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Abstract

For much of our history, the most basic information about the microbial world has evaded 

characterization. Next-generation sequencing has led to a rapid increase in understanding of the 

structure and function of host-associated microbial communities in diverse diseases ranging from 

obesity to autism. Through experimental systems such as gnotobiotic mice only colonized with 

known microbes, a causal relationship between microbial communities and disease phenotypes has 

been supported. Now microbiome research must move beyond correlations and general 

demonstration of causality to develop mechanistic understandings of microbial influence, 

including through their metabolic activities. Similar to the microbiome field, advances in 

technologies for cataloguing small molecules have broadened our understanding of the metabolites 

that populate our bodies. Integration of microbial and metabolomics data paired with experimental 

validation has promise for identifying microbial influence on host physiology through production, 

modification or degradation of bioactive metabolites. Realization of microbial metabolic activities 

that affect health is hampered by gaps in our understanding of 1) biological properties of microbes 

and metabolites, 2) which microbial enzymes/pathways produce which metabolites and 3) the 

effects of metabolites on hosts. Capitalizing upon known mechanistic relationships and filling gaps 

in our understanding has the potential to enable translational microbiome research across disease 

contexts.
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The Microbiome

An important concept for understanding the state and challenges of microbiome research 

was articulated by Donald Rumsfeld in 2002, when he said, “There are known knowns; 
there are things we know we know. We also know there are known unknowns; that is to 
say we know there are some things we do not know. But there are also unknown 
unknowns – the ones we don’t know we don’t know…. it is the latter category that tend to 
be the difficult ones1.”

The modern microbiome field began with a great discovery of “unknown unknowns”. 

Starting in the mid-1980s when researchers began using targeted sequencing of ribosomal 

RNA (rRNA) genes to survey microbial populations2, studies began to reveal deep branches 

of the tree of life previously unknown either because the organisms were invisible to the 

naked eye or uncultivable in the laboratory3. Considering how many “unknown unknowns” 

there were about the microbes that live in, on and around us just 30 years ago, the progress 

made in the field of microbiome research is remarkable.

Several key aspects of microbiome research have contributed to this rapid progress. First, the 

early adoption of the highly conserved small subunit rRNA gene as a phylogenetic marker 

allowed for relating all cellular life on earth onto one phylogenetic tree3,4. Examining novel 

environmental 16S rRNA gene sequences in an evolutionary context allowed for some 

properties of uncultivated organisms to be predicted. Even when such functional predictions 

were not possible (e.g. because the 16S rRNA gene sequence was extremely different from 

any previously characterized organism), simply moving our understanding of microbial 

biology from one of “unknown unknowns” to “known unknowns,” allowed for the 

identification of key gaps in understanding. For instance, the 16S rRNA sequences from an 

uncultivated group of bacteria in the α-proteobacterial lineage called SAR11 was found in 

nearly every pelagic marine bacterioplankton community, accounting for 26% of all rRNA 

genes in sea water. Targeted efforts led to the isolation and biological characterization of 

SAR11 isolates5. Using other –omics techniques coupled with experimental validation, the 

diverse and complex functions of the SAR116 lineage in the world’s oceans continue to be 

elucidated7.

A second factor that has contributed to rapid progress in microbiome research is next-

generation sequencing. These technologies were used for 16S rRNA targeted 

characterization of microbial communities through use of the 454 sequencing platform in 

20086,8,9. Starting in 2011, the 454 platform was largely replaced with the more high-

throughput Illumina platforms10. Coupled with development of bioinformatics pipelines for 

16S rRNA targeted microbiome analysis such as QIIME11 and of taxonomic databases for 

linking 16S rRNA gene sequences to named organisms/lineages (e.g. Silva12 and 

greengenes13), deep sequencing of microbial populations in many different environments, 

including many human body sites in disease contexts, has occurred. This has led to a 

plethora of papers describing associations of human microbial communities with diseases 

ranging from obesity14,15, depression16, inflammatory bowel disease (IBD)17,18 and heart 

disease19–21 to autism22–24.
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Next generation sequencing has also enabled the sequencing of shotgun metagenomes and 

transcriptomes. Shotgun metagenomes survey the “functional potential” of a microbial 

community by mapping the genes present. The metatranscriptome adds an extra layer of 

information of the genes actively expressed. Effective functional analysis of microbial 

communities using shotgun metagenomic and metatranscriptomic data is highly dependent 

on our underlying knowledge of how gene sequences relate to enzymatic or other functions, 

which is summarized in databases such as KEGG25 and MetaCyc26. However, as for 16S 

rRNA databases where many known sequences represent organisms of unknown 

characteristics, the genes detected in shotgun metagenomes and metatranscriptomes contain 

many genes of unknown function. As an example, only a median of 18.9% percent of the 

genes present in bacterial genomes can be mapped to a KEGG Orthologue (KO) of known 

function based on homology. In some cases, only general function is known for a given 

gene. For instance, Bacteroides thetaiotaomicron has 280 genes predicted to be glycoside 

hydrolases in the Carbohydrate Active EnZymes database (CAZY)20 because they have 

sequence domains related to families of structurally-related catalytic and carbohydrate-

binding modules, but only 44 of them are in KEGG.

