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SUMMARY

Diffuse large B cell lymphoma (DLBCL) is the most common form of blood cancer and is 

characterized by a striking degree of genetic and clinical heterogeneity. This heterogeneity poses a 

major barrier to understanding the genetic basis of the disease and its response to therapy. Here, 

we performed an integrative analysis of whole exome sequencing and transcriptome sequencing in 

a cohort of 1001 DLBCL patients to comprehensively define the landscape of 150 genetic drivers 

of the disease. We characterized the functional impact of these genes using an unbiased CRISPR 

screen of DLBCL cell lines to define oncogenes that promote cell growth. A prognostic model 

comprising these genetic alterations outperformed current established methods: cell of origin, the 

International Prognostic Index comprising clinical variables, and dual MYC and BCL2 expression. 

These results comprehensively define the genetic drivers and their functional roles in DLBCL to 

identify new therapeutic opportunities in the disease.

eTOC Blurb

An integrative analysis in 1001 newly-diagnosed DLBCL patients identifies 150 genetic drivers 

with functional characterization using an unbiased CRISPR screen in DLBCL cell lines, and 

connects with clinical outcome.
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INTRODUCTION

Diffuse large B cell lymphoma (DLBCL) is the most common hematologic malignancy, with 

an annual incidence of over 100,000 cases worldwide. Although more than half of these 

patients may achieve long-term remission, the majority of the remaining patients succumb to 

DLBCL. Application of next generation sequencing has revealed a striking degree of 

molecular and clinical heterogeneity in DLBCL (Zhang et al., 2013).

The heterogeneity of DLBCL has imposed several major limitations on previous genetic 

studies (Lohr et al., 2012; Morin et al., 2011; Pasqualucci et al., 2011; Zhang et al., 2013). 

First, sample-size limitations of earlier studies have hampered the discovery of low-

frequency, but pathogenetically important mutations. Systematic pan-cancer analysis has 

indicated that 400 tumor-normal DLBCL pairs would be needed to comprehensively 

discover all the genes mutated at a frequency of 5% or higher with greater than 90% power 

(Lawrence et al., 2014). Second, defining the link between genetic mutations and clinical 

outcome has been challenging. Third, even as the genetic alterations are being defined, the 

functional impact of these mutations and their role in promoting the growth of lymphoma 

cells remains unclear, even though these are critical considerations for exploring 

therapeutics.

In this study, we sought to comprehensively define the genetic drivers of DLBCL and their 

association with functional and clinical outcomes through whole exome and transcriptome 

sequencing of tumors from 1001 newly diagnosed patients treated uniformly with rituximab-

containing regimens. We further characterized the downstream functional impact of genes 

using an unbiased CRISPR screen in DLBCL cell lines.

RESULTS

Discovery of genetic drivers in DLBCL

We started with a discovery phase of identifying genes mutated in DLBCL through whole 

exome sequencing of 1001 DLBCL and 400 paired germline DNAs. The clinical 

characteristics of these patients are described fully in Table S1. The sample size of 400 

tumor-normal pairs provided nearly 100% power for the discovery of genes mutated in 10% 

of patients and over 90% power to detect genes mutated in 5% of DLBCL patients 
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(Lawrence et al., 2014). To increase the sensitivity and robustness of our discovery of driver 

gene mutations, we added 102 previously described tumor-germline pairs (Lohr et al., 2012; 

Morin et al., 2011; Pasqualucci et al., 2011; Zhang et al., 2013) to our set of 400 paired 

cases. These 502 paired tumor-germline cases represented a primary discovery set for 

identifying genetic drivers in DLBCL with the remaining cases serving as a validation set to 

ensure the reproducibility of the findings and to characterize the frequency of genetic events 

and clinical associations in these driver genes. In addition to single nucleotide variants 

(SNVs) and insertions/deletions (indels), we also characterized copy number alterations 

from whole exome sequencing data (Magi et al., 2013). A comprehensive exome sequencing 

quality summary is presented in STAR methods, Table S1 and Figure S1–S2. We verified the 

accuracy of our variant identification through Sanger sequencing of 1130 events, 

representing 61 genes with 90% concordance (Table S1).

The distribution of somatic alterations in tumor-normal pairs were used to identify 

(Lawrence et al., 2013) 150 putative driver genes that were recurrently mutated in DLBCL. 

We then defined genetic alterations for all 1001 DLBCLs corresponding to these 150 genes, 

identifying variants that meet the criteria for driver mutations as described (Lawrence et al., 

2013; Papaemmanuil et al., 2016). The mean number of mutations per DLBCL case was 

7.75. The individual variants identified by patient are listed in Table S1, with copy number 

and gene-level alterations summarized in Table S1.

The top 60 most frequently mutated genes are shown in the mutational heatmap in Figure 

1A. Genes frequently exhibited a pattern of either predominant missense and/or copy 

number gains consistent with an oncogene (e.g. BCL2, CARD11, and IRF4), or truncating 

mutations and/or copy number losses consistent with a tumor suppressor gene (e.g. SPEN, 

CDKN2A, and TNFAIP3).

Figure 1B summarizes the International Prognostic Index (IPI) (Shipp, 1993) score, initial 

response to therapy (complete response or not), and the cell of origin subsets of DLBCL, 

activated B cell-like (ABC) and germinal center B cell-like (GCB) DLBCL. When the cases 

were ordered in descending order by gene mutation frequency, there were no obvious 

patterns detectable in the corresponding clinical data. The large sample size in our study 

enabled not only the identification of driver genes in DLBCLs, but also provided clarity on 

the types of mutations in known driver genes.

Cell of origin effects in DLBCL

We defined the lineage-based subgroups of DLBCL using RNAseq to generate expression 

data in 775 patients for whom adequate material was available. Using gene expression to 

distinguish cell of origin (Wright et al., 2003), we identified 313 ABC DLBCLs and 331 

GCB DLBCLs, while the rest were unclassified DLBCLs (Figure 2A, Table S2).

We validated the efficacy of the RNAseq-based classifier through two complementary 

approaches. First, we performed Nanostring assays (Scott et al., 2014) in 200 of these cases 

to determine cell of origin. We found excellent agreement between the expression data and 

the cell of origin calls generated by RNAseq and Nanostring (Figure 2B, top panel, 
R2=0.87, p<10−6). We also compared the RNAseq classifier with the 
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immunohistochemistry-based Hans algorithm (Hans et al., 2004) commonly used to 

distinguish cell of origin. In 654 cases (Figure 2B, bottom panel, p<10−6) that we tested 

using immunohistochemistry for IRF4, BCL6 and CD10, we found that the RNAseq 

classifier score was significantly different between the two Hans algorithm classes. As 

expected, ABC DLBCLs had worse overall survival compared to GCB DLBCLs in our 

study (P=0.002, log-rank test). These data indicate that RNAseq can be reliably used to 

distinguish the DLBCL cell of origin subsets.

The connectivity of DLBCL driver genes

We further examined the differences in mutational frequencies among the ABC and GCB 

DLBCL subgroups. We found that these two subgroups shared the vast majority of driver 

genes at statistically indistinguishable frequencies. However, 20 genes were differentially 

mutated among the two groups (Figure 2C, Table S2) including EZH2, SGK1, GNA13, 
SOCS1, STAT6 and TNFRSF14 which were more frequently mutated in GCB DLBCLs, 

while ETV6, MYD88, PIM1 and TBL1XR1 were more frequently mutated in ABC 

DLBCLs.

We examined pairwise overlaps using Fisher’s test and mutual exclusion (Leiserson et al., 

2016) among the 150 DLBCL driver genes. 61 genes had statistically significant 

relationships with other driver genes (p<0.01, Table S2), depicted in the network in Figure 

2D. We noted a number of interesting features, including subnetworks associated with COO 

in DLBCL that generally exhibited mutually exclusive mutation patterns, as well as a larger 

network of genes shared between the subgroups. For instance, MLL2 mutations occurred in 

a largely exclusive fashion with MYC, while TP53 mutations occurred in a mutually 

exclusive fashion with KLHL6, implicating biologically relevant models for DLBCL.

Functional genomics through CRISPR Screening

CRISPR screening has emerged as a powerful method for identifying critical functional 

dependencies in vitro (Koike-Yusa et al., 2014; Shalem et al., 2014). We selected a total of 

six cell lines including three ABC DLBCLs (LY3, TMD8 and HBL1), two GCB DLBCLs 

(SUDHL4 and Pfeiffer) and one Burkitt lymphoma cell line (BJAB) that phenotypically 

resembles GCB DLBCLs.

