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in several pathogenic mechanisms within the lung and may 
provide us with a useful biomarker of clinical progression in 
both asthma and idiopathic pulmonary fibrosis.

Keywords  Periostin · Matricellular protein · 
Extracellularmatrix · Fibrosis · Asthma

Introduction

Periostin is a member of the matricellular family of proteins. 
Matricellular proteins are defined by the ability to bind both 
to extracellular matrix (ECM) and to cell surface receptors. 
Periostin is known to occupy a role in airway development 
and alveolar epithelial repair and is notably up-regulated 
in infants with bronchopulmonary dysplasia [1]. Periostin 
influences cellular behavior via interactions with integrin 
receptors and can influence production and localization of 
fibrogenic cytokines and growth factors [2, 3]. It also facili-
tates tissue remodeling and collagen crosslinking through 
its interaction with other ECM proteins and enzymes [4]. It 
is expressed in several different human tissues including the 
lung. Periostin is considered as a key factor in the evolution 
of aberrant airway and parenchymal fibrosis and is impli-
cated in the pathogenesis of several chronic lung diseases 
including asthma and interstitial lung disease (ILD) [2].

Lung and airway fibrosis

Many chronic lung diseases result in the development of 
airway or parenchymal fibrosis including asthma, idiopathic 
pulmonary fibrosis (IPF), hypersensitivity pneumonitis (HP), 
fibroproliferative disease post-acute respiratory distress syn-
drome (ARDS), fibrotic non-specific interstitial pneumonia 
(NSIP), bronchiolitis obliterans syndrome (BOS) and others. 

Abstract  Periostin is a protein that plays a key role in 
development and repair within the biological matrix of the 
lung. As a matricellular protein that does not contribute to 
extracellular matrix structure, periostin interacts with other 
extracellular matrix proteins to regulate the composition of 
the matrix in the lung and other organs. In this review, we 
discuss the studies exploring the role of periostin to date 
in chronic respiratory diseases, namely asthma and idi-
opathic pulmonary fibrosis. Asthma is a major health prob-
lem globally affecting millions of people worldwide with 
significant associated morbidity and mortality. Periostin is 
highly expressed in the lungs of asthmatic patients, con-
tributes to mucus secretion, airway fibrosis and remodeling 
and is recognized as a biomarker of Th2 high inflammation. 
Idiopathic pulmonary fibrosis is a fatal interstitial lung dis-
ease characterized by progressive aberrant fibrosis of the 
lung matrix and respiratory failure. It predominantly affects 
adults over 50 years of age and its incidence is increasing 
worldwide. Periostin is also highly expressed in the lungs 
of idiopathic pulmonary fibrosis patients. Serum levels of 
periostin may predict clinical progression in this disease 
and periostin promotes myofibroblast differentiation and 
type 1 collagen production to contribute to aberrant lung 
fibrosis. Studies to date suggest that periostin is a key player 
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The common feature of fibrotic lung diseases is the progres-
sive deposition of extracellular matrix (ECM) proteins (e.g. 
collagen, fibronectin, and vimentin) that eventually impair 
lung function [5]. Deposition of “scar” tissue in the inter-
stitium of the lung as occurs in IPF can negatively impact 
gas exchange because the thickened interstitial space limits 
the effective diffusion of oxygen and carbon dioxide. Sadly, 
patients suffering from IPF, which is the most common form 
of interstitial lung fibrosis [6] often die from respiratory insuf-
ficiency within 3–5 years of diagnosis and the prevalence and 
mortality rates for IPF are increasing globally [7–9].

Fibrosis can also occur in the setting of airway-centric 
diseases like asthma or BOS, but with differing histologic 
patterns. In asthma, airway remodeling results from deposi-
tion of ECM and proliferation of smooth muscle cells around 
large airways essentially narrowing the airway and constrict-
ing the airflow [10]. In BOS, airway remodeling occurs lead-
ing to an accumulation of granulation tissue which is sub-
mucosal or peribronchiolar in its distribution and results in 
a constrictive process and airflow limitation [11].

