
The Diverse Roles of Hydrogel Mechanics in Injectable Stem Cell 
Transplantation

Abbygail A. Foster, Laura M. Marquardt, and Sarah C. Heilshorn
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305

Abstract

Stem cell delivery by local injection has tremendous potential as a regenerative therapy but has 

seen limited clinical success. Several mechanical challenges hinder therapeutic efficacy throughout 

all stages of cell transplantation, including mechanical forces during injection and loss of 

mechanical support post-injection. Recent studies have begun exploring the use of biomaterials, in 

particular hydrogels, to enhance stem cell transplantation by addressing the often-conflicting 

mechanical requirements associated with each stage of the transplantation process. This review 

explores recent biomaterial approaches to improve the therapeutic efficacy of stem cells delivered 

through local injection, with a focus on strategies that specifically address the mechanical 

challenges that result in cell death and/or limit therapeutic function throughout the stages of 

transplantation.

Introduction

Stem cell transplantation through systemic or local injection is a promising regenerative 

approach for injury and disease treatment. Despite the relative clinical success of systemic 

stem cell delivery, this strategy often relies on cell homing to the injury or disease site for 

increased efficacy. While local injection strategies do not require cell homing, the clinical 

application of this therapy is limited by low cell viability and poor cell function. Locally 

transplanted cells face several challenges at each stage of the transplantation process. This 

review explores the design of hydrogel systems for improving the therapeutic potential of 

locally injected stem cells with a focus on the role of mechanics throughout the 

transplantation process.

In their native environment, mammalian cells are surrounded by an extracellular matrix 

(ECM), which acts as a structural support and provides biochemical and biomechanical 

signals to regulate cell function. Cells are known to respond to mechanical cues in their 
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microenvironment by altering their proliferation rate [1,2], migration speed [3,4], 

differentiation potential [5], and secretory function [6]. Similarly, the behavior of locally 

injected stem cells is influenced by interactions with their microenvironment. This 

microenvironment can include the native, host ECM as well as an engineered biomaterial. In 

injured or diseased tissues, the host ECM often becomes dysfunctional and may not be 

sufficient to support healing and therapeutic efficacy of transplanted stem cells. Engineered 

biomaterials have the potential to modify the local environment to improve the 

transplantation process. In addition, engineered biomaterials have the potential to improve 

cell viability and function during the local injection process.

Cell transplantation through local injection can be divided into three stages: injection, acute 

post-injection, and long-term survival and function. At each stage of transplantation, cells 

experience mechanical and structural challenges that can result in cell death and compromise 

cell function. For example, during the injection process, cells may experience mechanical 

forces that can damage the cell membrane, while post-injection, cells may experience a loss 

of structural support and hence an absence of mechanical cues. The relative importance of 

these different challenges can vary dramatically depending on the specific clinical 

application [7]. Consequently, engineered biomaterial strategies have been developed to 

address the specific mechanical challenges at each delivery stage. While all cell therapies 

(whether transplantation of stem, progenitor, immature or terminally differentiated cells) 

experience these same mechanical challenges, stem and progenitor cell therapies have the 

additional consideration that mechanical cues can influence their differentiation and 

maturation. Hydrogels have received significant interest as ECM mimics due to their high 

water content and water-swollen networks that allow for facile transport of water-soluble 

biomolecules [8,9] Additionally, these materials have tunable mechanical properties that 

span the range of physiological tissues [10]. While several injectable hydrogels have shown 

significant benefits in stem cell transplantation, there is no current material that is able to 

address all of the mechanical challenges of each transplantation stage in succession.

In the first section of this review, we discuss the challenges for each stage of the 

transplantation process with a focus on the mechanical requirements that can be addressed 

by biomaterials. Several studies have demonstrated that hydrogel mechanics play a critical 

role in successful cell transplantation, and careful consideration of the distinct mechanical 

features of the selected biomaterial can significantly improve therapeutic efficacy. In the 

second section we discuss biomaterial design strategies for stem cell transplantation 

focusing on several new materials designed to address distinct mechanical challenges at 

different stages of the transplantation process. We end with future directions for the design 

of injectable hydrogels focusing on materials that change their properties during the stages 

of stem cell transplantation.

Mechanical Challenges to Successful Stem Cell Transplantation

Stem cells face several distinct mechanical challenges during transplantation that have the 

potential to drastically reduce their viability and therapeutic efficacy. Current protocols for 

local injection generally result in poor cell viability, often with as few as 1–20% of cells 

surviving the transplantation process [11-14]. In this section, the transplantation process is 
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divided into three distinct stages: injection, acute post-injection and long-term survival and 

function to better elucidate the specific mechanical and structural challenges stem cells face 

throughout transplantation (Figure 1a).