As described for the SAR11 cluster and 16S rRNA, identifying “known genes of unknown 

function” that may be of particular relevance due to their ubiquity or a strong correlation 

with disease, can focus targeted efforts to elucidate their functional roles. In one study, a 

family of nonribosomal peptide synthetase gene clusters in gut bacteria was targeted for 

functional analysis because they were present in 88% of the National Institutes of Health 

Human Microbiome Project stool samples and transcribed under conditions of host 

colonization25. By expressing a subset of these clusters in Escherichia coli or Bacillus 
subtilis, it was determined that their gene products lead to the production of peptide 

aldehydes with protease inhibitory activity that selectively targets a subset of cathepsins in 

human cell proteomes27. The ubiquity of these enzymes indicates that they have the 

potential to be an important mediator of gut microbiome/host interactions.

While there have been many advances in microbiome sequencing workflows, the key 

challenge for the microbiome field, and essential for translational research, is to move 

beyond associations to an understanding of mechanism. One challenge for generating 

testable hypotheses regarding mechanistic links between microbial communities and disease 

is a lack of understanding of microbial function in disease causality. A potential way to 

address this gap is through the application of metabolomics with microbiome analysis.

The Metabolome

An important tool for understanding microbial community function is metabolomics. 

Metabolomics is a growing field that comprises the measurement of hundreds to thousands 

of small molecules in a system28. It encompasses metabolite profiling, lipidomics, and 

metabolic flux measurements28,29 and can also include the targeted analyses of specific 

small molecules, including sex hormones, lipid mediators30, and amino acids31.

While genomics, transcriptomics, and metadata provide valuable information regarding 

phenotypes and molecular mechanisms, metabolomics provides a real-time view of dynamic 
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changes as they occur through the quantitation of small molecules. Small molecules play 

several roles in the cell including membrane structure (lipids), signaling (lipid mediators, 

neurotransmitters), and building blocks (amino acids). They are also involved in many 

processes affected by exogenous influences; these include response to oxidative stress 

(redox potential), inflammatory response, and energy metabolism, to name a few. Overall 

metabolomics can be thought of as a functional measurement of dozens to hundreds of 

molecules. This functional knowledge is essential for understanding the links between 

microbial communities and disease.

Metabolomics can be conducted using either mass spectrometry-based or nuclear magnetic 

resonance (NMR)-based platforms. NMR offers reproducible, quantitative measurement of 

approximately 125 small molecules, including carbohydrates, nucleic acids, and fatty 

acids32,33. NMR is highly robust, can be performed in vivo, for instance to obtain 

biochemical information about the tissues of the human body in a non-invasive way (without 

the need for a biopsy), and is non-destructive. However, due to the relatively lower 

sensitivity of NMR, mass spectrometry-based platforms have become increasingly adopted 

by clinical and research laboratories wishing to conduct metabolomics.

One advantage of metabolomics is that this technical platform is agnostic to the nature of the 

sample type or treatment group; hence, it is a valuable tool for both hypothesis generation 

(untargeted approaches) and testing (targeted approaches). However, numerous challenges 

exist34 including multiple compound name assignments to a single mass, lack of database 

search scoring algorithms, limited coverage of important pathways using a single 

technology, uncharacterized metabolic and degradation products, and lack of standardized 

nomenclature and analytical methods that compare datasets. High throughput samples and 

analysis as well as data interpretation pose additional challenges; traditionally, the 

interpretation step has been challenging for researchers when only long lists of potential 

biomarkers or compound masses (MS) are provided as the final results. Despite the 

availability of sophisticated pathway analysis programs35,36, a thorough interpretation of the 

data has often been beyond the scope of many metabolomics studies; this is especially 

emphasized in the context of microbiome/host studies, where the origin of metabolites is 

unclear.

