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Abstract

The development of broad-spectrum, host-acting antiviral therapies remains an important but 

elusive goal in anti-infective drug discovery. To replicate efficiently, viruses not only depend on 

their hosts for an adequate supply of pyrimidine nucleotides, but also up-regulate pyrimidine 

nucleotide biosynthesis in infected cells. In this review, we outline our understanding of 

mammalian de novo and salvage metabolic pathways for pyrimidine nucleotide biosynthesis. The 

available spectrum of experimental and FDA-approved drugs that modulate individual steps in 

these metabolic pathways is also summarized. The logic of a host-acting combination antiviral 

therapy comprised of inhibitors of dihydroorotate dehydrogenase and uridine/cytidine kinase is 

discussed.

Introduction

Pyrimidine nucleosides are heterocyclic aromatic metabolites that include uridine, cytidine 

and thymidine. In addition to their fundamental role in nucleic acid biosynthesis, they are 

required for carbohydrate and lipid metabolism. For example, a number of 

glycosyltransferases utilize UDP-sugars, while CDP-diacylglycerol is an intermediate in the 

biosynthesis of glycerophospholipids. Although pyrimidine analogs such as azidothymidine 

(AZT), 5-fluorouracil (5-FU), and arabinosylcytosine (ara-C) have been used to target HIV 

reverse transcriptase or as anti-cancer chemotherapeutic drugs for decades, the potential for 

rationally targeting human pyrimidine nucleoside metabolism for antiviral chemotherapy has 

not been generally recognized. Here we review the rationale for such a chemotherapeutic 

strategy as well as the relevant features of mammalian pyrimidine nucleoside metabolism 

and its regulation.

Pyrimidine nucleotide biosynthesis through de novo and salvage pathways

Mammalian cells derive pyrimidine nucleotides through a combination of de novo 
biosynthesis and salvage [1]. De novo biosynthesis is initiated by a multifunctional enzyme 
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(CAD) harboring carbamoyl phosphate synthase, aspartate transcarbamoylase, and 

dihydroorotase activities [2]. CAD uses an equivalent of L-glutamine, aspartate, and 

bicarbonate along with two equivalents of ATP to make dihydroorotate (DHO) (Figure 1). A 

mitochondrial membrane protein, dihydroorotate dehydrogenase (DHODH), then reduces 

DHO to orotic acid while transferring 2e− to Coenzyme Q (CoQ, ubiquinone) [3]. Not only 

does DHODH catalyze the first committed step in de novo pyrimidine nucleoside 

biosynthesis, but it also links this pathway to the electron transport chain of aerobic 

respiration. Orotic acid is converted into uridine monophosphate (UMP) by a bifunctional 

protein, uridine monophosphate synthetase (UMPS). The N-terminal domain of UMPS 

transforms orotic acid into orotidylate (OMP) using phospho-α-Dribosyl-1-pyrophosphate 

(PRPP) as a cosubstrate, while its C-terminal OMP decarboxylase converts OMP into UMP 

[4]. UDP and UTP are synthesized by cytidine monophosphate kinase (CMPK) and 

nucleoside-diphosphate kinase (NDPK), respectively [5,6]. UTP is converted into CTP by 

CTP synthetase (CTPS) in an ATP dependent reaction that uses glutamine as an amine donor 

[7]. Alternatively, UDP and CDP are deoxygenated into deoxy-UDP (dUDP) and dCDP, 

respectively, by ribonucleotide reductase (RNR), and further phosphorylated by NDPK [8]. 

To avoid misincorporation into DNA, dUTP is rapidly broken down by dUTPase into dUMP. 

dUMP is a substrate of thymidylate synthase, yielding deoxy-TMP (dTMP) that can be 

phosphorylated into dTTP [9]. Thus, the de novo biosynthetic pathway in mammals is 

capable of supplying all pyrimidine ribonucleotides (CTP, UTP) and deoxyribonucleotides 

(dCTP, dTTP) for RNA and DNA biosynthesis, respectively.

