent report where the directionality of gene expression changes in the 

luciferase assay was not consistent with the predicted response16. Therefore, GECCO 

represents a significant improvement in the ability to identify functionally relevant NCMs.

Pathway analysis of the gene lists generated by GECCO revealed several unexpected 

findings. Strikingly, we found that the most highly recurrent somatic NCMs were located 

near genes in known PDA-associated pathways, including axon guidance, cell adhesion and 

Wnt signaling, but not the most commonly mutated PDA genes. This suggests that NCMs 

may drive tumor progression through modulation of PDA-specific pathways, providing an 

alternative route for pathway activation and a novel mechanism of tumorigenesis. 

Furthermore, we provide evidence that NCMs in specific regulatory element classes are 

selected for during tumor evolution. These highly mutated regulatory element classes are 

predominantly those with the greatest impact on gene expression. Therefore, clusters of 

NCMs are enriched in gene-proximal regions with the greatest regulatory impact, again 

providing evidence for selection during tumorigenesis.

Pathway analysis of genes near NCMs within these highly mutated regulatory regions shows 

selectivity for PDA pathways. These pathways are not enriched when analyzing genes 

without associated clusters of NCMs, again arguing in favor of selection. Interestingly, many 

transcriptional regulators bind selectively to different regions of the genome in malignant 

versus non-neoplastc cells45. We propose that NCMs found within promoters of PDA 

pathway genes modify regulatory factor binding to alter gene transcription, thereby 

providing an additional mechanism to promote cancer.

ONLINE METHODS

1. Data Acquisition

All data used in this analysis were downloaded from the International Cancer Genome 

Consortium (IGCG) data portal (https://dcc.icgc.org/projects). At our last date of access (Feb 
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11, 2015), simple somatic mutations (SSM) for 405 pancreatic ductal adenocarcinoma 

samples were available from the Australian (PACA-AU) and Canadian (PACA-CA) groups. 

We download the clinical data, SSMs, and when available, sequence-based gene expression 

(EXP-S) data for all 405 patients.

2. Pre-processing

The whole genome sequencing (WGS) required to call SNVs across all 405 patients and the 

whole genome RNA-sequencing required to calculate gene expression were carried out by 

two distinct consortiums, one Canadian and one Australian. All SNV calls (SSMs) and gene 

expression calculations (EXP-S) by these two groups were consolidated by ICGC.

2.1. SNV calls from whole genome sequencing—For each of the 405 patients we 

extracted the chromosome, start location, end location, somatic allele, and mutated allele 

from the list of simple somatic mutations (file: ssm_open.tsv) and converted to bed format. 

Many of the SNVs were redundant within patients. For each patient, the list of SNVs were 

sorted by genomic coordinates and consolidated to contain only a single entry for each 

unique SNV. A subset of patients had extremely low numbers of SNVs (likely due to poor 

sequencing results) or high numbers of SNVs (likely due to hyper-mutated regions, 

unlocalized replication defects, or microsatellite instability). Across all 405 patients the 

number of unique SNVs ranged from 1 to 440,471 with a mean 7,937 and a standard 

deviation of 26,224. In order to remove outliers we eliminated all patients with less than 100 

SNVs (92 patients in total) or an SNV count more than 3 standard deviations away from the 

mean (5 patients in total). This left 308 patients with a mean SNV count of 7,300 and 

ranging from 1,040 to 68,885.

2.2. Gene expression (FPKM) from whole genome RNA-sequencing—Of the 308 

patients that passed the previous filtering step, 96 had expression data available from ICGC. 

For each of the 96 patients, we extracted the normalized read count (FPKM) and Ensembl 

gene id (file: exp_seq.tsv). While the vast majority of genes have expression data across all 

96 patients, there were several thousand Ensembl genes that only contained expression data 

for a subset of patients. In order to streamline and simplify downstream analysis we kept 

only the 50,861 Ensembl genes that were shared by all 96 patients. In addition, there were 

three patients (DO33168, DO35098, DO35100) that had gene expression from either 2 or 3 

independently sequenced samples. For these three patients, the gene expression for each 

gene was calculated by taking the mean across all samples.