Metabolomics is still limited by many “known unknowns”. Due to their chemical diversity, it 

is impossible to quantitate every species or even class of small molecule using a profiling 

approach. Therefore, targeted small molecule analysis (based on robust mass spectrometry 

assays) are used to quantitatively pinpoint the roles of individual molecules. For example, 

inflammatory responses can be elucidated by measuring individual lipid mediators that are 

part of the arachidonic acid pathway30. Examples of targeted small molecule analyses are 

most often found in newborn screening, where small molecules are used to determine the 

presence of many metabolic and genetic disorders34. While a precise and accurate means of 

quantitating small molecules, targeted assays require knowing the molecule of interest and 

are often limited in the numbers of molecules that can be quantitated.

Additionally, many metabolites cannot be mapped to current pathways. Even knowing the 

chemical class or species of these molecules may not be enough to deduce their function. 
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Overall, the challenges in both microbiome and metabolome data interpretation highlights 

the need for efforts to further develop our knowledge so that the results of multiple ‘omics 

studies can be used to understand mechanisms and phenotypes in human health and disease.

Microbiome Effects on the Host Metabolome

Metabolomics has been applied to a variety of human sample types where bacterial 

metabolites may be found. These include sites where the bacteria reside and are active 

including nasal, feces, and skin37,38, as well as peripheral sites without resident bacterial 

communities such as blood39–41, urine40,41 and liver42. The latter are of interest because 

these metabolites have translocated through host barriers (e.g. skin or mucosal sites) and 

have potential for more systemic health effects. Metabolomics analyses of microbiome-

influenced samples often have a primary aim to measure well-characterized metabolites such 

as short chain fatty acids (SCFAs), siderophores, and biotransformation products from host 

metabolites and xenobiotics28,43–46. Untargeted analyses aimed at understanding 

microbiome effects on the metabolome of host-derived samples are complicated because the 

compounds detected represent a complex milieu of environmental compounds as well as 

those produced by microbes and/or the host.

Determining the origins of metabolites that cause or influence disease is important for 

developing targeted therapies. Microbes have highly enhanced metabolic capabilities 

compared to humans; the gut microbiome encodes an estimated ~ 10 million genes47 

compared to an estimated 19,000 in humans48. Microbiomes have the genetic capacity to 

produce a wide variety of structurally diverse specialized metabolites including natural 

products, small molecule virulence factors, and signaling metabolites including quorum 

sensors and autoinducers37,38,49. Most specialized metabolites, their biosynthetic origins, 

and their roles in microbiome related disease remain understudied37.

A broad understanding of how the presence of a microbiome effects the host metabolome 

has come from comparing germ free (GF) mice, (i.e. mice with no associated microbial 

communities), to mice with colonizing microbes including 1) conventional mouse 

microbiota39 2) the microbiota of different humans (i.e. humanized mice)40 or 3) specific 

individual bacterial species39,40. Similarly, other studies have compared the metabolomes of 

mice treated with antibiotics to non-antibiotic treated controls50,51. These studies have found 

that microbial colonization/composition has a profound influence on both the presence and 

relative abundances of many metabolites in various sites including the blood 39,40,42, 

urine40,42, feces40, liver42, and ileum42. Differences observed in GF and/or antibiotic treated 

mice in the various studies include changes in amino acid metabolism pathways (e.g. a loss 

of transformation of tryptophan into tryptamine and indole derivatives39–41,51), 

polysaccharide metabolism (e.g. increases in non-digestible plant-polysaccharides in 

feces40), decreases in SCFAs, increases in primary bile acids and decreases in secondary bile 

acids51 and elevation of creatine and creatinine40,52,53. Microbiota colonization also results 

in differences in many small compounds of unknown identity/function40.

Another way to estimate which metabolites in host samples originate from host versus 

microbial metabolism is to use metabolic networks described in databases such as KEGG25. 
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These networks capture the relationship between metabolites, the enzymes that produce 

them, and the organisms (both host and microbial) that contain genes encoding those 

enzymes (Figure 1A). These networks can, in principle, provide a framework for relating the 

genes/enzymatic reactions present in the colonizing bacteria (genome/shotgun metagenome), 

the expression of those genes (meta-transcriptome), and presence of the encoded proteins 

(meta-proteome), and the metabolites (metabolome) in a sample (Figure 1B). They also 

provide a framework for investigation of microbiome/host co-metabolism (Figure 1C).

Linking Microbiome/Metabolome with the Exposome

Another important level of complexity is how the metabolome and microbiome are linked 

with the exposome (e.g. exogenous factors such pollutants, hygiene products, and the diet). 

One of the most studied facets of the exposome is diet. Diet composition substantially alters 

the human microbiome54,55 and diet induced changes can occur as rapidly as within a 

day54,56. This change is accompanied by alteration in bacterial gene expression54, 

suggesting that the microbiome is elastic and poised to quickly respond to varied diet 

exposures.