In addition to de novo biosynthesis, pyrimidine nucleotides can also be salvaged from 

intracellular nucleic acid degradation or from extracellular nucleosides, which circulate in 

the bloodstream. The latter pathway depends on several nucleoside transport channels and 

pumps in mammalian cells. The relative importance of de novo biosynthesis and salvage 

varies from organ to organ and is also highly dependent on the physiological state of cells. 

RNA catabolism yields UMP and CMP, which can be converted into the corresponding 

NTPs via the successive action of CMPK1 and NDPK. With a plasma concentration of ~5 

μM, uridine is the dominant circulatory nucleoside in mammals [10]; the plasma 

concentrations of all other pyrimidine nucleosides are at least an order of magnitude lower 

[11], and are therefore insufficient to support cellular demands of the corresponding 

nucleotides via direct salvage. Uridine/cytidine kinase (UCK) converts transported 

pyrimidine nucleosides into the corresponding NMPs, which can be further phosphorylated 

and modified as discussed above. Since both de novo biosynthesis as well as intracellular 

and extracellular salvage require CMPK1 activity, this enzyme is essential for pyrimidine 

utilization in all cells.

As an alternative to salvage, pyrimidine nucleosides can also be irreversibly degraded. 

Uridine and cytidine catabolism is initiated by the action of uridine phosphorylase (UPase) 

and cytidine deaminase, respectively, giving rise to uracil, while thymidine phosphorylase 

releases thymine from thymidine. In principle, these phosphorylases can also catalyze the 

reverse reactions to convert circulatory bases into nucleosides (as in OMP biosynthesis), 

although mammals appear to predominantly utilize these enzymes in the catabolic direction 

[12].
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Intracellular regulation of pyrimidine nucleotide biosynthesis

The multifunctional CAD protein is the primary site for regulation of de novo pyrimidine 

biosynthesis. Transcription factors such as Myc are known to induce its gene expression 

[13]. The enzyme is activated by MAP kinase-catalyzed phosphorylation before the S-phase 

of the cell cycle, and is inhibited by protein kinase A-catalyzed phosphorylation at a distinct 

site at the end of S-phase [14,15]. CAD is also activated by phosphorylation at a third site by 

the mammalian target of rapamycin complex 1 (mTORC1) or the ribosomal protein S6 

kinase 1 (p70S6K), thus enabling post-translational control in response to increased anabolic 

activity in the cell [16,17].

The importance of coordinately regulating intracellular pyrimidine nucleotide biosynthesis 

at multiple sites is underscored by our recent observation that genetic knockout of a negative 

regulator of mTORC1 activity sensitizes cells to pharmacological inhibition of DHODH 

with the small molecule GSK983 [3]. Similarly, the activities of mTORC1 and p70S6K are 

post-translationally regulated in response to the extracellular availability of uridine [18].

The activity of UCK, which plays a pivotal role in pyrimidine nucleoside salvage, is also 

subject to both negative regulation by CTP and UTP (i.e., the ultimate pathway products) 

and positive regulation by ATP. Such dual control is achieved through changes in the 

quaternary structure of UCK; CTP and UTP are competitive inhibitors (Ki ~ 6 μM [19]) that 

stabilize its inactive monomeric state, whereas ATP allosterically stabilizes UCK as an 

active tetramer [20].

Finally, CMPK1, which sits at the crossroads between de novo biosynthesis and 

intracellular/extracellular salvage is subject to feedback regulation of its activity by CTP, 

UTP and dCTP, but not dTTP [5]. Moreover, in vitro analysis has revealed a need for 

reducing agents to maintain its catalytic activity, suggesting that the intracellular redox 

potential may also play a significant role in metabolic flux control at this step [5].

Regulation of uridine concentration in the bloodstream

As discussed above, uridine plays a unique role as a reservoir of circulating pyrimidine 

nucleosides in mammals. Its plasma concentration is therefore subject to tight regulation. 