Periostin

Periostin is a member of the matricellular family of proteins. 
Matricellular proteins are defined by the ability to bind both to 
ECM and to cell surface receptors. Other matricellular protein 
family members implicated in lung fibrosis include osteopon-
tin [12], tenascin C [13] and secreted protein acidic and rich in 
cysteine (SPARC) [14]. Periostin was originally identified as 
osteoblast-specific factor 2 in a mouse osteoblast cell line [15] 
and is expressed in the periosteum and in the periodontal liga-
ment. The expression of matricellular proteins can be induced 
by various cytokines including transforming growth factor 
(TGF-β), interleukin-4 (IL-4), and IL-13 [16, 17] The peri-
ostin molecule is made up of a cysteine-rich domain within 
the N-terminal region, four fasciclin I domains, and an alter-
native splicing domain within the C-terminal region. Inter-
estingly, up to nine splice variants have been identified, but 

the full-length transcript encodes an approximately 90 kDa 
secreted protein that includes all exons [18]. The functional 
significance of the splice variants is not well understood.

Periostin is known to bind type I collagen and fibronectin 
and has been shown to be involved in collagen fibrillogenesis 
[3] Cells can bind periostin through cellular integrin recep-
tors and stimulation of cells by periostin can influence cell 
adhesion, proliferation, migration and angiogenesis [15]. 
Not surprisingly, periostin has been implicated in invasion 
and metastasis of various tumors [19]. Table 1 highlights 
actions of periostin on lung epithelial cells and fibroblasts. 
Work from our laboratory and others have shown that there 
are increased circulating periostin levels in IPF patients 
compared to controls and that periostin is found at higher 
levels in lung tissue of IPF patients [20, 21]. Periostin has 
recently been shown to be a marker of disease progression 
in IPF [20–22] and asthma [23].

Asthma, airway remodeling and periostin

The form of fibrosis that occurs in asthma is airway remode-
ling. Deposition of ECM and proliferation of airway smooth 
muscle cells around the airway can lead to variable narrow-
ing of the airways with airflow obstruction and dyspnea. 
Asthma often develops in children, but it can persist and 
even develop de novo in adulthood [24]. Interestingly, peri-
ostin is one of the most highly expressed genes in asthma 
[25]. One study examined the production of periostin by 
airway epithelial cells either in asthmatic children or in cells 
from children that were atopic non-asthmatics versus healthy 
children and noted that periostin was differentially expressed 
in the airway epithelial cells from these three groups, with 
the highest expression found in the asthmatic children [26]. 
This suggests that periostin likely plays an important role in 
asthmatic airway remodeling.

Asthma can be categorized based on the underlying 
mechanisms that are driving a shared phenotype, often 
termed “endotypes”. A common endotype for this disease 

Table 1   Actions of periostin 
on lung epithelial cells and 
fibroblasts

Adapted from Ref. [20]

Cell type Action References

Epithelial cells Enhanced wound repair in vitro [98]
Conflicting reports on migration [98, 99]
Enhanced proliferation [99]
Promotes epithelial to mesenchymal transition [100]
Increases collagen deposition and crosslinking of collagen 

fibers
[100]

Enhanced mucin production (MUC5AC) [101]
Fibroblasts Increased proliferation [20]

Increased expression of collagen I and III genes [20]
Increased wound closure [20]
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is one characterized by high Th2 inflammatory cytokines 
such as IL-4, IL-5 and IL-13 and studies support periostin as 
a biomarker to distinguish this Th2 endotype of asthma from 
Th2 low subjects [27, 28]. In fact, periostin levels can be 
used to predict clinical responses to anti IL-13 based thera-
pies [29]. In addition to periostin being a marker for Th2 
cytokine-mediated disease, IL-13 and IL-4 can both stimu-
late the secretion of periostin from lung fibroblasts [16], 
and IL-13 can induce epithelial cell production of periostin 
[30]. Periostin also induces TGF-β signaling which can fur-
ther promote ECM deposition and airway remodeling [30]. 
Sub-epithelial periostin promotes adherence and possibly 
migration of eosinophils in the lung [31, 32]. Other bio-
marker studies have also found that periostin levels predict 
features of asthma including older age at onset, eosinophilia 
and worse pulmonary function [33]; furthermore, high peri-
ostin was the best and least variable predictor for airway 
eosinophilia in the airways or blood [33]. Periostin also had 
the least intra-patient variability when compared with frac-
tional exhaled nitric oxide (FeNO) and blood eosinophils 
[34]. Up-regulated levels of serum periostin are also associ-
ated with several upper airway disorders that share some 
common features with asthma including chronic rhinosinusi-
tis with nasal polyps [35] and aspirin exacerbated respiratory 
disease [36]. Periostin levels have also been studied as a 
biomarker of immunoglobulin E (IgE)-targeted therapeutic 
responses. Omalizumab, a monoclonal antibody targeting 
IgE, has established efficacy in asthma treatment and the 
data support a trend towards significant clinical responses 
in the periostin “high” versus “low” group [37].