Studies in both humans57–60 and animal models40 have shown that consumption of different 

diets is associated with changes in microbially-produced metabolites. For instance, high 

fiber diets have been associated with the increases in both fecal61,62 and circulating63 levels 

of SCFAs. Another study of humans on a high protein diets saw an increase in levels of the 

carcinogenic N-nitroso compounds compared to a maintenance diet, thought to be driven by 

increased protein fermentation and decreased carbohydrate fermentation by colonic 

microbiota62. Broader effects of fiber consumption on the fecal and urine metabolome were 

observed in a study comparing mice on a standard low fat (LF) to a high fat (HF) diet64 

which suggests that lack of complex polysaccharides may be a large contributor to the HF-

diet associated microbiome/metabolome.

Though a significant facet of the exposome, daily exposures extend beyond diet. A large 

area of exposure is the skin which is composed of a diverse and rich microbiome, varying by 

body site65. Spatial mapping of the microbiome and metabolome across 400 sites of the 

human body revealed associations between microbes and the metabolites present66. Most 

notably Propionibacterium was associated with sebaceous sites and highly correlated with 

491 metabolome features, 73% of which were lipids. Further in vitro analysis revealed that 

Propionibacterium acnes can oxidize oleic acid, the breakdown products of which were 

found in sebaceous sites66. These findings suggest that the skin microbiome influences the 

chemical landscape of the skin metabolome.

The host microbiome is also important in xenobiotic degradation. Gut microbes can 

metabolize a range of environmental chemicals in ways that can affect their toxicity to the 

host, including polycyclic aromatic hydrocarbons (PAHs), nitrotoluenes (which are 

important intermediates in the manufacture of dyes and plastics), and pesticides67. PAH 

degrading microbes have also been observed on human skin68. Additionally, gut microbes 

have also been associated with breakdown and reactivation of a variety of drugs including 

the cardiovascular drug, digoxin and the cancer drug, irinotecan69.
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Identifying Important Microbially-Produced Metabolites for Health and 

Disease

Studies aimed to explore an association between microbial metabolism and disease states 

often focus on well-characterized microbial metabolites such as SCFAs70. However, 

approaches that can identify novel bio-active microbial metabolites as mediators of 

microbiome-host or microbe-microbe interactions are increasingly being applied71. These 

include: 1) Bioactivity-guided screening, in which a phenotypic bioassay is performed by 

testing a collection of microbes, chemical extracts, or cosmid libraries generated from 

metagenomics DNA against a panel of host pathogens or signaling pathways72,73. 2) 

Candidate molecule workflows, which mine existing (meta)genomics data to identify 

Biosynthetic Gene Clusters (BGCs) that may produce metabolites of interest because they 

are prevalent or correlate with disease49. 3) Integrative analysis of microbiomes and 

untargeted metabolomes in disease contexts20,50,74–76. All of these approaches can identify 

molecules with potential roles in mediating host-microbe interactions that can be further 

validated in in vitro or in vivo systems.

Bioactivity-guided workflows have led to the identification of several metabolites that 

mediate interactions between microbes and the host or other microbes. For instance, 

commendamide, which activates the G-protein-coupled receptor G2A/GPR132 (G2A has 

been implicated in disease models of autoimmunity and atherosclerosis), was discovered 

initially in a screen of 3,000 megabases of metagenomic DNA for effectors that activate NF-

κB, a transcription factor that plays a role in mediating responses to environmental stimuli72. 

Lugdunin, a novel antibiotic that prohibits colonization by methicillin-resistant 

Staphylococcus aureus (MRSA), was discovered by screening for the mechanism by which 

Staphylococcus lugdunensis, a microbe that occupies the same niche as MRSA, could 

inhibit the growth of MRSA in vitro73. Bioactivity-guided workflows can also include 

random mutagenesis of the microbe of interest combined with high-throughput phenotypic 

screening for loss of function, and imaging mass spectrometry of competing microbes in 
vitro 72,77,78.

Candidate molecule workflows identify BGCs that allow microbes to produce metabolites 

and capitalize on knowledge of the core enzymatic machinery responsible for their 

biosynthesis, which has been well-characterized for many classes of specialized 

metabolites49. This knowledge has been used to develop and implement bioinformatics 

platforms, such as anti-SMASH and related platforms, to detect widely distributed and 

closely related gene cluster families, identify potential metabolite producers, and guide 

purification workflows79–84. Candidate molecule methods have also led to the identification, 

structural elucidation and/or synthesis of metabolites that mediate interactions between 

microbes and the host and/or other microbes. These include colibactin, a secondary bacterial 

metabolite with genotoxic properties85, lactocillin, a potent thiopeptide antibiotic made by a 

prominent member of the vaginal microbiota 27,49, (dihydro)pyrazinones, which are 

prevalent in the human gut and that release a peptide aldehyde that inhibits cathepsins in 

human cell proteomes21, and humimycins, antibiotics with activity against MRSA86. 