Indeed, plasma uridine levels are maintained within a narrow range in healthy humans even 

after fasting [21] or uridine administration [22]. The role of plasma uridine as a system-wide 

control variable is further underscored by two observations. First, oral administration of 

large doses of CDP-choline, a bioavailable form of cytidine, increased plasma uridine levels 

without significantly altering those of either cytidine or choline [22]. Second, a sharp 

increase in systemic uridine demand has a relatively modest effect on the concentration of 

plasma uridine, presumably due to its replenishment from reservoir organ(s). For example, 

blocking de novo pyrimidine synthesis by DHODH inhibition (in mice [23]) or CAD 

inhibition (in humans [24]) results in markedly higher use of the salvage pathway but only 

modest perturbation of plasma uridine levels.

The liver has been suggested as a potential site for regulating plasma uridine based on the 

observation that uridine is cleared in a single pass through the liver and is replaced by de 
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novo synthesized uridine also from the liver [25], but the mechanistic logic of this unusual 

exchange process is unknown. Oral administration of glucose also increases the levels of 

uridine in the bloodstream [26], presumably due to the acute need for UDP-glucose during 

glycogen synthesis in the liver and muscle [27].

Plasma uridine levels are also regulated by the degradative activity of UPase, as well as by 

cellular uptake mechanisms that involve both facilitated diffusion and Na+-dependent active 

transport. Genetic and pharmacological inhibition of UPase in mice led to a major elevation 

of uridine concentrations in the blood (6-fold), lung and gut (5 to 6-fold), and liver and 

kidney (2 to 3-fold) [12]. Cellular uptake of uridine can be promoted via several nucleoside 

transporters [28].

Pharmacological tools to modulate pyrimidine nucleotide biosynthesis in 

humans

Due to their diverse metabolic roles, pyrimidine nucleotide biosynthesis inhibitors have been 

used to treat a variety of diseases. Many such drugs are nucleoside analogs. Once 

transported into the cells by facilitated diffusion, they are phosphorylated and either 

incorporated into DNA or RNA, or they can inhibit host or pathogen enzymes such as 

polymerases. Table 1 lists approved or experimental drugs that modulate de novo 
biosynthetic or salvage pathways in humans.

Modulators of the de novo pathway

Although there are no FDA-approved inhibitors of CAD, N-phosphonacetyl-L-aspartate 

(PALA) is a bisubstrate analog inhibitor of aspartyl transcarbamoylase that has been 

introduced into human clinical trials. It failed to show efficacy as monotherapy or in 

combination with other agents in Phase II clinical trials on cancer patients [29–31]. In 

contrast, DHODH inhibitors such as teriflunomide (or its prodrug, leflunomide) and 

brequinar have been successfully used as immunosuppressive agents in rheumatoid arthritis 

and multiple sclerosis patients. The clinical benefit of DHODH inhibitors is thought to arise 

from reduced proliferation of activated T and B lymphocytes by decreasing pyrimidine pools 

in both cell types [32]. Prolonged administration of both leflunomide and brequinar causes 

hepatic microvesicular steatosis (a.k.a., lipid accumulation in the liver), a condition that can 

also be induced by artificially manipulating plasma uridine levels and is reversed by 

exogenous uridine administration [33,34]. DHODH inhibitors were also recently shown to 

initiate differentiation in multiple acute myeloid leukemia (AML) subtypes [35].

Inhibitors of CAD and DHODH have broad-range anticancer and antiviral effects in vitro 
[3,36], and have been tested in a range of clinical trials [37,38]. However, in vitro efficacy 

has not, for the most part, been translated in vivo, presumably due to the ability of the body 

to maintain a robust and relatively constant uridine supply for cellular salvage of pyrimidine 

nucleotides. The reason why uridine salvage is unable to neutralize the immunosuppressant 

effects of DHODH inhibitors is unknown. It is possible that the salvage pathway is less 

dominant in lymphocytes compared to the de novo synthesis pathway.
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Pyrazofurin (PZF) is a nucleoside analog that inhibits OMP decarboxylase in the de novo 
pathway. It has been tested in clinical trials for the treatment of various cancers but failed to 

proceed beyond phase II trials due to toxicity and lack of efficacy [39].