We utilized the GeCKO v2 genome-wide human single guide (sgRNA) library (Shalem et 

al., 2014) containing over 120,000 sgRNAs targeting 19,050 protein coding genes to 

transduce three replicate populations from each cell line with the complete sgRNA library. 

The schematic for our CRISPR screen is shown in Figure 3A. Each gene was targeted by six 

distinct sgRNAs in Cas9 expressing DLBCL cells with cell growth allowed to proceed for 

14 population doublings. At the end of these experiments, we expected that cells expressing 

sgRNAs that target oncogenes promoting cell growth and proliferation would be selectively 

depleted from the cell population, whereas cells expressing sgRNAs that target tumor 

suppressor genes inhibiting cell growth and proliferation would be selectively enriched in 

the cell population.
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We sequenced replicate populations at two time points (Figure 3A; Early: after transduction, 

Late: after 14 population doublings) to observe changes in sgRNA frequency over time. The 

resulting changes were then used to infer the magnitude and directionality of fitness effects 

associated with targeted gene knockout in DLBCL cell lines, with the ultimate goal of 

broadly identifying genes essential to the development and/or maintenance of DLBCL. High 

throughput sequencing of sgRNA libraries amplified from plasmid sequences was used to 

determine sgRNA abundance for populations at each time-point. Summary statistics of 

sgRNA sequencing library quality are detailed in the STAR Methods and Figure S3.

We identified 1956 “essential genes” whose silencing resulted in significantly decreased cell 

fitness in at least one cell line (see Table S3 for exhaustive list). We ranked all the genes 

based on their CRISPR score, a measure of the degree of alteration in each gene as a 

function of altered abundance of the guide RNAs targeting that gene (Figure 3B). We found 

that the genetic drivers identified through whole exome sequencing were disproportionately 

at the extremes of the distribution (p=3×10−5). The genes that were depleted in the screen 

and therefore implicated as oncogenes critical to cell-growth across the majority of DLBCLs 

included MYC, RHOA, SF3B1, MTOR, and BCL2. Among genes that were enriched in the 

screen and therefore implicated functionally as tumor suppressor genes, we noted TP53, 
MGA, PTEN and NCOR1. Separately, we examined the association of genomic copy 

number and the guide RNAs that were significantly altered in our screen (Figure S3) to rule 

out copy number alterations as a source of artefactual results (Aguirre et al., 2016). None of 

the essential driver genes were found within genomic regions identified by our analysis as 

potentially influenced by copy number amplification. Thus, we concluded that the decreased 

fitness resulting from essential driver gene knockout reflects the functional importance of 

these genes in the context of DLBCL.

In all, there were 35 driver genes whose knockout resulted in decreased viability of DLBCL 

cells, identifying them as functional oncogenes (Figure 3C). Nine of these driver genes were 

found to be important in a subtype-specific fashion. Knockout of EBF1, IRF4, CARD11, 

MYD88 and IKBKB was selectively lethal in ABC DLBCL whereas knockout of ZBTB7A, 
XPO1, TGFBR2 and PTPN6 was selectively lethal in GCB DLBCL. These data provide 

critical clues to the functional dependence of DLBCL on particular oncogenes and suggest 

that small molecule inhibitors of these oncogenes may provide therapeutic benefit in 

affected DLBCL patients. All of these genes were well-expressed in DLBCLs. Of the 35 

CRISPR driver gene hits, 9 genes are direct targets of the therapeutic drug targets either in 

human clinical trials or already in use for another indication. Importantly, 36% of the 

DLBCL patients have genetic alterations in these 9 drug targets and would potentially 

benefit from targeted therapy.

Gene set enrichment analysis of the significant driver genes (Table S3) identified four 

functional groups, including Signaling (e.g. MTOR, PIK3R1, PIM2, BTK), Cell growth (e.g. 

MYC, CHD8, BCL2), B cell development (e.g. EBF1, IRF4, PAX5, POU2F2, YY1), and 

Transcription/Translation (e.g. SF3B1, XPO1, HIST1H1E). Importantly, we observed that 

the lethal effects of knocking down these genes were not limited to cell lines that harbored 

alterations in these genes, suggesting that these driver genes represent favored pathways for 

promoting proliferation in DLBCL.
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Gene expression signature associations with genetic alterations and outcome

Gene expression profiling has long been used to define subtypes and understand the 

heterogeneity within DLBCL. Microarray-based gene expression studies have identified cell 

of origin subgroups (Alizadeh et al., 2000), as well as gene expression signatures derived 

from host inflammatory response (Monti et al., 2005), stromal tissues (Lenz et al., 2008) as 

well as other biological processes. However, the connections between these gene expression 

signatures and genetic alterations is largely unknown.

We first sought to comprehensively define the relevant gene expression signatures across our 

DLBCL cohort by performing RNA sequencing on all tumors for which RNA was available 

(N=775). From these cases, we defined a core set of 625 samples (STAR Methods) for 

integrative analysis.

Figure 4A provides an overview of the integrative expression analysis. We began the 

analysis with a comprehensive universe of nearly 9500 annotated gene sets from widely used 

gene set databases (Kegg, Reactome, MSigDB), as well as several lymphoma-specific gene 

signature sources (Lenz et al. 2008, Monti et al. 2005, and Shaffer et al.). We first identified 

annotated gene sets that showed a pattern of high correlation among the constituent genes in 

our dataset, indicating that these gene sets represented processes that are co-regulated, as 

well as variable, across DLBCL tumors. We found that 1228 gene sets exhibited such 

patterns of co-regulation. In addition to the observed high correlation among their 

constituent genes, the vast majority of these 1228 gene sets were strongly correlated with 

each other. The high inter-gene set correlation indicated a high degree of redundancy 

between these gene sets, likely reflecting their origin from shared biological processes. To 

reduce this observed redundancy and focus on distinct gene expression sets that described 

the underlying biology, we applied affinity propagation clustering (Frey and Dueck, 2007) to 

define the exemplars that essentially replicated the patterns of the members of the cluster. 

Application of affinity propagation clustering resulted in 31 unique clusters with cluster 

assignments for all gene sets. This analysis identified 31 non redundant gene clusters that 

each comprised highly correlated gene sets (Table S4), as well as exemplar gene sets which 

represents each cluster (Figure 4B). Our results recapitulated a number of described patterns 

underlying DLBCL gene expression. The cell of origin-derived ABC-high and GCB-high 

signatures were generally expressed in a mutually exclusive fashion. In addition, the 

signature clustering analysis also revealed two broad classes of gene sets. The first class 

included signatures representing many immune cell types (regulatory T cells, myeloid cells, 

NK cells) and stromal connective tissue (epithelial and endothelial cells). This group 

included the Monti Host Response signature (Monti et al., 2005), as well as the Lenz 

Stromal 1 and Stromal 2 signatures (Lenz et al., 2008). The second class included signatures 

related to tumor cell processes including proliferation, transcription, translation, DNA 

replication, cell cycle, as well as the Monti BCR and Oxidative Phosphorylation signatures 

(Monti et al., 2005).

For each of these gene set exemplars, we identified the genetic alterations associated with 

high and low expression. Figure 4C shows a heatmap of signatures vs. mutated genes 

(mutations and copy number alterations). These associations demonstrate a number of 

interesting patterns including the association of RHOA and MYC with proliferation-related 
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signatures. The expression of many signaling pathways such as PI3 kinase did not reliably 

associate with specific mutations in PIK3R1, PIK3CD or PTEN suggesting that expression 

patterns from non-malignant cells may confound the effective measurement of these 

associations. There was no association between the expression of stromal signatures and 

overall mutational burden (p=0.4).

We further investigated the relationship of our CRISPR hits and these gene sets. We found 

that gene sets related to cancer-related processes (e.g. oxidative phosphorylation, DNA 

replication, cell cycle progression, RNA processing) demonstrated significant enrichment of 

the CRISPR identified driver genes. Strikingly, no enrichment of CRISPR hits were found in 

the immune and stromal gene sets. Finally, we tested each of the cluster exemplar signatures 

for associations with overall patient-survival. Figure 4D annotates the significant 

associations for all gene expression clusters. As expected, the GCB DLBCL signature was 

associated with better overall survival. Interestingly, the signatures in the stromal and 

immune response group (e.g. Regulatory T Cells) tended to associate with better survival, 

while the signatures in the proliferation and B cell group tended to associate with worse 

survival (e.g. MYC/Nucleotide Biosynthesis). The complete list of associations is listed in 

Table S4.