Injection

During syringe injection, transplanted cells are exposed to mechanical stresses that can 

result in membrane damage and significant loss of acute viability. Current clinical protocols 

using low viscosity fluids such as saline for local injection through a syringe needle have 

been shown to result in substantial cell death, with up to 40% of cells not surviving the 

injection process [15]. It has been hypothesized that this cell death is primarily caused by 

membrane rupture that occurs as cells are exposed to extensional flow within the syringe 

needle, although shear stress and high pressure are also known causes of cell death [15].

Acute Post-Injection

The therapeutic efficacy of transplanted stem cells is influenced in part by cell survival and 

retention during the acute post-injection stage. The local environment and structure of the 

transplantation site will determine the mechanical signals provided to cells following 

injection. Injury models including spinal cord injury, cranial defects, and stroke cavity 

models, which require injection into a void space, lack a three-dimensional (3D) support 

matrix to promote the survival of adherent cells [16] and prevent cell dispersal. In contrast, 

during injection into dense tissue, such as intramuscular injections, the host tissue may 

provide mechanical support and promote cell survival. However, injection into dense tissue 

requires higher injection pressures and can still result in cell leakage at the transplantation 

site [17]. Additionally, cells may be confronted with several other survival challenges during 

the acute post-injection stage that are not inherently mechanical in nature, including 

hypoxia, low nutrient transport, and the immune and inflammatory response [18-20]. 

However, these challenges may be exacerbated or diminished by the mechanical 

microenvironment. For example, cells can alter their growth factor secretion in response to 

mechanical cues [21], which may assist in surviving hypoxia or inflammation.

Long-Term Survival and Function

Long-term stem cell therapeutic efficacy can be attained by two means: (1) support of 

endogenous tissue regeneration through paracrine effects [22,23] or integration of 

transplanted cells with host tissue [24]. Much of this success is dependent on long-term stem 

cell retention, proliferation, migration, and/or differentiation. All of these process are known 

to be influenced by the mechanical microenvironment in vitro [21,25] suggesting that 

modification of the mechanical microenvironment in vivo may be a strategy to promote 

long-term transplanted cell survival and function. In therapies that rely on paracrine 

secretion for therapeutic efficacy, multiple cell doses over time may be necessary to maintain 

a sufficient level of cell-secreted therapeutic factors, thereby complicating clinical 

translation [26-29]. In therapies that require transplanted cell integration into the host tissue, 

poor differentiation into specialized cell types may limit new tissue formation and function 

[30] and can lead to the formation of teratomas [24,31,32]. Overcoming these challenges 

may require the use of structural biomaterial supports that provide instructive mechanical 

cues to the transplanted cells.
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Material Approaches to Address Mechanical Requirements of Cell 

Transplantation

The different stages of the transplantation process each have unique mechanical 

requirements that can be addressed using biomaterial design strategies to improve stem cell 

transplantation efficacy. In this section, we will outline methods currently employed to 

provide the mechanical support and cues needed throughout the stages of transplantation 

(Figure 1b).

Injection

Microcarriers—Several new biomaterial approaches have been utilized to limit cell death 

that results from membrane damage during the injection stage of transplantation. One 

current approach is the use of hydrogel microcarriers, in which cells are encapsulated within 

small particles, typically spheres, that can be injected through a syringe needle. Cells 

encapsulated in microcarriers are protected from damaging mechanical forces exerted during 

injection, which can improve their acute survival by as much as 2-fold, and thus increase 

their therapeutic potential [33]. Furthermore, delivering stem cells within microcarriers 

enables high local cell densities, which can promote paracrine signaling and enhance 

differentiation that may be important for later stages of the transplantation process. Thus, the 

majority of studies with microcarriers load a high concentration of either single cell 

suspensions or cell aggregates [34,35]. The microcarrier droplets can be produced using a 

number of techniques including ionic crosslinking [36-38], microfluidic droplet production 

[39,40], water-in-oil emulsion [33,41,42], photocrosslinking [39,41], and thermal 

crosslinking [34]. In addition, many of these techniques can be combined to produce more 

complex microcarriers. For example, injectable gelatin-methacrylate (GelMA) microcarriers 

have been designed using microfluidic platforms to generate droplets of controllable sizes, 

which are then crosslinked with ultraviolet light [39,43]. Furthermore, due to their small 

size, microparticles have the ability to act as porous space fillers upon injection into defects, 

which can aid in host tissue integration [40].