Animal models of asthma and allergen challenge have 
shown conflicting results regarding periostin. Two different 
studies have shown that periostin-deficient mice experience 
worse airway hyperresponsiveness when sensitized and chal-
lenged with ovalbumin or Aspergillus fumigatus [38, 39]. In 
contrast, other studies found a reduction in allergen-induced 
eosinophil recruitment to the lungs in periostin-deficient 
mice [32] and demonstrated that periostin-deficient mice 
are protected from house dust-mite induced allergic disease 
[40]. These results are more consistent with the human asth-
matic data. Taken together, there is accumulating evidence 
that periostin is an important mediator of allergic airway 
disease in the lung and that periostin levels in the blood 
show promise as a biomarker of Th2 response. Consistent 
with this finding, periostin was the blood biomarker that was 
best able to predict patients who respond to anti-IL-13 thera-
pies [41]. Figure 1 shows a schematic of periostin actions in 
remodeling associated with asthma.

Pathobiology of pulmonary fibrosis

The etiologies of progressive fibrotic lung diseases are still 
very poorly understood, and it is likely that IPF represents 

a spectrum of “molecular endotypes” where disease may 
be triggered by different environmental or genetic insults 
that result in a final common pathway of fibrosis [42]. In 
the case of IPF, a currently held paradigm is that repetitive 
injuries to the alveolar epithelial cells potentially caused 
by viral infections, genetic mutations, inhalation of toxins, 
inhalation of dusts or radiation cause damage to the epithe-
lium disrupting the homeostatic crosstalk between epithelial 
cells and mesenchymal cells [7, 42]. Epithelial cells secrete 
anti-fibrotic, homeostatic mediators like prostaglandin E2 
(PGE2) [43]. Loss of epithelial cells can result in lower lev-
els of PGE2, which in turn, can allow resident fibroblasts to 
proliferate and become activated to differentiate into alpha-
smooth muscle actin (αSMA) positive myofibroblasts [44]. 
Myofibroblasts are believed to be the major pathogenic cell 
type in IPF because they are highly secretory cells producing 
abundant ECM and highly contractile, causing distortion of 
the alveolar architecture [45]. Additionally, release of TGF-
β, the most potent pro-fibrotic growth factor studied to date 
[46] can have devastating effects by triggering the “apoptosis 
paradox” which means that TGF-β promotes apoptosis of 
epithelial cells while simultaneously preventing apoptosis 
in lung fibroblasts [47]. The result of this apoptosis paradox 
is to allow resident fibroblasts to accumulate and become 
myofibroblasts. Finally, injurious insults are often associated 
with release of chemokines which can attract inflammatory 
cells including fibrocytes [48]. As will be discussed below, 
fibrocytes are important sources of periostin and regulate 
lung fibrogenesis [17, 20].