Clinical characteristics of DLBCL driver genes

Overall survival following diagnosis and initial treatment is shown in Figure 5A. The 

clinical risk groups of the international prognostic index (IPI) was highly prognostic in our 

patients (p<10−6), with clear distinctions in survival for the low, intermediate and high risk 

groups. The cell of origin distinction was found to be prognostic in our data (Figure 5A).

High expression of MYC and BCL2 has been associated with worse prognosis (Green et al., 

2012; Johnson et al., 2012). High expressors were defined from RNAseq data as MYC-high 

and BCL2-high and were significantly associated with survival (Figure S4). Double 

expressors were defined as samples that have both high expression of MYC and high 

expression of BCL2 (Figure 5A). We assessed the independence of ABC/GCB subgrouping 

and double expressors (high MYC and BCL2) and found that ABC/GCB status does not 

further stratify the double expressors (Figure S4).

We separately examined the association of translocations in MYC and BCL2 with mutations 

and expression by performing fluorescent in situ hybridization (FISH) using both genes to 

define translocations involving the immunoglobulin locus and MYC and BCL2 (performed 

separately). MYC translocations are associated with mutations and high expression of MYC, 

while translocations in BCL2 were associated with mutations and amplifications (Figure 

S4).

The potential association of mutations with clinical outcome has largely been unexplored. 

We first examined the association of specific mutations and survival among all DLBCLs. We 

found that MYC mutations were strongly associated with poorer survival, as were mutations 

in CD79B and ZFAT. Mutations in NF1 and SGK1 were associated with more favorable 

survival. We further examined the association of different mutations and survival within 

ABC and GCB DLBCL. Genetic alterations in KLHL14, BTG1, PAX5 and CDKN2A were 
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associated with significantly poorer survival in ABC DLBCL. Alterations in CREBBP was 

associated with favorable survival in ABC DLBCLs. In the GCB DLBCL group, genetic 

alterations in NFKBIA, NCOR1 were associated with poorer prognosis while alterations in 

EZH2, MYD88, and ARID5B were all associated with significantly better prognosis (Figure 

5B). The complete list of genes associated with survival is in the Table S5.

We have developed an interactive webtool (dlbcl.davelab.org) for survival analysis using 

clinical and genomic features. Our large dataset provided the opportunity to directly examine 

the combinatorial and potential confounding effects of MYC, BCL2, and cell of origin, 

along with other genetic alterations.

We developed a multivariate supervised learning approach for defining the association of 

survival with combinations of genetic markers (150 genetic driver genes) and gene 

expression markers (cell of origin, MYC, and BCL2). Our method is summarized in Figure 

5C and STAR methods. We first enumerated all 313 possible combinations, that involved up 

to 3 separate genetic and gene expression markers and affected a minimum of 20 patients, as 

inputs for predictive model for survival (Zou and Hastie, 2005).

The individual components of the model are depicted in descending order of their 

association with poor survival in Figure 5D. MYC genetic alterations combined with MYC 
expression defined the subset with the least favorable prognosis in DLBCLs, while GCB 

DLBCLs with CD70 alterations had the most favorable prognosis. Each component in the 

model was defined so as to be prognostically independent from all others to collectively 

identify subgroups that cover the entire set of DLBCL cases. These features were combined 

into a Cox proportional hazards model to generate a prediction score, and the DLBCL cases 

were divided into three subgroups based on their predicted risk. The full list of these 

combinatorial features along with sample-level information and model coefficients is 

provided in Table S5.

We validated our predictive modeling approach using an independent test set (20% of the 

data). The genomic model was highly significant in distinguishing patients with high vs. low 

risk of death in the test set (p=8×10−5; Figure 5E; Table S5). In addition, we also used 5 fold 

cross-validation repeated 100 times to gain a robust estimation of model performance, 

finding it was highly statistically significant in distinguishing the survival groups (median 

logrank p=8×10−6). The integrative model strongly outperformed the other models based on 

genetic alterations (“DNA only”) or expression (“RNA only”) alone (Figure 5F). The 

genomic risk model, which used combinatorial features, also strongly outperformed a model 

with the same input features (DNA+RNA), but with no combinations used (Figure S5), 

underscoring the importance of examining interactions between different genomic features 

for evaluating a patient’s risk.

We further examined the performance of the genomic model in the known risk groups that 

are known to influence survival: cell of origin, double expression of MYC and BCL2, and 

IPI. Our genomic model was able to discern patients with significantly distinct outcomes 

within each group (Figure 5G, p<10−3 in all cases). These data indicate that our genomic 
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predictor provides robust prognostic information that is not currently captured by widely 

used clinical and expression-based models.

Comparison of clinical vs. genomic risk

The hazard ratios of the different survival models in DLBCL are compared in Figure 6A for 

cell of origin, MYC and BCL2 separately and together, as well as the clinical risk (IPI) and 

genomic risk models. The genomic risk model outperformed all of these existing risk 

predictors in DLBCL. Next, we examined the time-dependent effects of the genomic model 

and IPI for DLBCL patients who survived for at least one, three or five years (Figure 6B). 

We found that the while IPI was highly prognostic in early years, its effect waned as a 

function of time. In contrast, the genomic risk model had significant prognostic value for 

predicting longer term mortality. These data indicate that the effects of IPI are strongest in 

predicting early mortality, whereas genomic risk is effective in predicting both early and late 

mortality.

We separately examined the survival effects of response to initial therapy. We found that 

response to initial therapy was significantly associated with survival, with median survival 

for complete responses being >12years, while the median survival for partial (2 years) and 

no responses (1 year) being drastically lower (Figure 6C). We also observed a pattern of 

continued mortality in patients achieving a complete remission, suggesting that for a large 

proportion of patients, achieving a complete remission does not necessarily indicate a cure. 

Both IPI and genomic risk models are significantly associated with response to initial 

therapy (Figure 6D), with IPI being more predictive. The genomic risk model has a higher 

percentage of high risk patients in the complete response group compared to IPI. We 

hypothesized that while the complete responders have a generally favorable prognosis as a 

group, this group still harbors a significant fraction of patients with early mortality that can 

be identified by the genomic risk model. To test our hypothesis, we examined survival for 

the predicted risk models stratified by clinical responses (Figure 6E). The genomic risk 

model was highly prognostic within each of the clinical response groups indicating that the 

genomic profile of a patient strongly influences their prognostic risk, regardless of their 

initial response to therapy.

DISCUSSION

The genetic heterogeneity of DLBCL has led to diverse approaches to classification and 

prognostication, and presented challenges in the development of effective new therapies. By 

enrolling 1001 DLBCL patients, we designed a study that is adequately powered to identify 

genetic drivers and their clinical significance. CRISPR screening provided a powerful 

approach to probing the functional role of the genetic drivers, identifying the driver genes 

that directly affect cell survival.

Of the 150 driver genes that we identified, 27 genes including SPEN, KLHL14 and MGA 
that have not been previously implicated in DLBCL to our knowledge. In addition, a number 

of genes such as CDKN2A and RB1 were thought to be altered in DLBCLs through copy 

number alterations were also revealed to be recurrent targets for function-altering mutations. 

While there is considerable interest in nominating genes for therapeutic targeting using 
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mutational and ontology data, our data indicates a considerable need for caution. For 

instance, CRISPR-based knockout of several therapeutically targetable NOTCH2, PIK3CD 
and JAK2 did not have a significant impact in the growth of DLBCL cells. These findings 

suggest that such oncogenes may play a role in early pathogenesis or another cancer related 

function that may not be easy to target directly in DLBCL. On the other hand, functional 

screening established a role for a number of genetic drivers as potentially targetable genes in 

DLBCL.

Our study informs therapeutic development in several ways. First, our data provide a 

comprehensive approach to risk-stratification, distinguishing DLBCL patients who benefit 

from standard therapy from those who are expected to experience poor outcomes. Secondly, 

our data indicate that nearly 36% of DLBCL patients have a genetic alteration that may 

inform sensitivity to currently available therapies. Our genomic risk model can be applied 

clinically using existing assays, through the measurement of cell of origin, BCL2 and MYC 

expression and targeted sequencing of a panel of DLBCL driver genes. Our data also 

provide the context for understanding outcomes in clinical trials of targeted therapy. For 

instance, while MTOR mutations are prevalent in DLBCL, those patients tend to have 

generally good outcomes, especially in the GCB subtype. Since patients with relapsed 

DLBCL comprise the vast majority of patients who are enrolled in clinical trials, many such 

trials may be missing the DLBCL population that harbors the target (e.g. MTOR), but 

respond well to standard therapy, potentially contributing to a negative trial that fails to show 

efficacy of these agents. Finally, we anticipate that our work will provide a starting point for 

hypothesis-driven biological modeling of different gene combinations that contribute to poor 

risk DLBCLs to better understand their combined effects, and aid in developing new 

therapeutic approaches.