Candidate molecule workflows can also be combined with tandem mass spectrometry 
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(MS/MS) data to link MS/MS spectra of unknown metabolites to their biosynthetic origins, 

simplifying compound isolation and characterization87,88.

Integrative analysis of microbiomes and untargeted metabolomes in disease contexts have 

also allowed for the identification of microbially produced compounds found to mediate 

disease upon further functional characterization. For example, one study used a maternal 

immune activation (MIA) murine model that developed symptoms commonly associated 

with Autism Spectrum Disorders (ASD). These MIA mice also had altered gut microbiome 

and serum metabolome profiles compared to control mice. Oral treatment of the MIA mice 

with the human commensal Bacteroides fragilis ameliorated ASD-like behaviors. The 

metabolite 4-ethylphenylsulfate (4EPS) was focused on for functional study because its 

levels were increased in the MIA mice and restored to control levels by B. fragilis treatment. 

Interestingly, systemic administration of naïve wild-type mice with 4EPS potassium salt was 

sufficient to induce anxiety-like behavior similar to that observed in MIA offspring74.

In another study that characterized the fecal microbiome and serum metabolome of non-

diabetic Danish individuals, serum levels of branch-chain amino acids (BCAAs) were higher 

in insulin-resistant individuals and also correlated with fecal microbiomes with higher 

biosynthetic potential for BCAAs conferred by the species Prevotella copri and Bacteroides 
vulgatus. These predictions, made based on correlative analyses and functional predictions, 

were further validated by showing that P. copri could induce insulin resistance while 

increasing circulating BCAA levels when introduced into High Fat Diet (HFD)-fed mice89.

In some cases, associations between microbially produced metabolites and disease have also 

been linked with the exposome, including diet. One study showed that a dietary fiber 

associated reduction in allergic lung inflammation was driven by the SCFA propionate, 

which exerted its health effects through G protein–coupled receptor 41 mediated signaling in 

bone marrow72. Other work demonstrated that risk of cardiovascular disease and 

atherosclerosis was linked with trimethylamine-N-oxide (TMAO), which is produced by 

host enzymes from trimethylamine (TMA). TMA is a metabolite of dietary 

phosphatidylcholine and L-carnitine that can be produced by intestinal bacteria but not host 

enzymes and whose production is associated with particular human gut microbiome 

compositions20,76.

Metabolites from non-targeted metabolomics can be prioritized for functional exploration 

using various analytic techniques. As mentioned above, correlative analyses link the 

presence of a specific metabolite to genotypic and/or phenotypic data and may suggest that a 

metabolite is produced or induced by the presence of a specific microbe90–94. Other methods 

include Self Organizing Map generation, which applies multivariate statistics to differentiate 

samples by identifying the largest changes in metabolite abundance between case and 

control95–97, and dereplication, or the identification of known molecules. Dereplication by 

molecular networking uses MS/MS data to visualize the chemical space of samples to 

pinpoint an in vitro producer of a metabolite produced in vivo 66,98–100. Molecular 

networking measures relatedness between MS/MS spectra as a proxy for molecular 

similarity. MS/MS metabolomics data derived from in vitro cultivation of members of the 
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microbiota can be used to seed molecular networks in order to identify either known 

compounds produced by those members of the community or close analogs99–101

Functional Validation

Once associations between microbiomes and metabolomes in disease have been identified, 

the roles of specific metabolites or metabolomics patterns must be validated. If a compound 

is characterized and commercially available, validation is most straightforward. For 

uncharacterized compounds, molecular biology workflows can be used; for instance, 

metagenomics-derived BGCs can be expressed in heterologous hosts as was recently used to 

characterize the (dihydro)pyrazinones from human gut microbiota27. Additionally, if the 

microbe that produces the metabolite can be grown in pure culture and genetically 

manipulated, regulators of BGCs can be removed, replaced, or enhanced to increase in vitro 
metabolite production to levels necessary for isolation, as was recently demonstrated during 

the characterization of lugdunin73,102.