Thus far, a number of genetic mutations and polymor-
phisms have been associated with development or progres-
sion of IPF. These include mutations in surfactant protein C 
genes and telomerase genes [49–51]. Mechanistically, these 
mutations can lead to misfolded proteins or increased cel-
lular senescence which can cause endoplasmic reticulum 
stress and epithelial cell apoptosis [52, 53]. There are also a 
number of mutations that are believed to impact host defense 
that also occur in patients with IPF. These include mutations 
in toll like receptor 3 (TLR3), mucin 5b (MUC5b) and toll 
interacting protein (TOLLIP) [54–56]. The speculation in 
the case of these mutations is that impaired or altered host 
defense may impair pathogen clearance and allow damage 
to the lung epithelium. Our recent work has also demon-
strated that levels of circulating proteins associated with host 
defense response are downregulated in IPF patients further 
supporting impaired immunity as a key feature of disease 
pathology [57]. Given this supposition, it is especially 
interesting that recent studies have suggested that the lung 
microbiome is altered in patients with IPF. Patients with IPF 
show evidence of increased bacterial load in the lung [58], 
loss of diversity within the lung bacterial community, out-
growth of potentially pathogenic species [59] and evidence 
of gene expression profile changes that correlate with altered 
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microbial communities in IPF lungs [60]. Additionally, there 
is evidence that certain exposures may exacerbate the dis-
ease. One exposure that is believed to contribute to disease 
pathology is gastroesophageal reflux where microaspiration 
of stomach acid is believed to repetitively injure lung epi-
thelium [61]. Another potential exposure that causes dam-
age to epithelial cells is viral infection [62]. Finally, there 
is a condition known as an acute exacerbation of IPF that 
is defined by the absence of a clinical infection, but which 
results in rapid disease progression with high mortality [63]. 
Interestingly, in patients experiencing acute exacerbation 
of IPF, higher numbers of circulating fibrocytes have been 
noted [64].

Fibrocytes

Fibrocytes play a significant role in the development of 
lung fibrosis. Recently a circulating fibroblast precursor 
cell has been identified in the bone marrow and circula-
tion which expresses CD45 and the collagen receptor 
DDR2 [65]. It is likely that these cells are the precursors 
to fibrocytes. Fibrocytes are circulating cells derived from 

hematopoietic precursors and they are functionally defined 
by co-expression of both hematopoietic (CD45) and mesen-
chymal markers (Col 1). When expanded ex vivo from lung 
mince digests, fibrocytes express a number of ECM proteins 
including collagen 1, collagen 3 and fibronectin [66–69]. 
In addition, fibrocytes express chemokine receptors, includ-
ing CXCR4, CCR7 and CCR2, which may contribute to the 
recruitment and activation of fibrocytes in the lung [70–72]. 
Fibrocytes can express col 1 mRNA and protein, but have 
also been shown to ingest col 1 protein [73–75]. The exact 
role fibrocytes play in production vs. uptake of collagen is 
still debatable.

In vitro work has clearly shown that fibrocytes can dif-
ferentiate into myofibroblasts [70, 72, 76, 77]; however, 
whether this occurs in vivo is much less clear. Clonal trans-
plantation of circulating fibroblast precursors does give rise 
to fibroblasts in the lung [65] and lineage tracing studies 
have suggested that hematopoietic precursors can become 
lung fibroblasts, but these fibroblasts derived from bone 
marrow sources rarely become myofibroblasts [78, 79]. In 
fact, it is not clear that circulating precursors even contribute 
significantly to the ECM pool in lung fibrosis. For example, 

Fig. 1   Periostin secretion in asthma. Periostin is secreted from acti-
vated epithelium in a basolateral mechanism where it interacts with 
other mediators in the sub-epithelial space to promote airway smooth 

muscle remodeling and sub-epithelial fibrosis. Periostin also pro-
motes eosinophil recruitment and mucus secretion contributing to the 
pathophysiology of asthma
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deleting the ability of hematopoietic cells to produce col-
lagen using a transgenic approach in mice had no impact on 
the outcome of fibrosis and collagen deposition following 
challenge with bleomycin [75]. Thus, fibrocytes are likely 
to contribute to the development of fibrosis via mechanisms 
that are not related to intrinsic myofibroblast differentiation.

Our past studies have shown that adoptive transfer of 
fibrocytes 5 days post-administration of fluorescein isothio-
cyanate (FITC) or bleomycin (two well-studied exposures 
that lead to development of fibrosis following intratracheal 
instillation in rodents) results in enhanced fibrosis by day 
21 [17, 70, 71]. In addition, several studies show correla-
tions between increased numbers of fibrocytes and worse 
disease progression in both humans and animal models [17, 
71, 80–83]. Two studies using either the bleomycin model or 
the TGFα overexpression model have demonstrated convinc-
ingly that most fibrocytes do not differentiate into fibroblasts 
in vivo, but rather appear to promote fibrosis via secretion of 
paracrine mediators [17, 84]. This is consistent with human 
studies using samples from patients with hypersensitivity 
pneumonitis which demonstrated that co-culture of fibro-
cytes with lung fibroblasts led to a significant increase in 
the expression of ECM, matrix metalloprotease 1 and pro-
fibrotic platelet-derived growth factor β and that fibrocytes 
could influence the release of the chemokine CCL2 from 
lymphocytes [82]. When considering the mediators that 
fibrocytes might produce to regulate other cell functions in 
a paracrine manner, it is interesting to note that previous 
work showed that fibrocytes in circulation of IPF patients are 
major producers of the matricellular protein, periostin [20].