Genetic heterogeneity is a defining feature of DLBCL. Our study demonstrates the benefits 

of applying genomic methodologies to large, well-characterized cohorts of cancers to 

discern patterns that are not possible with smaller studies. Our approach has identified 

clinical and functional drivers of DLBCL that are prerequisites to improving outcomes in the 

disease.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Sandeep Dave (sandeep.dave@duke.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

DLBCL patients—Diffuse Large B-Cell Lymphoma (DLBCL) tumors (N=1001) and 

paired-normal tissue (N=400), along with patient clinical information, were obtained from 

the institutions listed in the affiliations section. All cases were required to be de novo (i.e. 

not relapsed or transformed disease) and treated with a rituximab-containing standard 

regimen. All cases were reviewed by experienced hematopathologists. These cases were 

anonymized, shipped to Duke University, and processed in accordance with a protocol 
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approved by the Institutional Review Board at Duke University. Clinical data including 

initial response to therapy, overall survival, gender, age, stage, performance status and 

number of extranodal sites were collected on nearly all cases.

Cell lines for CRISPR screening—OCI-LY3 were grown in RPMI 1640 (Gibco) with 

20% HI-Fetal bovine serum and 1% Penicillin-Streptomycin (5,000 U/mL) (ThermoFisher). 

Pfeiffer, SU-DHL-4, BJAB, TMD8, and HBL-1 were grown in RPMI 1640 (Gibco) with 

10% HI-Fetal bovine serum and 1% Penicillin-Streptomycin (5,000 U/mL) (ThermoFisher). 

All cell lines were grown at 37C. OCI-LY3, TMD8, SU-DHL-4, Pfeiffer, and HBL-1 are 

derived from males, and BJAB is derived from a female. Cell lines were authenticated 

through whole exome sequencing (Zhang et al., 2013).

METHOD DETAILS

Sample processing—Total RNA and DNA was extracted from samples using the AllPrep 

DNA/RNA FFPE kit (Qiagen, Cat. # 80234) per manufacturers guidelines. Briefly, paraffin 

was removed with Xylene, and the resulting tissue was washed once with 100% ethanol, and 

digested with PKD and proteinase K for 15 minutes at 56 C. The tissue was spun at full 

speed in a microcentrifuge, and the supernatant containing the RNA was bound to a column, 

washed with FRN buffer, treated with DNase I, washed with RPE buffer and eluted in 30 ul 

of water. The pellet was further digested in ATL and proteinase K for 1 hour at 56 C 

followed by 2 hours at 90 C. The DNA was bound to a column, washed and eluted in 100 ul 

of EB.

High-throughput exome library preparation—Genomic DNA was sheared to 250 bp 

using the Covaris S2 platform. A custom, in-house exome library preparation process based 

on the Agilent XT2 pooled exome capture method was designed to meet the need to create 

over 1400 sequencing libraries within a reasonable timeframe. To increase the throughput of 

exome library preparation, a custom 96-well barcode system was designed based on the 

Illumina sequencing system whereby a separate sequencing read is used to identify the 

barcode of a particular library. Custom barcodes of length 8, compatible with the 3-read 

Illumina hiseq v2 platform, were designed using scripts available at https://

bioinf.eva.mpg.de/multiplex/ (Meyer and Kircher, 2010). The barcodes were designed to 

maximize capture efficiency, edit distance amongst one another, and sequence quality. An 

edit distance of 3 or greater was enforced, as well as standard channel balancing for optimal 

base diversity at each sequencing cycle.

Oligonucleotides were ordered with standard Illumina barcode modifications of 5′ 
phosphorylation, a phosphorothioate bond between the last two bases on the 3′ end, and 

HPLC purification. Oligonucleotides were annealed by standard protocols and diluted to a 

15 μM working concentration in EB. The barcode sequences that we utilized are shown 

below.
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Sequences for the 96 custom barcodes used in high-throughput library preparation.

CTATGCTG GGATTCGT AGCGGATA TCGCTTAA TCATACGC AACGATGA

CAATCGAA GCGAACTA GGTCGTTA GTTCAAGC CCTAACTC ATCTGACG

ACCATGCA CTCGCTAT GTTGAGGT GGTAAGAC AAGCGAAG CGTACTAG

TGCAATCG AGGCTACT TCTAGCAA ACGGTTGA GAGCATCA ATCCGAAC

AGCTCATC GTCTATCC ACCTGCTT AGAGCGAA AGAGCTCT CAACTACC

GATCAGTC GTTATGCG GTTGCCTA TATCAAGA AAGAGCTT ACTTCCAT

CTACTCCT TCGTTAGA GTCATTAT GAACGAGT TGATGCAA TGGCAGTA

TAGATACC GACGTCAA TTGATAGG CGTAAGGT CTAGTCAG TCTTCTGA

CAACCTCA CTACCATG TAGTCTAC ACTAGAGG AGAACCGT TACGCGTA

CTTATCTT AAGGTCCA CCAGTAAT CGCTATAG CCATGGTT AACTGCAG

ACGCATTG ACCAGTTC TGACCTAG TATGATGG AGGTTGCA TAATGCGT

TGATCTGC CCTGATCT ACCAAGGT GAAGGATA GCATCGTA GGAACGTT

TAGCGATA CATCGCAT TGACTAGC TGCTTACC AAGCCGTA TCTTGGAC

TCCGATTG TATCTGCG ACTGGATC ACTACTCT CTCTTGCT CTCGAAGT

GATACTCG TCGATCTG TGGATTGC GGAAGTAC GATGGTAG ACGTACGT

CATGAGGA GCTCTATC TTAAGCGC CTGAGCAA CGCCTATA CTGGACTT

Pre-capture libraries were prepared with standard library preparation protocols using the 

KAPA Hyper kit (Kapa Biosystems, Wilmington, MA), and then pooled at equal volume and 

sequenced on the Illumina platform at low depth to determine exact relative abundances. 

Based on these abundances, libraries were balanced optimally for exome using the Agilent 

All Exon V5 human bait set. Library sequencing was performed to an average of 75X 

coverage on Illumina Hiseq 2500 platform.

Exome Sequence Alignment—Reads in fastq format (Cock et al., 2010) were pre-

processed with GATK (McKenna et al., 2010) version 3.2 to remove Illumina adapter 

sequences (analysis type –T ClipReads, -XF illumina.adapters.fa) and Phred-scaled base 

qualities of 10 and below (-QT 10) similarly to described previously (Sehn et al., 2007; 

Zhang et al., 2013; Zhang et al., 2014). After GATK processing, reads were mapped to hg19 

using Burrows-Wheeler Aligner (BWA) (Li and Durbin, 2010) version 0.7.7 with the mem 

algorithm. Reads were sorted with Novoalign V2.08.03 novosort. SAMtools (Li et al., 2009) 

flagstat was used to compute the number and percent of reads that mapped to the genome. 

Both depth and breadth of coverage for each exome were computed using BEDTools 

(Quinlan and Hall, 2010). PCR/optical duplicates were marked by Picard. Base quality 

recalibration and indel realignment was performed using GATK (McKenna et al., 2010).

Variant and gene filtering, analysis of significantly mutated genes—Joint variant 

calling was performed on all 1001 DLBCL samples together using Samtools (Li, 2011) 

mpileup v. 0.1.19 and somatic variant calling was performed using MuTect version 1.1.4 

(Cibulskis et al., 2013) for the tumor/normal pairs. This resulted in a total of ~1.1 million 

variants. The variant functions and population statistics were annotated using Annovar 
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(Wang et al., 2010; Yang and Wang, 2015). The MuTect somatic mutations were used as a 

high-quality discovery dataset for identifying mutated genes. Variant filtering was performed 

using the following criteria: select exonic, not synonymous variants, somatic variants, rare 

and damaging variants, exclude duplicate frameshifts that were found in multiple samples, 

variants found in repetitive regions, variants found in regions with poor coverage. 