Modulators of shared (d)NTP salvage steps

Nucleoside transport through membrane channels and pumps is the first step in pyrimidine 

salvage. Because these transporters recognize all four bases, their inhibition disturbs both 

dNTP and NTP salvage. FDA-approved nucleoside channel inhibitors such as dipyridamole 

(DP) [40] and dilazep [41] have been used to treat stroke due to their ability to block 

adenosine uptake by platelets, endothelial cells, and erythrocytes [42].

Modulators of the NTP-specific steps

Cyclopentenyl cytosine (CPE-C), a pyrimidine analogue, is an inhibitor of CTP synthetase, 

and has both antiviral and anticancer activity. Because CTP synthetase activity is 

upregulated in many cancers [43], CPE-C was tested in a Phase I clinical trial for solid 

tumors [44], where 5 out of 26 patients experienced unexplained cardiotoxicity. CPE-C has 

also shown significant activity against both DNA and RNA viruses in vitro including HSV 

and influenza virus (Hong Kong flu) [45].

Diazo-5-oxo-L-norleucine (DON) is a glutamine mimic that inhibits several enzymes 

involved in nucleotide biosynthesis including CAD, CTP synthetase, and guanosine 

monophosphate synthetase. Although DON was tested in phase I/II clinical trials for the 

treatment of cancer [46,47], its therapeutic index was inadequate for further development.

Notwithstanding the potential to modulate pyrimidine nucleotide biosynthesis by targeting 

the kinases in the salvage pathway, to our knowledge none of these enzymes (UCK, CMPK, 

NDPK) have inhibitors that have entered human clinical trials.

Modulators of the dNTP specific steps

Ribonucleotide reductase (RNR) catalyzes a crucial step of de novo DNA synthesis by 

converting ribonucleoside diphosphates (ADP, GDP, UDP, CDP) into their 

deoxyribonucleoside counterparts. Because tight control of the dNTP pool is essential for 

cellular homeostasis, RNR inhibitors have been widely used to treat cancers. They include 

fludarabine [48–50], cladribine [51], gemcitabine [52–54], and clofarabine [55], although 

these compounds also block other steps in DNA synthesis in addition to RNR activity (Table 

1).

Thymidylate synthase, followed by nucleoside diphosphate kinase and UTPase [56], has 

been targeted by the widely used nucleoside analog 5-fluorouracil (5-FU) and its prodrug, 

capecitabine [57]. Inside the cell 5-FU is processed into 5-fluoro-2′-deoxyuridine 

monophosphate (FdUMP), a covalent inhibitor of thymidylate synthase. Drug toxicity is 

mitigated with a recently FDA-approved uridine prodrug, uridine triacetate [58]. 

Alternatively, clinical trials have also been conducted to mitigate the toxicity of 5-FU by co-

administration with dipyridamole [59]. A related molecule, trifluorothymidine, is also 

believed to inhibit thymidylate synthase [60] in addition to blocking viral replication or cell 
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growth by incorporation into viral or host DNA, respectively [61]. It is used in eye drops for 

the treatment of herpes virus, and is also undergoing clinical trials for metastatic colorectal, 

colon cancers, and solid tumors.

Thymidine kinase, which converts dTMP into dTDP, is also an important therapeutic target, 

because it facilitates the incorporation of unnatural thymidine analogs into DNA. Examples 

of clinically useful thymidine kinase inhibitors include AZT and stavudine (anti-HIV), and 

idouridine (anti-herpes).