Periostin and interstitial fibrosis

Periostin is highly expressed in the lungs and is found at 
increased levels in the circulation of patients with IPF [20, 
21]. While the significance of alternative splicing in forma-
tion of periostin mRNA is not known, it has been noted 
that periostin utilizes different exons in IPF patients than 
normal volunteers [85]. The expression of periostin localizes 
to areas of active fibrosis, including areas known as fibrotic 
foci, which are believed to be the hallmark of the histopatho-
logic diagnosis of IPF [20]. This same study found peri-
ostin expressed in subepithelial and subendothelial regions 
of the IPF lung. In terms of circulating levels, two studies 
have shown that elevated levels of periostin in the serum or 
plasma can predict a decrease in lung function over 6 months 
or 48 weeks respectively [20, 21]. Importantly, periostin may 
be a relevant biomarker for disease activity in these older 
patients as new research suggests that in normal subjects, 
periostin levels are stable from age 32 past 70 [86]. This 
elevation in periostin during IPF disease is not surprising 
when you consider that two well-known pro-fibrotic media-
tors, namely TGF-β [87, 88] and IL-13 [89] are also highly 

expressed in fibrotic lung tissue and are likely to mediate the 
increase in periostin seen in IPF. It is believed that periostin 
may play an important role in helping to stiffen the lung 
ECM. For instance, cross-linking between collagen fibrils is 
catalyzed by lysyl oxidases. Periostin can activate bone mor-
phogenetic protein-1 to cleave lysyl oxidase; this in turn acti-
vates lysyl oxidase while also localizing this active enzyme 
to the ECM [90]. Ultimately, this leads to crosslinking of 
the collagen fibers and stiffening of the ECM. This increase 
in the stiffness of the ECM is believed to promote ongoing 
fibroblast activation, which may perpetuate the progressive 
nature of IPF [91].

Given the growing belief that bacterial infections or 
changes in the microbiome may promote lung fibrosis as 
discussed above, antibiotic therapy has been suggested as 
a therapeutic treatment for patients with IPF [92]. Interest-
ingly, a recent study showed that clarithromycin was able 
to attenuate the expression of periostin, even in the face of 
IL-13 stimulation [93]. This raises the intriguing possibility 
that antibiotic effects on lung fibrosis may in fact work in 
part via inhibition of periostin.

Mouse models of lung fibrosis

While human studies have suggested a role for periostin in 
the progression of IPF, mechanistic studies require an animal 
model. There has been significant debate about the useful-
ness of animal models for IPF research, but they do represent 
well-characterized models of the evolution of fibrosis from 
injury to acute inflammation to chronic inflammation and 
ECM deposition [94]. Furthermore, an American Thoracic 
Society working group recommended that the bleomycin 
model be used as an important tool for the preclinical testing 
of anti-fibrotic agents [95]. With that context, two previous 
studies have noted that periostin accumulates in the lungs of 
both Balb/c and C57Bl/6 mice treated with bleomycin [20, 
96]. Excitingly, both strains of mice were protected from 
the eventual development of fibrosis following bleomycin 
injury. However, there were different conclusions made as 
to the reason for the protection. In the Balb/c background, 
protection resulted from impaired production of chemokines 
by periostin-deficient fibroblasts, and reduced inflammatory 
responses [96]. In C57Bl/6 mice, inflammatory responses 
are similar between periostin knockout mice and wild-type 
littermates, but the mice developed less fibrosis during the 
fibroproliferative phase [20]. In fact, an antibody, OC-20, 
that blocks interactions of periostin with integrins, was able 
to block fibrosis even when given after the inflammatory 
phase of the disease [20]. Similarly, OC-20 was able to 
improve outcomes in a murine model of asthma as well [40].