Additionally, each variant was required to have an instance of genotype quality greater than 

30 and read depth greater than 5. Driver gene analysis was performed using a combination 

of three approaches: (i) MutsigCV (Lawrence et al., 2013) which identifies driver genes with 

point mutations above the background mutation rate; and (ii) Hotnet2 (Leiserson et al., 

2015) which identifies subnetworks of genes based on protein interactions; and (iii) the 

model we have applied previously (Love et al., 2012) to factor in copy number alterations, 

gene variability and the enrichment of rare (EXAC frequency less than 0.001), functional 

variants (CADD score greater than 10), as well as the proximity of SNVs to each other. 

Gene with very low expression levels across samples were excluded.

Copy Number Analysis—We estimated copy number aberrations in the 1001 DLBCLs 

using EXCAVATOR (Magi et al, 2013) in the pooled mode, against a set of 15 high quality 

normal samples. Normals were also run against normals to control for normal variation and 

population artifacts. Copy number segmentation is performed to smooth the exon-level 

counts. This resulted in the sample x gene copy number matrix. Integrative analysis of 

mutations and copy number variations was performed to identify driver genes. 

Amplifications and deletions were defined using thresholds of +1 and -1 respectively on log 

ratios.

Comparing FFPE vs. fresh frozen samples in matched patients—We performed 

parallel whole-exome sequence analysis of 34 sets of paired FFPE and frozen tumors, with 

each pair obtained from the same patient. The cases ranged in age from 4 years to 16 years, 

allowing us to determine the effect of sample age. We evaluated our overall mutation 

discovery sensitivity compared to previous DLBCL studies utilizing fresh-frozen biopsies by 

preparing paired FFPE and frozen biopsies from the same DLBCL case prepared and whole 

exome sequenced identically. The similarity metric between any two sequencings was 

computed with the Jaccard similarity metric, or the number of variants shared as fraction of 

the union of the variants in the two samples being compared. With the frozen case as the 

gold standard in any given pair, the Jaccard metric is sensitive to both false positives 

(increases denominator) and false negatives (decreases the numerator). An overall score of 0 

equates to no overlap, and an overall score of 1 equates to complete overlap. We found that 

the similarity coefficient between the genomic profiles from the same patient derived from 

FFPE vs. frozen biopsies was completely preserved regardless of the age of the specimen. 

The results are summarized in the heatmap in Figure S1, with an adjoining bar graph 

indicating sample age. These data indicate that, at least for specimens that are less than 16 

years of age, we can reliably identify mutations from FFPE cases at the same rate as frozen 

cases.

We also examined a potential concern with respect to FFPE samples is that the preservation 

method may cause some regions of the genome to be sequenced unevenly, resulting in poor 
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sensitivity to somatic mutation detection in some portions of the genome. The violin plots in 

Figure S1 (right panel) show that the total variant distribution is equivalent between FFPE 

and frozen samples and that the recovery of somatic variants was equivalent (P=0.49, 

Wilcoxon rank-sum test). These results demonstrate that with appropriate processing and 

analysis, FFPE cases can be used to generate mutational data that are equivalent to those 

generated from frozen cases.

Comparing tumors with matched normal vs. unpaired tumors—To check for 

biases between tumors with paired normal (N=400) and the unpaired tumors (N=601), we 

have directly compared their mutational patterns and frequency for the set of 150 driver 

genes. The heatmap of genetic alterations for the paired and unpaired samples is shown in 

Figure S2A, which shows very similar patterns for the two groups. The scatterplot of 

mutational frequency for these two set of samples is shown in Figure S2B. The mutational 

frequencies are essentially identical (R2 = 0.94, P<10−6).

CRISPR Screen—To generate GeCKO.v2 library virus, 293T cells were seeded in 15 cm 

dishes at 12 million cells per dish. The following day, cells were transfected using TransIT-

LT1 (Mirus) according to manufacturer’s instructions with 10 μg lentivector, 10 μg psPAX2 

and 1 μg pCMV-VS. 16 hours post transfection, media was changed. Virus was harvested at 

48 and 72 hours post transfection, pooled, filtered, aliquoted and stored at -80 until needed 

for screening.

DLBCL cells stably expressing Cas9 were generated by transduction of cells with lentiCas9-

blast virus at multiplicity of infection (MOI) < 1. Forty-eight hours post transduction, cells 

were selected with 10 ug/ml blasticidin for four or five days and expanded. Cas9 activity in 

each stable cell line was confirmed by transduction with a control sgRNA targeting the 

AAVS1 locus (ggggccactagggacaggat) (3), followed by Surveyor assay (IDT) and Sanger 

sequencing of AAVS1 to assess editing rates. Sanger sequencing was performed on AAVS1 

PCR product after cloning into the pCR 2.1 TOPO TA vector. For the TMD8 and HBL1 cell 

lines, single cell cloning was needed to isolate Cas9-expressing cells with >80% editing 

efficiency after testing with the AAVS1 sgRNA.

Cas9-expressing cells were transduced with the human GeCKO.v2 library virus pools with 8 

μg/ml polybrene using conditions to obtain MOIs between 0.3–0.5 and 1000-fold 

representation of the library after selection. Subpools A and B of the GeCKO library were 

transduced into cells and screened separately in triplicate. 24–48 hours post transduction, 

cells were selected with 2 μg/ml puromycin for 72 hours. Some cells were harvested after 

puromycin selection to serve as the initial time point sample as well as after 14 population 

doublings. 1000-fold representation of the library was maintained at each passage.

Genomic DNA was harvested from each time point sample using the QIAamp Blood Maxi 

Kit according to manufacturer’s instructions. The sgRNA cassettes from each sample were 

amplified and barcoded for multiplexing from 50–100 μg of genomic DNA with two rounds 

of PCR with Takara Ex Taq DNA polymerase as previously described. PCR products were 

gel purified and isopropanol precipitated for sequencing on the HiSeq2500.
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Normalized sgRNA abundance quantification for CRISPR screen—Guide RNA 

(sgRNA) amplicon sequencing reads for each library were downloaded from Hudson Alpha 

as de-multiplexed FASTQ files. Raw reads were then trimmed using CutAdapt v1.8.3 

(Martin, 2011) to remove 5′ barcoded adapter sequences (33–38bp) specific to each library 

and 3′ PCR primer sequences (20bp). Reads were discarded if both barcode sequences 

could not be identified or if the resulting trimmed read was longer than 25bp or shorter than 

15bp (cutadapt -g ^ <5primeadapter> -a <3primeadapter> -e 0.25 -m 15 -M 25). 

Successfully trimmed reads were aligned to the GeCKO v2 (Sanjana et al., 2014) sgRNA 

library using MAGeCK-VISPR v0.5.3 (Li et al., 2015) under default settings (no 

mismatches allowed) to produce a raw count table of sgRNAs across cell line replicates. The 

resulting count table was then normalized to account for sampling differences using the 

variance-stabilizing transformation implemented in the MAGeCK count module.

Statistical Estimation of Gene Knockout Fitness Effects on Cell Lines—
CRISPR gene scores were used to quantify the magnitude and directionality of fitness 

effects from normalized sgRNA counts as in (Aguirre et al., 2016). Briefly, under a scenario 

in which there are m total genes being screened in cell line j, the CRISPR gene score for 

gene i targeted by n sgRNAs is given by the following equation:

where sgRNA scoreijk is given as the z-score transformation of the log-fold change between 

early and late samples in cell line j for a sgRNA k targeting gene i:

Accounting for genomic copy number in CRISPR screen—In lieu of cell line-level 

copy number data, we used the sliding window method used by (Wang et al.) to identify 

suspect genomic regions where CRISPR scores might reflect genomic amplification. Briefly, 

we computed a neighborhood score for each gene by counting the number of low CRISPR 

scores (< 5th percentile for a cell line) in the 40 gene genomic window surrounding the gene 

(20 “upstream genes”, 20 “downstream” genes). Genes were removed from further 

consideration if their genomic neighborhood score was >12 to minimize the confounding 

influence of genomic copy number on our analysis of essential DLBCL genes.

CRISPR screen quality control—Basic sequencing quality statistics were computed for 

both raw and trimmed libraries using FastQC (Andrews, 2010). Basic count table quality 

metrics, including alignment rate and two measures of sgRNA evenness (zero count 

sgRNAs, Gini Index) were determined using MAGeCK-VISPR. Pairwise Pearson 

correlation coefficients were used to measure the degree of correlation between cell line 
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replicates. To further investigate the concordance among biological replicates, Principal 

Components Analysis (PCA) was performed using log-transformed normalized sgRNA 

counts.