Shear-thinning Hydrogels—An alternative approach to microcarrier encapsulation is the 

use of shear-thinning hydrogels, which allow for encapsulation of stem cells through weak 

dynamic interactions (e.g., hydrogen bonding, hydrophobic interactions, electrostatic 

attractions, and host-guest interactions) between the polymer chains prior to cell delivery 

[44-47]. When exposed to shear stress, as experienced during injection, these associations 

disassemble, resulting in a significant decrease in viscosity. Often this crosslink disassembly 

only occurs at the interface of the hydrogel and the syringe, resulting in “shear banding” at 

the interface [46,47]. This allows the rest of the hydrogel to remain intact and undergo “plug 

flow”, thereby protecting encapsulated cells from membrane damaging forces [15]. Several 

shear-thinning hydrogels have demonstrated improved cell survival post-injection including 

alginate hydrogels [15], protein-assembled hydrogels [45,48], supramolecular beta-hairpin 

hydrogels [49], and hyaluronic acid-based hydrogels [50-52]. Using protein-assembled 

hydrogels, acute survival of iPSC-derived endothelial cells increased 2-fold compared to 

saline-delivered cells [48], while encapsulation in hyaluronic acid-based hydrogels lead to 

an ~1.2-fold increase in survival of injected iPSC-derived neural progenitors [52]. These 
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methods aim to improve survival of transplanted cells during the initial stage of 

transplantation, potentially improving overall cell engraftment.

Acute Post-injection

Several new biomaterial strategies have focused on improving cell survival and minimizing 

cell dispersion at the injection site and providing a cell-adhesive scaffold to promote acute 

cell retention within the host tissue. Three-dimensional mechanical support of transplanted 

cells helps prevent cell death due to anoikis, (i.e. anchorage-dependent apoptosis) and can 

prevent cell dispersal from the site of local injection. One approach to providing acute 

mechanical support after injection involves the control of hydrogel gelation kinetics. This 

can be accomplished through strategies including triggered gelation, or the use of shear-

thinning hydrogels that are also rapidly self-healing.

Triggered Gelation—Ideally, gelation should be fast enough to promote homogenous cell 

distribution and acute cell retention at the transplant site, yet slow enough to prevent gelation 

within the syringe or catheter. Several systems have been designed to deliver cells in a 

viscous pre-polymer solution that will be triggered to gel in situ using biological stimuli, 

such as temperature [53], pH [54], ion concentration [55], or applied stimuli, such as light 

[56,57]. Temperature-triggered gelation has been used for a number of stem cell 

transplantation strategies through the incorporation of thermoresponsive polymers with a 

characteristic lower critical solution temperature (LCST) behavior. For example, 

thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) has been routinely used to 

trigger in situ gelation in a number of hydrogel systems due to its LCST phase transition at 

approximately 32 °C. This results in rapid gelation at physiological temperature (37 °C), 

providing an effective approach to enhance cell retention [58,59]. Another material that can 

undergo temperature-triggered gelation is decellularized matrix hydrogels derived from 

native tissue [14,60,61]. In addition, the use of ECM-derived hydrogels capitalizes on the 

presence of tissue-specific biochemical cues and ligands to anchor adherent cells and 

improve cell survival. These materials have been used in several preclinical studies for stem 

cell transplantation based on their rapid in situ gelation. For example, the delivery of MSCs 

encapsulated in hydrogels derived from porcine lung tissue demonstrated increased cell 

retention at 24 hours following intratracheal delivery in a rat model [62].

Photopolymerization (and other mechanisms of triggered gelation using an applied stimulus) 

can lead to spatially controlled formation of crosslinked hydrogels at physiological pH and 

temperature. The incorporation of diacrylate or methacrylate functional groups has been 

shown to facilitate crosslinking and photo-triggered gelation in response to UV or visible 

light [56,57]. UV light has been used to crosslink diacrylate-modified polyethylene oxide 

solutions in situ resulting in increased stem cell retention following transdermal 

photopolymerization [63]. Similarly, other polymers including chitosan [64,65], alginate 