In the C57Bl/6 background, one of the most interesting 
findings was that bone marrow chimeric mice created to 
lose expression of periostin in either the hematopoietic 
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or structural cell compartments were both protected 
compared to chimeric mice expressing periostin in both 
donor and host cells [20]. This suggested that a circulating 
source of periostin was also important for the full fibro-
genic effect. As mentioned earlier, fibrocytes are a cell 
type that are known to promote fibrogenesis and have been 
shown to express periostin in IPF patients [20, 80]. Our 
laboratory undertook a series of experiments to explore 
the importance of periostin production from fibrocytes 
specifically [17]. In these experiments, we showed that 
adoptive transfer of fibrocytes from wild-type mice aug-
mented development of fibrosis to a greater degree than 
adoptive transfer of fibrocytes from periostin−/− mice. 
As we saw no evidence of fibrocytes actually differen-
tiating into myofibroblasts in vivo, we tested the effects 
of supernatant obtained from cultured fibrocytes derived 
from bleomycin-treated wild-type and periostin−/− mice. 
We noted that supernatants from wild-type fibrocytes were 
more effective at inducing myofibroblast differentiation 
than those from periostin-deficient cells. We also found 
evidence that periostin and TGFβ were potent co-regu-
lators of expression of each molecule, but that periostin 
had impacts on fibrocyte activation that were mediated by 
the β1 integrin rather than the TGFβ receptor. In concert 

with the paracrine nature of the periostin effect, fibrocytes 
from wild-type, but not periostin−/− mice produced more 
connective tissue growth factor (CTGF) and lysyl oxidase, 
which likely contribute to the ability to enhance collagen 
synthesis and crosslinking. Figure 2 shows a schematic of 
periostin in the pathogenesis of lung fibrosis.

In other animal models, microaspiration of bile acids (a 
model that mimics gastroesophageal reflux) led to devel-
opment of fibrosis in rat lungs and this fibrosis was associ-
ated with an increase in several growth factors including 
TGFβ, CTGF and periostin [97]. Additionally in a model 
of bronchopulmonary dysplasia (BPD) in which neonatal 
mice are exposed to hyperoxia, it was found that periostin 
expression increased in the alveolar walls, particularly in 
areas in which interstitial thickening was noted, and this 
was similar to the expression pattern seen in infants with 
BPD where periostin staining co-localized with fibroblasts 
[1]. Furthermore, hyperoxia-exposed periostin−/− mice 
did not show the characteristic enlarged airspaces and 
interstitial thickening of BPD whereas the wild-type mice 
did. Similar to the findings in Balb/c mice with bleomy-
cin, periostin seemed to promote expression of several 
chemokines including CXCL1, CXCL2 and CCL4 [1]. 

Fig. 2   Contributions of Peri-
ostin to IPF pathophysiology. 
In IPF, recurrent idiopathic 
epithelial cell injury results 
in inflammation. Periostin is 
highly expressed in the lungs 
and subsequently leads to 
TGF-B activation, increased 
type 1 collagen production, 
promotes fiber cross linking 
and enhanced stiffening of the 
interstitial matrix. Periostin 
mediates fibroblast to myofibro-
blast differentiation and studies 
from animal models support a 
role for periostin in epithelial to 
mesenchymal cell transition
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Thus, it appears that periostin contributes to fibrosis in 
both neonate and adult animals.

Conclusions

Periostin is a remarkable master regulator of the extracellu-
lar matrix. It plays a key role in maintaining a normal tissue 
matrix in the lung and abnormalities of periostin contrib-
ute significantly to the pathophysiology of several chronic 
respiratory diseases. In asthma, the levels of periostin are 
proving particularly efficacious in discriminating between 
different endotypes of the disease and predicting clinical 
progression. Importantly, current and ongoing clinical stud-
ies continue to explore the role of periostin as a potential 
biomarker of therapeutic responses in asthmatic patients. 
Periostin drives several features of the pathophysiology of 
IPF including myofibroblast differentiation, type 1 colla-
gen production and cross linking of fibers within the lung 
matrix. It has also been reported as a biomarker of clinical 
progression. Several further studies are required to elaborate 
further on the role of periostin, its efficacy as a biomarker in 
chronic respiratory disease and even its potential candidacy 
as a therapeutic target in disease.
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