We generated an average of 26.9 million reads per time-point (range: 14.2 million to 49.3 

million), yielding an average of 224 reads/sgRNA for each library. After filtering and 

trimming reads to remove adapter sequences and low-quality reads, an average of 57.6% of 

reads aligned with perfect identity to the GeCKO sgRNA reference (range: [42.8% – 

64.4%]), resulting in an median effective sgRNA coverage of 121.8 mapped reads/sgRNA 

(range: [65.5 – 228.9]). Broadly, the depth and quality of sequence data generated for 

sgRNA amplicon libraries falls within acceptable levels sufficient for differential abundance 

testing between early and late cell populations.

As shown in Figure S3, sequencing reads appeared to be uniformly distributed across 

sgRNAs in early time point libraries (median Gini index = 0.12; range [0.10 – 0.132] ; ~0.1 

typically acceptable for early time points) with an acceptably small percentage of sgRNAs 

absent from each library (median zero count sgRNAs = 657; 0.5% of total sgRNAs; range 

[496 – 1559]). As expected, the distribution of sequencing reads across sgRNAs was 

significantly more uneven in late time point samples (median Gini Index = 0.21; range [0.16 

– 0.42]), with significantly more sgRNAs missing from these sequencing libraries altogether 

(median zero count sgRNAs = 4654 sgRNAs; 3.7% of total sgRNAs; range [1901 – 16835]). 

Critically, we found no relationship between sequencing depth and the number of missing 

sgRNAs (R2 = 0.012, p = 0.64), suggesting a biological explanation for their absence (i.e. 

negative selection). Though these results fall within acceptable ranges (Gini Index < 0.2) for 

the majority of late samples, the uneven sgRNA distribution among late samples was 

especially pronounced in TMD8 and Pfeiffer cell lines. Because of this we were careful to 

interpret downstream patterns of sgRNA abundance driven primarily by TMD8 and Pfeiffer.

Changes in sgRNA abundance over the course of the experiment were largely consistent 

within cell lines and—to a lesser degree—across cell lines. GuideRNA abundance was 

sufficiently correlated among late time point libraries for most cell lines. The median 

pairwise correlation between late samples for each cell line was 0.72 (Pearson’s r; range 

[0.56 – 0.80]). This pattern was supported by Principal Component Analysis (PCA), which 

shows sgRNA abundance in late populations cluster by cell line along the first two PCs 

(Variation explained: PC1 = 18.7%, PC2 = 13.1%). Notably, sgRNA abundances from late 

timepoint TMD8 and Pfeiffer samples form distinct clusters along these axes apart from the 

primary cluster containing other cell lines.

To assess the degree to which previously known fitness effects were recapitulated by our 

CRISPR screen, Mann-Whitney U-tests were used to test whether the mean CRISPR score 

of previously described universally essential genes was significantly less than 0. Two sets of 

universally essential genes were chosen from the literature (Hart et al., 2014; Hart et al., 

2017) on the basis of experimentally demonstrated essentiality across multiple human cell 

lines in previous CRISPR screens (downloaded from: http://tko.ccbr.utoronto.ca/). 

Additionally, we used a permutation test to determine whether the mean CRISPR score of 
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universally essential genes was significantly less than could be expected for a set of 

randomly chosen genes (NPERM=9999).

Broad patterns of gene fitness inferred from sgRNA abundance changes were largely 

consistent with biological expectation and results from previous CRISPR screens. Shown in 

Figure S3, we found that sgRNAs with significantly decreased abundance were more likely 

to be members of KEGG genes sets for critical cellular functions including ribosomal 

biosynthesis, DNA replication, transcription, and translation, indicating negative selection 

against the loss of these genes in cells. Additionally, sgRNAs targeting genes that had been 

previously demonstrated to be essential across multiple human cell types resulted in 

significantly decreased cell fitness relative to randomly chosen sgRNAs (avg. CRISPR score 

= -0.153; CRISPR scoreessential = CRISPR scorerandom: p = 0; NPERM=9999). By contrast, 

non-targeting control sgRNAs showed a significant increase in cell fitness relative to 

randomly chosen sgRNAs (avg. CRISPR score = 1.15; CRISPR scorecontrol = CRISPR 

scorerandom: p = 0; NPERM=9999). Collectively, these results suggest that changes in 

sgRNA frequency over the course of the experiment likely reflect real changes in cell fitness 

induced by targeted gene silencing via the CRISPR/Cas9 complex.

Identification of “essential” DLBCL genes: Paired Mann-Whitney U tests were used to 

determine whether there was a significant (α = 0.05) difference between the average sgRNA 

counts at early and late time points for each gene in each cell line. Early and late sgRNA 

counts from the same replicate population were considered as pairs. Normalized sgRNA 

counts were log-transformed (log2 [1 + sgRNA count]) prior to significance testing to 

minimize the effects of outliers. Additionally, p-values were adjusted for multiple 

comparisons using the FDR method implemented in the R statistical environment.

Genes were assessed for significance at the pan-DLBCL and disease subtype-level (ABC/

GCB) only if a significant effect was observed in at least one cell line. If observed, replicates 

from multiple cell lines were considered as a single cell line and assessed for significance 

using paired Mann-Whitney U tests as above.

Essential DLBCL genes were identified from the set of ~21,000 screen genes using two sets 

of criteria. Under the most stringent criteria, a gene was considered significant if (i) its’ FDR 

was <0.05 at the DLBCL, GCB, or ABC-level and (ii) a significant effect was observed in at 

least 2 cell lines. A more relaxed set of criteria was used to identify essential driver genes 

among the 161 most commonly mutated genes in DLBCL cases. These genes were 

considered significant if (i) a significant effect (p<0.05) was observed in at least one cell line 

and (ii) an extreme CRISPR score (absolute value > 1) was observed in at least two cell 

lines.

RNA sequencing library preparation and analysis—We removed rRNA from total 

RNA by hybridization to homologous rRNA DNA oligonucleotides (IDT, 200pmol Ultramer 

DNA oligos) by incubating in a thermocycler at 95 C for 2 minutes, followed by ramping 

down the temperature -0.1 C every 1 second until the temperature reached 45 C (Adiconis et 

al., 2013). The rRNA and DNA oligos that formed double stranded DNA/RNA complexes 

were then digested with RNase H (New England Biolabs, Cat. # M0297) for 30 minutes at 
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45 C. The remaining DNA oligos were then digested with DNase I (New England Biolabs, 

Cat. # M0303) for 30 minutes at 37 C.

RNA libraries were prepared using the Stranded mRNA-seq kit (Kapa Biosystems, Cat. # 

KK8401) per manufacturers guidelines. Briefly, cDNA was generated using random 

hexamer primers followed by A-tailing. The P5 and P7 universal sequencing adaptors 

containing specific 8mer index sequences were ligated to the A-tailed cDNA. For this, we 

generated adaptors containing the P5 and P7 sequencing primers with 96 specific index 

sequences (Supplementary Appendix). The resulting libraries were PCR amplified and pools 

of 96 were quantified using the Bioanalyzer (Agilent). To identify the breakdown of indexes 

within the pools, they were run on the MiSeq instrument using the Miseq reagent kit V2 50 

cycles (Illumina, Cat. #MS-102-2001). Using the percent index value, the approximate 

concentration was normalized and calculated.

To improve the sensitivity and specificity of RNAseq in FFPE cases, RNAseq libraries were 

hybridized to Human All Exon V6 + 3′ UTR capture baits (Agilent, Cat. #5190-9306) as 

described previously (Cieslik et al., 2015). Each capture pool contained 24 libraries at 50 ng 

each for a total of 1200 ng of DNA. The pools were lyophilized using the speed vacuum 

technique. The libraries were first denatured and blocked at 95 C for 5 minutes, followed by 

holding at 65 C. The capture baits were mixed with RNase OUT and incubated for 2 minutes 

at 65 C. Hybridization buffer was mixed with the baits, followed by addition of the 

denatured libraries. The hybridization reaction was held at 65 C for 24 hours, followed by 

washing and amplification. These sequencing libraries were assessed for quality with the 

Bioanalyzer 2100 (Agilent) using the Agilent DNA 1000 Kit per manufacturer’s 

instructions. Libraries of high quality (e.g. with size distribution between 120–400bp and 

sufficient quantity for sequencing) were subjected to high throughput sequencing using the 

Illumina HiSeq 2500 platform per manufacturer’s instructions using HiSeq V4 125 PE, to 

generate an average of 10 million reads per sample.