Despite recent success characterizing a handful of individual metabolites, many specialized 

metabolites of interest are understudied, in part due to limitations of cultivation. To 

circumvent these limitations, conventional approaches for microbiota growth have been 

modified to include environment specific media103–106, optimization of growth conditions 

based upon (meta)genomic information106, inclusion of helper organisms107,108 and higher 

throughput cultivation strategies105,109–112. Efforts are also underway to cultivate both native 

and designer microbiome communities using in vitro and in vivo model systems104 and new 

model systems continue to be developed113,114.

Animal models are widely used to explore the functional attributes of microbes and their 

metabolites, including both conventionally raised and GF models of zebrafish, mice, rats, 

and pigs113. While GF models have been a powerful tool for experimental validation of 

microbial contributions to disease, use of these models has sometimes been criticized as 

these animals have alterations in essential physiological processes113,115. Treatment of 

conventionally raised animals with broad-spectrum antibiotics cocktails followed by 

repopulation with chosen microbes is a commonly used alterative48,50,116,117 and may 

circumvent some issues with GF animal model systems, but have the limitation that 

antibiotics never completely remove indigenous microbes and also may have other effects on 

the host. Successful use of animal models to functionally validate the effects of microbially-

produced metabolites in disease were described above for studies of atherosclerosis20,76,118, 

ASDs74, and diabetes62. Another elegant example of using molecular biology in conjunction 

with animal models to identify key metabolites is the elucidation of the role of microcins 

produced by probiotic E. coli strains in modulating Enterobacteriaceae in the inflamed 

gut119.

While animal models are most often chosen to explore functional activity of microbes and 

their metabolites, in vitro systems can provide an intriguing alternative113 due to their higher 

throughput, flexibility, scaling, and ability to simplify the system for high-resolution 

molecular analyses. These in vitro models include independent cultivation of the microbiota 

and interfacing the members of the microbiota with host cell lines using Transwell systems 
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or, eventually, organ-on-a-chip microfluidic devices113. While a number of groups are 

attempting to systematically construct artificial communities for robust evaluation of 

microbiome modulation by both organisms and metabolites, such as probiotics and 

pharmaceuticals respectively, development of environment-specific media has led to some 

success recapitulating in vivo microbiome communities in vitro for similar 

purposes103–105,110,112,120. For example, stable oral microbial biofilm communities 

representing 60–80% of the taxonomic diversity of the original sample has been 

accomplished121, while fecal communities were recapitulated at 65–95%122. Miniaturized 

bioreactors and chemostats may provide opportunities to maintain continuous culture of 

communities removing concerns about sample limitation from patient donors, particularly of 

microbiome niches that are not as easily accessible as stool113,123. To incorporate host cells, 

co-culture systems have been developed and models for the context of gut microbiome 

investigation have been recently reviewed124. These models include co-culture in tubes 

(HoxBan system), Transwell systems, and microfluidic devices. While microfluidic systems, 

such as the HuMiX model, are more compatible with multi-omics analyses, it suffers from 

poor chemical compatibility, challenges with parallelization, and lack of widespread 

availability113,114,124.

Towards Microbiota-targeted Therapeutics

Microbiome/metabolome targeted therapies include both those that inhibit detrimental 

microbes/metabolites and those that promote beneficial microbes/metabolites (Figure 2). 

The microbiome/metabolome can also potentially inform personalized medicine, if the 

treatment of an individual is tailored based on the composition or metabolic capabilities of 

their microbiome. The complicated and diverse roles in disease of the microbiome are only 

beginning to be elucidated; thus, most promising research directions have yet to reach their 

full potential in the clinic.

Targeting detrimental bacteria and metabolites

Although antibiotic treatment can be valuable for discouraging growth of bacteria that 

produce detrimental metabolites, broad effects on other (beneficial) microbes and rapid 

acquisition of antibiotic-resistance limits their utility. Thus, another promising approach is 

competitive exclusion by other “probiotic” bacteria. Perhaps the best evidence that this 

approach can be successful clinically is the 92% success rate of fecal microbiota 

transplantation (FMT) for the treatment of recurrent Clostridium difficile infection125. 

However, understanding metabolic mechanisms of inter-species interaction can allow for 

better “precision microbiome reconstitution”126 for treatment of C. difficile and potentially 

of diseases where FMT has had more variable success such as IBD127,128. In the case of C. 
difficile, protection in mice has been conferred by introducing specific bacteria (e.g. 

Clostridium scindens) that can produce key metabolites (secondary bile acids) that affect C. 
difficile sporulation and growth and thus infection126; however, efficacy and safety trials in 

human populations still need to be conducted.