3. Analyzing noncoding variants with GECCO

In order to identify potential noncoding cancer drivers, we first used FunSeq2 (v2.1.0) as a 

high level filter to prioritize our SNVs. The unique SNVs for each of the 308 patients were 

converted to bed format and analyzed by FunSeq2 using the command ./run.sh –inf bed –n 
to identify only noncoding variants. This analysis pipeline requires a suite of annotation data 

that is used to make calls and score noncoding variants. These were downloaded from 

(http://funseq2.gersteinlab.org/data/). One of these files, “ENCODE.annotation.gz” contains 

the full list of TFPs/CRRs used in our analysis along with their exact genomic coordinates.
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3.1 Processing recurrently mutated cis-regulatory regions (CRRs)—FunSeq2 

generates a number of output files including Recur. Summary, which contains a list of all 

noncoding elements, the genomic coordinates of these elements, the fraction of patients with 

a mutation in this element, and the full list of patient names along with the genomic 

locations of each mutation. While the ENCODE annotation data provides a number of 

different noncoding elements (enhancers, transcription factor binding sites (TFPs), DNase 

hypersensitivity, etc.) we chose to focus our analysis on TFPs – referred to in this 

manuscript as CRRs – as they were the most highly represented class of elements identified. 

CRR proximal genes were found by intersecting CRRs with genes that had been expanded 

by 2kb at their 5’ and 3’ ends.

3.2 Calculating CRR mutation rates—As described above, the full list of CRRs (121 

distinct CRR classes in total) including their counts and genomic positions can be found in 

“ENCODE.annotation.gz.” GECCO makes two separate calculations across all 121 CRR 

classes using the CRR genomic information: (1) For a given CRR class, it calculates the 

fraction of distinct CRR sites that are mutated within the class and (2) the base level 

mutation rate for each CRR class (the number of mutations in all CRRs of a given class 

divided by the total number of base pairs of all CRRs in a given class). For an individual 

CRR, there are three ways in which GECCO calculates the mutational frequency: (1) by 

summing the number of mutations in a given CRR, (2) by calculating the fraction of bases in 

the CRR that are mutated (i.e. mutation counts normalized by read length), or (3) by 

calculating the fraction of bases in a CRR mutation cluster. Option (3) is computed by first 

determining the cluster size within a CRR, the number of bases required to span all 

mutations in a given CRR. For example, consider a 2kb CRR with 9 mutations. If the two 

most distantly separated of the 9 mutations are 100bps apart then the length of the mutation 

cluster is 100bp. The mutational frequency of the cluster is then computed by dividing the 

number of mutations in that cluster by the size of the cluster (9/100 = 9.0%). This approach 

weights exactly recurrent or proximal mutations more strongly than distant mutations.

4. Pathway analysis

The Database for Annotation, Visualization and Integrated Discovery (DAVID), a functional 

annotation enrichment algorithm for large-scale biological datasets was used for pathway 

analysis, with the following annotation categories: SP_PIR_KEYWORDS, 

GOTERM_BP_FAT, KEGG_PATHWAY, PANTHER_PATHWAY, SMART. A Bonferroni 

corrected p-value of 0.05 was used as a cutoff for enrichment significance.

5. Survival analysis

Median survival was estimated using the Kaplan-Meier method and the difference was tested 

using the log-rank Test. P values of less than 0.05 were considered statistically significant. 

Clinico-pathologic variables analyzed with a P value of less than 0.25 on log-rank test were 

entered into Cox Proportional Hazard multivariate analysis, and redundant variables were 

eliminated using a backward elimination method. Statistical analysis was performed using 

StatView 5.0 Software (Abacus Systems, Berkeley, CA, USA). Overall survival (OS) or 

disease-free survival (DFS) was used as the primary endpoint.
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PTPRN2 Expression level > 4.98 defined as high

SLC12A8 Expression level > 7.03 defined as high

6. Computing differential expression

Differential expression was computed for each recurrently mutated CRR that was within 2kb 

of an Ensemble gene using permutation testing. For each CRR/gene pair, the 96 patients 

with mutation data were split into two groups – patients with mutations in the CRR and 

patients without mutations in the CRR. Using the expression data downloaded from ICGC 

for the gene of interest a t-test is performed to generate a single t-value, the observed t-value. 