The sequencing reads were aligned using TopHat, a spliced read aligner which allows for 

sequencing reads to span multiple exons (Trapnell et al., 2009). On average, we were able to 

align 80% of the sequencing reads for each sample to the reference genome. The Cufflinks 

software package was then used for reference-based transcript assembly and quantification 

of gene and transcript level expression (Trapnell et al., 2012). Using the Cufflinks package, 

we quantified the number of reads mapping to each exonic locus as exon fragments per 

kilobase of exon per million fragments mapped (FPKM) (Trapnell et al., 2012).

Gene expression measurements were FPKM normalized. To enable broad gene expression 

signature discovery and validation, we omitted 150 samples with expression of fewer than 

12,000 genes owing potentially to either technical or biological artefacts. The remaining 625 

cases were designated as the core set for the integrative analysis (Table S2). Additionally, 

quantile normalization was performed to remove the effects due to technical variation, and 

the data was log2 normalized.

Defining correlated gene signatures—We define gene signatures using a collection of 

widely used annotated gene set databases (Kegg, Reactome, Biocarta, Gene Ontology, 
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MSigDB), as well as several lymphoma-specific gene signature sources (Lenz et al. 2008, 

Monti et al. 2005, and SigDB from Staudt et al.). We then test these signatures for 

significant correlation in our expression dataset by utilizing a permutation test that compares 

these gene sets to random gene sets of the same size. With n=500 permutations, we 

randomly sample without replacement from the universe of genes in the dataset. Then the 

pairwise correlation between all genes is calculated and the average of that matrix across the 

whole gene set is used as the test statistic. This test statistic is calculated for each gene set of 

interest and compared to the appropriate null distribution, given the number of genes in the 

set. Significant gene sets are those whose p-value when compared to the null distribution is 

less than 5×10−3, whose test statistic is > 0.1, and whose proportion of gene-gene 

correlations above 0.5 is greater than 5%.

Sources for gene sets.

Pathway Collection Abbreviation Original Pathway Source

Biocarta BIOCARTA http://www.biocarta.com/

Kegg KEGG http://www.genome.jp/kegg/

Reactome REACTOME http://www.reactome.org/

NCI Pathway Interaction Database PID http://www.ndexbio.org/

Sigma Aldrich SA http://www.sigmaaldrich.com/

Signaling Gatemway SIG http://www.signalinggateway.org/

Signaling Transduction ST http://stke.sciencemag.org/

Matrisome NABA http://matrisome.org/

Gene Ontology GO http://www.geneontology.org/

MSigDB Oncogenic Signatures ONCO MSigDB, Various publications

MSigDB Hallmark Signatures HALLMARK http://doi.org/10.1016/j.cels.2015.12.004

Panther Pathway Database PANTHER http://www.pantherdb.org/

Netpath Database NETPATH http://www.netpath.org/

HumanCyc Pathways HUMANCYC https://humancyc.org/

Institute of Bioinformatics Pathways IOB http://www.ibioinformatics.org/

Xcell Algorithm Genesets XCELL http://xcell.ucsf.edu/

Cibersort Algorithm Genesets CIBERSORT https://cibersort.stanford.edu/

Lenz et al. 2008 signatures LENZ http://doi.org/10.1073/pnas.0804295105

Staudt lab Signature DB SIGDB https://lymphochip.nih.gov/signaturedb/

Monti et al. 2005 signatures MONTI http://doi.org/10.1182/blood-2004-07-2947

Clustering gene signatures—We clustered the significantly correlated gene sets using 

affinity propagation clustering (Frey and Dueck, 2007). Affinity propagation is a clustering 

algorithm that simultaneously identifies clusters and exemplars (cluster representatives) in 

the data without the user specifying the number of clusters (k) to be identified. The 

algorithm starts by considering all samples to be exemplars, and then by iteratively 

exchanging messages between data points until it converges to an optimal set of exemplars 

and clusters.
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Using affinity propagation on the 1228 significantly correlated gene sets we obtained 31 

clusters. Exemplar names were manually curated to best represent the gene signatures that 

were part of the cluster.

Association of genetic alterations with gene expression signatures—Genetic 

alterations were encoded as missense mutations, truncating mutations, copy number gains 

and copy number deletions. We tested for associations between genetic alterations and gene 

expression signature using ANOVA. Multiple hypothesis correction was performed using 

Benjamini-Hochberg test.

Association of gene expression signatures with CRISPR hits and survival—We 

identified significantly enriched genesets associated with CRISPR hits using Fisher’s test 

(p<0.05 & Odds ratio>1). Exemplar genesets related to proliferation and cell cycle exemplar 

were significantly associated with CRISPR hits.

We identified exemplar genesets associated with survival using logrank test (p<0.05). 

Interestingly, 16 out of the 31 exemplars were significantly associated with survival. 

Exemplars related to stromal signatures were associated with better prognosis, while 

exemplar genesets related to proliferation were associated with worse prognosis.

Classification of DLBCL into ABC and GCB subtypes—Genes previously 

associated with ABC/GCB classification were used to classify samples into ABC/GCB 

subgroups (Wright et al., 2003) (table below). Gene expression data used for this analysis 

are shown in Table S2.

ensembl_ID gene_name Subtype associated with gene

ENSG00000143772 ITPKB GCB

ENSG00000196549 MME GCB

ENSG00000113916 BCL6 GCB

ENSG00000185697 MYBL1 GCB

ENSG00000105339 DENND3 GCB

ENSG00000119408 NEK6 GCB

ENSG00000135363 LMO2 GCB

ENSG00000118308 LRMP GCB

ENSG00000170054 SERPINA9 GCB

ENSG00000131370 SH3BP5 ABC

ENSG00000137265 IRF4 ABC

ENSG00000137193 PIM1 ABC

ENSG00000138185 ENTPD1 ABC

ENSG00000095585 BLNK ABC

ENSG00000118971 CCND2 ABC

ENSG00000139083 ETV6 ABC

Reddy et al. Page 20

Cell. Author manuscript; available in PMC 2018 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ensembl_ID gene_name Subtype associated with gene

ENSG00000033170 FUT8 ABC

ENSG00000104081 BMF ABC

ENSG00000172349 IL16 ABC

ENSG00000196396 PTPN1 ABC

Quantile normalized and log2 transformed gene expression measurements were z-

normalized across the genes. The ABC and GCB-specific scores were computed for each 

sample by taking the average of the z-scores for ABC, GCB genes respectively. A combined 

RNAseq subtype score was then computed by taking the difference in the ABC-specific 

score to the GCB-specific score. A sample was classified as ABC if the RNAseq subtype 

score was >0.25 and its GCB score was <0.75; and it was classified as GCB if the combined 

score was < -0.25 and its ABC score<0.75. The rest of the samples belonged to the 

unclassified group. The classification schema is described in detail below.

This results in 313 samples being classified as ABC DLBCL, 331 samples being classified 

as GCB DLBCL and 131 as Unclassified. The gene expression data for this classification is 

included in Table S2.

Validation of the RNAseq ABC/GCB classifier

NanoString Lymph2Cx ABC/GCB: In order to validate the RNAseq based subtype calls, 

we profiled 200 samples using the NanoString-based Lymph2Cx assay(Scott et al., 2014). 

We obtained NanoString linear predictor score (LPS) as well ABC/GCB calls from the 

Lymph2Cx assay. The RNAseq subtype scores are highly correlated to the NanoString LPS 

score (R2=0.87, p<10^-6).

Hans GCB/non-GCB calls: Additionally, we obtained immunohistochemistry-based Hans 

GCB/non-GCB calls (Hans et al., 2004) for 522 samples. There is also a high degree of 

concordance between the Hans calls and the RNAseq-based subtypes (p<10^-6).

MYC and BCL2 expression and translocations—In our study, we used log2 

transformed RNAseq expression data for MYC and BCL2 and defined high expressors based 

on cutoffs trained from immunohistochemistry (IHC) data. We ran IHC for MYC (N=284) 
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and BCL2 (N=404) and defined positive and negative IHC groups based on a cutoff of 40% 

and 50% respectively (Supplementary Table S1). High expressors were defined from 

RNAseq data as MYC-high and BCL2-high and were significantly associated with survival 

(MYC p=0.0013 and BCL2 p=0.006). Double expressors were defined as samples that have 

both high expression of MYC and high expression of BCL2 (N=154, p=0.00008).