[55,66], gelatin [67,68], and hyaluronic acid (HA) [57] have all been modified with 

methacrylate functional groups to trigger gelation. For example, transdermal 

photopolymerization of methacrylated-gelatin has been shown to deliver and improve the 

integration of MSCs and endothelial-colony forming cells with host tissue for vascular 

therapies compared to non-photocrosslinked hydrogels [68].
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Self-Healing Hydrogels—Shear-thinning, self-healing hydrogels have been used in a 

number of preclinical studies to provide protection during the injection stage and also 

promote acute cell retention post-transplantation. These materials undergo viscous flow 

when subjected to an applied shear stress and time-dependent recovery and reassembly of 

the hydrogel network upon relaxation [44]. When designed appropriately, these materials 

can demonstrate fast self-healing kinetics at the site of injection, thereby resulting in high 

levels of cell retention [31,50]. For example, an injectable hyaluronan/methylcellulose 

hydrogel demonstrated improved transplanted cell retention of iPSCs for spinal cord and 

retinal therapies [30,31]. In another design, hyaluronan modified to undergo rapid host-guest 

self-assembly was shown to improve endothelial progenitor cell retention after myocardial 

infarct [50]. Engineered protein-based self-assembly systems have also been shown to 

promote acute survival post-injection, resulting in a more than 2-fold increase in stem cell 

retention compared to saline-mediated delivery [48,69].

Long-Term Survival and Function

Influencing Stem Cell Differentiation—A large body of mechanotransduction research 

has studied the role of 2D and 3D hydrogel mechanics on stem cell differentiation and 

function, with substantial emphasis placed on MSC differentiation. Numerous studies have 

shown that substrate stiffness heavily influences stem cell fate, with compliant materials 

generally promoting soft tissue lineages (e.g. neural and fat cells) and stiffer materials 

leading to hard tissue lineages (e.g. bone cells) [25,70-73]. Substrate stiffness has been 

shown to play a role in stem/progenitor cell differentiation [51,74] and progenitor cell 

function [75]. For example, when cultured over a specific stiffness range, cardiac progenitors 

have enhanced electrical and contractile function [70,76,77]. Little of this work has been 

translated in vivo as these materials have been designed specifically for in vitro 
mechanotransduction studies. Complicating their direct application into clinical therapies, 

the mechanical cues experienced by transplanted cells may include both the mechanical 

properties of any engineered matrix, as well as that of the endogenous tissue. Furthermore, 

the mechanical cues of endogenous tissue may include aberrant signaling due to matrix 

stiffening (e.g. fibrosis) or matrix weakening (e.g. unchecked proteolysis) [78,79]. One 

recent study using injectable alginate hydrogels suggests that bulk matrix stiffness 

differentially promotes osteodifferentiation of transplanted MSCs and new bone formation in 

a cranial defect model [80], similar to results predicted by in vitro models [81]. In 

complementary work, improved differentiation and integration of transplanted muscle stem 

cells was observed when cells were transplanted on hydrogel constructs with an ideal 

stiffness range [74].

In addition to material stiffness, hydrogel degradation and matrix remodeling can play a 

significant role in stem cell behavior and differentiation [1]. MSC spreading and survival 

have been shown to depend on the degree of hydrogel degradation [82], which can influence 

stem cell fate [83]. For example, MSC-mediated degradation of a 3D matrix influences 

differentiation by altering the ability of cells to generate traction within the 

microenvironment [84]. Tuning of hydrogel degradation has been used to promote MSC 

differentiation towards chondrogenic lineages, resulting in improved deposition of 
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neocartilage ECM, which may prove beneficial towards long-term integration of 

transplanted cells [85].

Beyond the intrinsic mechanical properties of the matrix, the dynamic mechanical 

microenvironment is also known to impact cell differentiation and maturation processes 

[86,87]. For example, several in vitro studies have demonstrated that mechanical loading of 

stem cells through compression, tension, or shear can lead to differentiation into osteogenic 

[88-90], myogenic [91-93], or vasculogenic [94-96] phenotypes. These studies suggest that 

dynamic in vivo mechanical cues must be considered for specific clinical applications.

Influencing Stem Cell Secretome—For many potential regenerative medicine 

therapies, the transplanted cells may not directly participate in regenerating the damaged 

tissue, but instead function through the secretion of paracrine signals that promote host 

tissue regeneration [22,97]. Therefore, several studies have shifted focus to the therapeutic 

potential of stem cells based on their secretion of pro-survival and pro-regenerative factors 

[22,23,26,97]. Recent work has demonstrated the use of hydrogel design strategies to 

enhance the secretory profile of growth factors, chemokines, and cytokines from stem cells, 

also known as their secretome [21,98-101].

Hydrogel mechanical properties, such as stiffness and degradation, have been suggested to 

influence stem cell secretion. For example, substrate stiffness has been shown to regulate 

MSC secretion of paracrine signals, with intermediate and stiffer substrates (10-40 kPa) 

leading to increased levels of pro-angiogenic factors interleukin 8, vascular endothelial 

growth factor, and angiogenin compared to more compliant substrates (E ~ 0.5-2 kPa) 

[21,99]. Similarly, hydrogels with intermediate elasticity were found to significantly 

increase the secretion of pro-angiogenic factors from adipose-derived stem cells [102]. 