The expression values for patients with mutations in CRRs and the expression values for 

patients without mutations are then permuted 100,000 times to generate 100,000 additional 

t-values, the permuted t-values. These t-values generally fit a Gaussian distribution to which 

the observed t-value is then compared to using a two-tailed test. The empirical p-value is 

computed as the fraction of times (x/100,000) that a “permuted t-value” falls further outside 

the Gaussian distribution than the “observed t-value”. Once p-values have been calculated 

for all recurrently mutated genes proximal to CRRs, GECCO estimate q-values (the false 

discovery rate) for each call. This is done using the “qvalue” package in R and measures the 

proportion of false positives incurred given the p-value distribution.

7. Luciferase Reporter Assay and Statistics

150 base pair sequences surrounding specific NCMs (wild type, WT or mutant, MUT) were 

synthesized (Integrated DNA Technologies) and cloned into pGL4.23 (Promega), containing 

a minimal promoter driving firefly luciferase. Five thousand cells per well (HEK-293, 

MiaPaCa2 or Suit2) were co-transfected in 96-well format with the specific WT or MUT 

vector and pRL-SV40P (Renilla luciferase, Addgene #27163) as a normalization control. 

Luciferase activity was measured 48 hours post-transfection with the Dual-Luciferase 

Reporter Assay System (Promega). Values reported are firefly luciferase divided by Renilla 
luciferase. Analytical statistics were generated in Prism 7.0 (GraphPad), and P values are 

from two-tailed unpaired t tests. All cell lines were obtained from ATCC and tested for 

mycoplasma contamination.

8. Computing Expression Modulation Scores (EMS)

Some CRRs bind transcription factors or transcription factor components with well-known 

expression modulation including SUZ12 and CTBP2, which act as transcriptional 

repressors, or BDP1 and BRF1, which act as transcriptional activators. However, many of 

the 121 CRRs used in this study have unexplored or unvalidated directions of expression 

modulation. We developed a method to infer the direction and effect of expression 

modulation for each CRR class by comparing the expression of genes proximal CRRs in a 

given CRR class to the mean expression of all other active genes in the genome.

Many genes are inactive in any given tissue and in a given RNA-seq experiment ~50% of 

genes show low to no expression. For all 96 patients with expression data, we found this also 

to be true with ~50% of genes showing 0 expression. When computing the expression 

modulation for each CRR class we ignored all genes that showed 0 expression in at least 
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90% of patients (86 patients or more). For a given CRR class and for each of the 96 patients 

we compute (1) the mean expression of all genes proximal to CRRs in that class and (2) the 

mean expression of all genes non-proximal to a CRR in that class. For a given CRR class we 

then compute the log of the ratio between (1) and (2) for each of the 96 patients and then 

take the mean of the log ratio for all 96 patients to get a single “expression modulation 

score” for each CRR class. The log of the ratio will be negative if the mean expression of 

genes proximal to a CRR class is lower than the genome average (repression) and will be 

positive if the mean expression of genes proximal to a CRR class is higher than the genome 

average (activation). This calculation is not meant to generate absolute numerical score for 

the repressive or activating activity of a CRR but is instead used to generate a rank-sorted list 

of CRR classes based on their expression modulation.

9. Basset Analysis

Basset is a recently introduced method based on convolutional neural networks to accurately 

predict DHSs from DNA sequence, thus enabling annotation of the influence of mutations 

on accessibility44. We trained the Basset deep convolutional neural network on DHSs from 

164 cell types mapped by ENCODE and the Roadmap Epigenomics projects. From this, we 

predicted the influence of variants on the presence of DNase hypersensitivity in each cell 

type by computing the difference between predictions on sequences with each allele. 

Candidate high impact variants were further analyzed for interrupting known binding sites 

by converted Basset-learned first convolution layer filters to probabilistic position weight 

matrixes by counting nucleotide occurrences in the set of sequences that activate the filter to 

a value that is more than half of its maximum value. We identified the likely binding protein 

for the motifs by querying the CIS-BP database46 (accessed on June 12, 2015) using the 

TomTom v4.10.1 search tool47 and requiring an FDR q-value < 0.1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Identification of recurrent noncoding mutations in PDA
(a) The total number of single nucleotide variants (SNV) was plotted for each patient. (b) 
FunSeq2 was utilized to detect and characterize putatitve somatic noncoding mutations from 