We assessed the independence of ABC/GCB subgrouping and double expressors (high MYC 
and BCL2) by stratifying for ABC/GCB within the double expressors (N=154). Survival plot 

in Figure S4 shows that ABC/GCB status does not further stratify the double expressors 

(p=0.415).

We separately examined the association of translocations in MYC and BCL2 with mutations 

and expression by performing fluorescent in situ hybridization using both genes to define 

translocations involving the immunoglobulin locus and MYC and BCL2 (performed 

separately).

We profiled these translocation events using FISH for MYC and BCL2 in 126 DLBCLs. We 

found that MYC had a total of 14 translocations, while BCL2 has 26 translocations. We 

examined the associations between translocations and expression, mutations and copy 

number events (Figure S4). MYC translocations are associated with high expression 

(p=0.027). We found that nearly 80% of the cases with MYC mutations also had a 

translocation in MYC, whereas only 10% cases with wildtype MYC also had a translocation 

of the gene (p=0.005), while we don’t see an association with copy number amplifications. 

BCL2 mutations are strongly associated with translocations (p=4E-6) and amplifications are 

also associated with translocation events (p=0.03). BCL2 translocations have a trend towards 

higher expression, but the association is not statistically significant.

Survival plots of MYC, BCL2 translocations and double hits – MYC and BCL2 or BCL6 
translocations do not show significant differences in the translocated cases (Figure S4).

Genomic risk model—We developed a supervised learning approach for defining the 

association of survival with combinations of the following genetic and molecular features: 

(a) known expression subgroups (ABC, GCB subgroups, MYC, and BCL2 high expression), 

(b) the mutations/copy number events in the 150 DLBCL-associated genes identified in this 

study. We use a comprehensive approach by first defining combinatorial features derived 

from genetic and molecular features.

A schematic of our predictive modeling workflow is shown in Fig 5C. The first step of our 

method involves enumerating all possible combinations that involved up to 4 separate 

genetic and molecular features (degree<=3) and affected a minimum of 20 patients 

(coverage >=20). This approach identified 313 combinatorial features, which includes 95 

singletons, 166 pairs, 52 triplets. These combinatorial features formed the input for the 

survival predictive model.

We used elastic net regression (Zou and Hastie, 2005) with a Cox proportional hazards 

model. Elastic net is a regularized regression framework that is a linear combination of the 

L1 (Lasso regression) and L2 (Ridge regression) penalties. Ridge regression tends to favor 
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lower coefficients and to keep correlated features in the model, while lasso regression tends 

to shrink the number of features in the model. Elastic net combines the advantages of these 

two methods, and allows for the flexibility of choosing the combination in a dataset-specific 

manner by tuning parameters using cross-validation within the training data.

The performance of the model was rigorously evaluated using 5-fold cross-validation which 

was repeated 100 times. Briefly, the data was randomly split into 5 parts, of which one of the 

part was designated test set and the remaining was used for training. The elastic net model 

was trained only on the training data, and then applied to the test set to get predictions. The 

predictions were then evaluated using a log-rank test. The methods were implemented in R 

using glmnet library.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed using R v3.3.0. Kaplan-Meier survival curves were 

used for survival analysis. Statistical analyses used for each of the figures is specified in the 

legend. Ns for the different groups are provided in the figures.

DATA AND SOFTWARE AVAILABILITY

The exome sequencing files are uploaded to EGA (https://www.ega-archive.org/) and can be 

accessed using the accession number EGAS00001002606. Clinical data and all data used for 

this study are provided in the Supplementary tables. We have developed an interactive 

webtool (dlbcl.davelab.org) for survival analysis using clinical and genomic features.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Exome sequencing in 1001 DLBCL patients comprehensively identifies 150 

driver genes

• Unbiased CRISPR screen in DLBCL cell lines identifies essential oncogenes

• Integrative analysis connects genomics, CRISPR hits and clinical outcome

• A genomic risk model of survival outperforms existing risk-assessment 

methods

Reddy et al. Page 27

Cell. Author manuscript; available in PMC 2018 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. The landscape of genetic drivers in 1001 DLBCLs
A. The mutational heatmap indicates the most recurrently altered genes in 1001 DLBCL 

cases with frequency >5%, color-coded by four genetic alteration types: missense mutation 

(yellow), copy number gain (red), truncating mutation (green), and copy number loss (blue). 

To the right of the mutational heatmap, the stacked bargraph indicates the gene-level 

alteration type breakdown using the same four-color scheme.

B. Clinical features of the corresponding 1001 patients are indicated below the mutational 

heatmap, including the International Prognostic Index (IPI) score, response to therapy 

(complete response or not), activated B cell-like (ABC) vs. germinal center B cell-like 

(GCB) DLBCL subtype, and gender.

See also Figure S1, S2, Table S1.
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Figure 2. ABC/GCB based classification of DLBCL
A. RNAseq gene expression classifier distinguishes Germinal Center B cell-like DLBCL 

(GCB), Unclassified DLBCL (UC), Activated B cell-like DLBCL (ABC).

B. Comparison of RNAseq subtype score vs. the NanoString linear predictor score (top) 

using (Pearson’s correlation R2=0.87, p<10−6) and by immunohistochemistry Hans GCB vs. 

Non-GCB classification (Wilcoxon test p<10−6) (bottom).

C. Genetic alterations that are enriched in ABC vs. GCB DLBCL (Fisher’s test FDR<0.1).

D. Network of genes with statistically significant (p<0.01) overlap or co-occurrence (red 

edges) and mutational exclusion (blue edges). Stronger associations are indicated with 

thicker and darker colored lines between nodes (p<0.001). Genes significantly enriched in 

GCB or ABC DLBCL are colored in green and orange respectively, or grey otherwise.
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See also Table S2.
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Figure 3. Defining the functional role of genetic drivers through CRISPR screen
A. Schematic of CRISPR screen performed for six cell lines in triplicate.

B. A ranked list of CRISPR scores for the 19,032 genes targeted in the screen. Illustrative 

driver genes are shown in blue (likely oncogenes) or red (likely tumor suppressor genes).

C. CRISPR scores for 35 DLBCL oncogenes are shown alongside the frequency of genetic 

alterations and functional group.

See also Figure S3, Table S3
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Figure 4. Integrative analysis of gene expression, genetic alterations and outcome
A. Schematic depicting the integrative analysis.

B. Heatmap of expression of significantly correlated geneset exemplars across DLBCL 

samples (N=625).

C. Heatmap of fold-change associations of significant genetic alterations with genesets 

exemplars. Fold-changes for significant associations (ANOVA test p<0.05) are shown in 

yellow-purple color scales, while insignificant associations are colored grey.

D. (Left) Enrichment of CRISPR hits within the cluster exemplar gene sets (Fisher’s test 

p<0.05). (Right) Survival association with cluster exemplar signature (logrank test, p<0.05).

See also Table S4.
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Figure 5. Genomic risk model stratifies DLBCL survival
A. Overall survival of 1001 DLBCL cases, cases stratified by IPI groups, ABC/GCB 

DLBCL, MYC & BCL2 expression.

B. Hazard ratios and 95% confidence intervals of selected survival-associated genetic 

alterations (p<0.05).

C. Schematic depicting multivariate survival modeling.

D. Combinations of genetic and expression features that comprise the genomic risk model in 

DLBCL patients.

E. Survival of the predicted risk groups in the test set (logrank test, p=8×10−5).

F. Cross validation performance of the genomic risk model compared to that with only 

genetic alterations (DNA-only), and gene expression (RNA-only).

G. The genomic risk model significantly stratifies survival within known risk groups 

(logrank test)
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See also Figure S5, Table S5.

Reddy et al. Page 34

Cell. Author manuscript; available in PMC 2018 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Comparison of clinical risk model (IPI) with genomic risk model
A. Comparison of hazard ratios (high vs. low risk groups) and 95% confidence intervals for 

various DLBCL risk models, including our genomic risk model.

B. The matrix of Kaplan-Meier survival plots indicates risk stratification by clinical risk 

model (IPI) vs. genomic risk model for all patients and patients stratified by minimum 

overall survival of 1, 3, and 5 years (logrank test).

C. Survival plot for response to initial therapy (logrank test, p<10−6).

D. Prediction of response to initial therapy using clinical risk model (left) and genomic risk 

model (right) (chi-squared test).

E. Survival plots showing the stratification of genomic and clinical risk models for each of 

the individual responses to therapy (logrank test).
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