Unfortunately, increasing hydrogel stiffness and crosslinking density often results in slower 

hydrogel degradation kinetics [85,103]. With a decrease in hydrogel degradation, there may 

be an associated decrease in the diffusion of secreted soluble factors, thus limiting the 

therapeutic benefit of transplanted stem cells [104].

Future Directions

Currently no universal material fulfills all of the mechanical needs to improve stem cell 

survival and functionality during all three stages of transplantation. While some material 

mechanical properties may be needed for enhanced long-term retention and differentiation, 

these same mechanical properties may limit success in the earlier transplantation stages. 

Therefore, a promising future research direction is the development of biomaterials that can 

alter their mechanical properties over time to achieve diverse mechanical requirements 

throughout the multiple stages of transplantation.

One approach to modify biomaterial properties over time is the use of dual-stage or multi-

stage crosslinking strategies. For example, several shear-thinning and self-healing hydrogels 

have been designed to undergo a second stage of crosslinking, and hence mechanical 

stiffening, in response to various stimuli. Temperature is a common stimulus to induce 

secondary crosslinking in situ, since many self-assembling hydrogels can be modified to 
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include a thermoresponsive element [30,58,105]. In this approach, cell viability is improved 

during the injection stage due to the shear thinning mechanical properties, acute cell 

retention is improved during the acute post-injection stage due to the rapid self-healing 

kinetics, and the temperature-triggered secondary crosslinking increases long-term cell 

survival due to the decreased degradation rate [58]. Alternatively, covalent crosslinking can 

be used as a secondary crosslinking mechanism to reinforce and strengthen injectable 

hydrogels [67,106,107]. For example, HA can be modified to undergo a first-stage of guest-

host self-assembly followed by a second-stage of covalent crosslinking to prolong material 

retention and to improve integration with host tissue [67,107].

A second approach to modulating biomaterial mechanics and structure over time is to 

engineer complex degradation patterns into the hydrogel. For example, composite alginate 

hydrogels were created with regions that were fast degrading surrounded by a slower 

degrading material for use in MSC transplantation [80]. In situ, the fast-degrading regions 

created voids that enhanced cell survival through increased nutrient transport and cell 

migration across the host-transplant interface [80]. Meanwhile, the slow-degrading regions 

provided long-term mechanical support to promote osteogenic differentiation.

In the future, it is expected that creative biomaterials chemistry will be combined with novel 

microfabrication techniques to design a broad array of biomaterials that can stiffen and/or 

weaken over time at the length-scales and time-scales required to support all stages of stem 

cell transplantation. For example, a rich array of photoactive chemistry has already been 

employed in the design of in vitro biomaterials that exhibit this so-called “4D” control of 

mechanical properties [108,109].

Conclusion

In conclusion, a wide range of hydrogels with tunable mechanical properties are being 

developed to overcome the different mechanical challenges facing stem cells during each 

stage of transplantation: injection, acute post-injection, and long-term survival and function. 

While no universal material is currently capable of addressing all of the mechanical 

requirements, a promising future direction is the development of biomaterials that can adjust 

their mechanical properties for multiple transplantation stages. Thus, while current 

injectable biomaterials are already demonstrating that they can significantly improve 

transplanted stem cell viability and function, future innovation in biomaterials design is 

expected to even further enhance the therapeutic efficacy of transplanted stem cells.
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Highlights

• Stem cell transplantation by local injection has seen limited clinical success

• Different transplantation stages present different mechanical challenges

• Hydrogels with tunable mechanics can overcome mechanical challenges at 

each stage
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Figure 1. Comparison of stem cell delivery using a liquid or hydrogel carrier at each stage of 
transplantation
A) During injection, cells in a liquid carrier are exposed to mechanical forces that can 

damage the cell membrane and result in decreased cell survival. Post-injection, cells can 

settle and aggregate in the defect site without the structural support to promote cell adhesion. 

Long-term survival and function can be diminished without mechanical cues to promote 

transplanted cell proliferation, migration, differentiation, and secretion. B) Cells 

encapsulated in a hydrogel carrier can be protected from mechanical forces exerted during 

the injection stage. Post-injection, cells can adhere and spread within a hydrogel support 

matrix throughout the defect site. Finally, long-term mechanical cues from hydrogels can 

support transplanted and endogenous cell migration into and out of the defect, as well as 

promote stem cell proliferation, differentiation, and secretion for tissue regeneration.
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