Another mechanism for preventing detrimental microbial metabolic activity is to inhibit the 

metabolic pathway rather than the bacteria that contain it. This can be accomplished by 
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limiting inputs to the pathway (e.g. by altering dietary intake) or by inhibiting bacterial 

enzymatic activity (Figure 2). One promising example is the treatment of cardiovascular 

disease by inhibiting microbial production of TMA using a structural analog of choline that 

can inhibit microbial TMA lyases118. In another example, the amino acid arginine can 

inhibit enzymatic conversion of the cardiac drug digoxin into an inactive form by the gut 

microbe Egerthella lenta, indicating that co-administering this drug with arginine may 

prevent its deactivation by microbial enzymes21. However, both of these enzyme-targeted 

treatment strategies still require validation in clinical cohorts.

Promoting beneficial bacteria and metabolites

Therapies that promote the prevalence/activity of beneficial microbes and their metabolites 

also have promise for clinical applications that has likely yet to be fully realized. Current 

probiotic treatments use a small number of intestinal microbes (e.g. various Lactobacillus or 

Bifidobacteria species, the yeast Saccharomyces boulardii, or E. Nissle) that have already 

been approved for use in humans and that only represent a small component of bacteria that 

can colonize the human gut. In some cases, specific probiotics have been shown to affect 

both microbiome and metabolome composition while promoting health; for instance, a trial 

in patients with liver cirrhosis found supplementation with Lactobacillus GG improved 

outcomes (decreased endotoxemia and TNF-α levels) with concomitant changes in 

microbiome composition and metabolite/microbiome correlations pertaining to amino acid, 

vitamin and secondary BA metabolism129. As the literature on these probiotics is vast, 

consensus opinion regarding their utility in the clinic are valuable; the Triennial Yale/

Harvard Workshop on Probiotic Recommendations130 gives A–C evidence ratings for the 

use of specific probiotics in necrotizing enterocolitis, childhood diarrhea, IBD, irritable 

bowel syndrome, C. difficile diarrhea and liver disease.

There are several bacteria that have shown positive effects in mouse models that may 

represent a “next generation” of probiotics once safety and efficacy studies in humans can be 

conducted. For instance Bacteroides uniformis and Akkermansia muciniphila both reduce 

weight gain and metabolic disease pathology in HFD-fed mice131,132; Bacteroides fragilis, 

Bacteroides cellulosilyticus, and cocktails of T regulatory cell inducing, spore-forming 

Clostridia have all been shown to protect against intestinal inflammation in mouse 

models133–135. The mechanism by which probiotics may confer a health benefit are often 

not completely understood and include other functions besides the production of small 

molecules, such as the production of immune-modulatory capsular components133.

Probiotic applications can be challenged by colonization resistance; This challenge can 

potentially be circumvented by promoting growth and metabolic activity of beneficial 

bacteria using prebiotics or synbiotics. Prebiotics are broadly defined as any compound that 

affects the composition or function of the microbiome to exert a beneficial effect upon the 

host following bacterial metabolism136. Prebiotics are typically fibers and starches extracted 

from plants or post-fermentation processes with SCFAs being one desirable metabolic 

product of their digestion 137–142. Synbiotics are formulations that contain both probiotics 

and prebiotics together. Understanding the metabolic environment necessary for the 

successful growth of microbes can lead to the intelligent design of prebiotics and synbiotics. 
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For instance, galactooligosaccharide mixtures defined in laboratory culture experiments to 

have particularly strong prebiotic properties for Bifidobacteria, effectively increased the 

proportion of Bifidobacteria in the gut in a dose dependent manner when given to healthy 

human volunteers138. Use of genomic and metabolic data to design prebiotic strategies that 

target specific microbes and metabolites will become more powerful as our knowledge bases 

of microbial enzymes and metabolites expand.

Beneficial microbial metabolites can also be directly introduced to the host to circumvent 

the need for microbial production from dietary substrates, a process referred to as 

“microbiome-based metabolite treatment” or “postbiotics”143(Figure 2). For instance, the 

anti-inflammatory microbial fermentation product, butyrate, has been added directly to the 

colonic environment via enema in efforts to ameliorate inflammation in patients with 

ulcerative colitis 144,145, although only minor improvements were observed146. The 

exploration of “postbiotic” therapies are in their infancy and potentially challenged by 

unintended effects of the compound on gut microbiome composition and activity, and 

difficulty in determining and delivering physiologically important levels of the metabolite to 

its active site in the body143.

Personalized medicine

Finally, microbiome/metabolome information has the potential to inform personalized 

medicine. In one elegant example, gut microbiota composition was included in machine 

learning-algorithms that also considered blood parameters, dietary habits, anthropometrics, 

and physical activity, to predict personalized glycemic responses to meals. This model was 

used to perform personalized dietary intervention to lessen elevated postprandial blood 

glucose and its metabolic consequences147.