308 PDA whole genome sequences. Mutation counts for each functional category are 

displayed. (c) The number of cis-regulatory region (CRR) mutations (grey bars), and CRR/

total SNV (black points) were plotted for each patient.
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Figure 2. GECCO (Genomic Enrichment Computational Clustering Operation) flowchart
GECCO utilizes noncoding somatic mutation calls from tumor whole genome sequencing 

data to identify clusters of mutations within 2kb of genes, including those that correlate with 

changes in gene expression. GECCO also calculates the mutation rate of gene regulatory 

regions and determines the strength of each regulatory region in terms of the effect on gene 

expression (expression modulation score, EMS). These data can then be used for pathway 

analysis of genes proximal to noncoding clusters and genes downstream of specific 
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regulatory regions. The gene lists can also be interrogated for patient survival analysis when 

coupled to outcome data for detection of clinically relevant interactions.
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Figure 3. Clustered gene-proximal mutations and pathways in PDA
(a) The most common mutational clusters across the patient cohort as determined by 

GECCO, with associated genes; Yes = knockdown promoted cell death in shRNA cancer 

cell line screen. (P denotes PDA-specific); No = no evidence for effect on cell death in 

shRNA cancer cell line screen. (b) Most significant clusters when corrected for cluster size 

as determined by GECCO. (c) DAVID pathway analysis was used to identify regulatory 

processes and pathways from genes associated with recurrent NCMs.
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Figure 4. Recurrent gene-proximal mutations correlate with gene expression changes in PDA
(a) GECCO used gene expression data from matched PDA patients to correlate NCMs with 

changes in gene expression “Mut allele” = mean expression of linked gene in patients with 

associated CRR mutations. “WT allele” = mean expression of linked gene in patients 

without associated CRR mutations. (b) Analysis of overall survival (OS) in PDA patients 

expressing high (upper 2/3) and low (lower 1/3) levels of PTPRN2. Purple dots represent 

patients with high expression of PTPRN2 “at risk” (alive). Red dots represent patients with 

low expression of PTPRN2 “at risk” (alive). (c) Analysis of disease-free survival (DFS) in 
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PDA patients expressing high (upper 2/3) and low (lower 1/3) levels of SLC12A8. (d) Two 

A→C mutations in a regulatory site on chromosome 3 at positions 124,840,671 and 

124,840,678 alter critical nucleotides in an IRF1 and/or PRDM1 binding site. The regulatory 

site lies in an intron of one isoform and promoter of an alternative isoform of SLC12A8. At 

the bottom, heat map displays predicted change in accessibility, considered here as DNase-

seq signal in GM12865. The line plots above measure the maximum (gain) and minimum 

(loss) predicted change; the loss highlights nucleotides that significantly alter the overall 

signal upon mutation as both of these mutations do.
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Figure 5. - Noncoding mutations modulate luciferase gene expression
(a-c) Luciferase reporter assays of WT (black) and MUT sequences (white bars) are shown 

for selected NCMs associated with named genes. For each box-and-whisker plot, center line 

is the mean, box limits are min/max values, whiskers are s.d. Data from a representative 

experiment (n=3 replicates) with a total of n=4 independent transfected cultures for each cell 

line are shown. P values calculated by two-tailed unpaired t test. (*, p<0.05; **, p<0.01; ***, 

p<0.001)
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Figure 6. Gene-proximal NCMs are enriched in specific classes of CRRs
Percentage of CRRs with at least 2 mutations across the patient cohort, corrected for genome 

abundance and size, ordered from left to right by expression modulation score (EMS) (most 

repressive to most active). Dotted line represents mean mutation frequency across all CRRs.
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Figure 7. Gene-proximal NCMs in repressors and activators cluster near distinct subsets of genes
(a) Pathway analysis of genes associated with recurrently mutated repressive (SUZ12, 

CTBP2, SETDB1) sites (red bars), versus those never harboring NCMs in those CRRs (blue 

bars). (b) Pathway analysis of genes associated with recurrently mutated activator (KAT2A, 

BCLAF1, TAF7, WRNIP1) sites (red bars), versus those never harboring NCMs in those 

CRRs (blue bars). AG/ND, axon guidance/neuron differentiation.
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