Another promising direction of microbiome/metabolome informed personalized medicine is 

to consider the role of the microbiome on drug metabolism/pharmacokinetics for proper 

drug dosing. For instance, evaluation of the presence of digoxin-deactivating strains of the 

gut bacterium E. lenta has the potential to inform proper administration of this cardiac 

drug148. Another study suggested that urinary levels of the microbial product p-cresol sulfate 

(as determined by (1)H NMR spectroscopy) could indicate the metabolic fate of 

acetaminophen149.

Future Directions

It’s been almost nine years since we were all invited to the marriage of metagenomics and 

metabolomics150 and progress in integrating these data types and elucidating the function of 

key small-molecules that are produced by the microbiome is being made. Understanding the 

metabolic capabilities of the microbes that inhabit all areas of the human body will be key to 

determining their effects on health and disease. To advance this knowledge, more work 

remains to be done. While 16S rRNA can be used to conveniently survey the composition of 

microbial communities, its ability to predict metabolic effects is limited both by the 

incomplete knowledge present in bacterial genomic databases and strain level variation. 

Metagenomic sequencing gives more knowledge of the genes present, but the majority of 

these genes still have unknown function. KEGG is still the most used database for 
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orthologous gene group assignment and is the most comprehensive database for linking 

orthologous gene groups to reactions and annotated compounds25. KEGG has moved to a 

subscription service model since 2011 and as such cannot be integrated into new open 

source tools. MetaCyc26 is free to use and redistribute but is missing features from KEGG 

such as a universal gene orthology. As the gaps in these databases are filled through genome 

sequencing and both large-scale and targeted biochemistry and/or functional studies, our 

power to understand the functional potential of host associated microbial communities will 

increase.

Metabolomics has perhaps even greater challenges than the evaluation of microbial 

community structure and function using DNA and RNA sequencing. Extraction techniques 

are not standardized and subject to technical variability. Peak extraction and annotation of 

mass spectroscopy data is challenged by multiple metabolites matching to the same mass34. 

Current best practices do not give confident results without further experimental validation 

and quantification which is not currently possible on the scale of detected metabolites in 

untargeted experiments. As the technology for untargeted mass spec metabolomics becomes 

more mature, these issues will hopefully become less prominent allowing understanding of 

metabolomes across studies. Paired with an increased biochemical understanding of the gene 

products encoded by microbiomes, the ability to develop a mechanistic understanding of 

how microbial communities influence the host via their metabolic activities will be 

enhanced. To rapidly advance microbiome and metabolome integration to understand roles 

for microbial metabolism in diverse disease contexts, advanced yet “user friendly” methods 

for multi-omic integration need to be developed.

Even with these formidable challenges, many studies have identified key microbes and their 

enzymes and metabolites that can be targeted therapeutically in the context of varied 

diseases. A key challenge in the field is to move many of these novel discoveries from the 

bench to the bedside. By understanding the metabolic interplay between microbiome and 

host, novel prebiotics and probiotics can be explored, as well as personalized treatment of 

disease that capitalize on knowledge of microbiomes and their interactions with the host.
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Figure 1. 
(A) The central dogma of molecular biology is the information flow of genes to transcripts 

to proteins. In the –omics age, we can observe this information flow through the 

characterization of genomes, transcriptomes and proteomes. The metabolome, the collection 

of small compounds present in a biological sample, can be seen as a natural extension of the 

central dogma. These metabolites can be associated with disease and we can work back from 

metabolites, to proteins that catalyze the reactions that produce them, to the transcripts that 

are translated to the genes that encode those transcripts. (B) This model can be extended to 

include multiple organisms as would be present in a microbial community and the reactions 

and metabolites that are produced and consumed form connections between the community 

members. (C) The host can be added back into this network to find host-microbiome 

interactions.
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Figure 2. 
Microbiome-targeted therapies can target detrimental microbes and/or their metabolites (red) 

or promote beneficial microbes and the production of their metabolites (green). In principle, 

the presence of beneficial microbial metabolites in the host can be promoted by adding the 

metabolite itself (dietary intervention or supplementation), the microbe that produces the 

metabolite (probiotics), the substrate the microbe uses to produce the metabolite (prebiotics) 

or the beneficial metabolite itself (postbiotics). The presence of detrimental microbial 

metabolites can be reduced by targeting the microbe that produces it directly (antibiotics) or 

through competitive exclusion (probiotics/fecal microbiota transplant), by inhibiting the 

enzymes (shown in pink) that produce the metabolite, or by removing the substrates for that 

metabolite from the diet.
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