The enzyme dUTPase, which converts dUTP into dUMP and pyrophosphate, is inhibited by 

TAS-114, a first-in-class oral fluoropyrimidine that prevents the degradation of another 

fluoropyrimidine used in combination [62]. TAS-114 also moderately inhibits 

dihydropyrimidine dehydrogenase, the initial step in pyrimidine catabolism. Analogously, 

tipiracil, a thymidine phosphorylase inhibitor, is also clinically used to prevent the 

catabolism of other fluoropyrimidine nucleoside drugs including trifluorothymidine [63]. 

Curiously, analogous drugs that block the catabolism of therapeutic cytidine analogs have 

not yet been developed [64].

Implications for antiviral chemotherapy

Whereas most drugs that block pyrimidine nucleotide biosynthesis are targeted at cancer 

chemotherapy or immunosuppression, a deeper understanding of these metabolic pathways 

in humans could also be the foundation for the design of novel antiviral therapies. When 

viruses infect host cells, they up-regulate nucleotide biosynthetic flux [65]. Therefore, not 

only would inhibitors of nucleotide biosynthesis have the potential to neutralize a wide 

range of viruses, but their likelihood of eliciting drug-resistant mutants may also be lower 

than drugs targeted at viral proteins.

Although inhibitors of de novo pyrimidine nucleotide synthesis are known to exhibit broad-

spectrum antiviral activity in vitro [66,67], they are ineffective in vivo due to efficient 

salvage of exogenous uridine. In this regard, our recent discovery that blocking the UCK 

isozyme, UCK2, sharply sensitizes cells toward DHODH inhibitors in the presence of a non-

limiting uridine supply opens a new door for designing a combination antiviral agent 

comprised of a DHODH and a UCK2 inhibitor antiviral [3]. Inhibition of both the de novo 
and the salvage pyrimidine synthesis could be particularly effective at limiting the fast 

proliferation of RNA viruses. In fact, a combination regimen containing PALA and 

dipyridamole has been tested in clinical trials for the treatment of cancer, albeit with limited 

efficacy [68]. Weak activity could be due to inefficient inhibition of de novo pyrimidine 

synthesis by a CAD inhibitor as opposed to a DHODH inhibitor.

Since CMPK1 inhibition was also shown to sensitize cells to DHODH inhibitors [3], a 

similar outcome might also be achieved with a CMPK1 inhibitor. Indeed, given the location 

of CMPK1 at the convergence point of de novo biosynthesis and salvage, a sufficiently 

potent CMPK1 inhibitor could also be an effective form of monotherapy. However, unlike a 

DHODH/UCK2 combination agent, a CMPK1 inhibitor would also be expected to block the 

salvage of CMP and UMP derived from RNA degradation, and may therefore have a 
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narrower therapeutic window. Future studies along either direction must await the 

development of medicinally appropriate small molecule inhibitors of UCK2 and CMPK1.
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Highlights

• Human pyrimidine nucleotide biosynthesis has been targeted for the treatment 

of many diseases.

• Chemotherapy combining DHODH and UCK inhibitors can be a broad-

spectrum antiviral.

• Targeting the host cell, such an antiviral therapy could mitigate resistant 

viruses.
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Figure 1. De novo and salvage biosynthesis of pyrimidine nucleotides in humans
For details, see text
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Table 1
Modulators of Pyrimidine Nucleotide Biosynthesis

Acronyms are defined in the text.

Drug name Mode of action Status On- & off-target effects Clinical use

De novo pathway

N-phosphonacetyl-L-aspartate (PALA) Inhibits CAD Not approved Inhibits DNA synthesis -

Leflunomide Inhibits DHODH FDA-approved Inhibits DNA synthesis, liver 
problems, flu symptoms, 
diarrhea

Rheumatoid arthritis and 
multiple sclerosis

Brequinar Inhibits DHODH FDA-approved Inhibits DNA synthesis, 
leukocytopenia, 
thrombocytopenia

Rheumatoid arthritis and 
multiple sclerosis

Pyrazofurin Inhibits OMP decarboxylase Not approved Inhibits DNA synthesis, 
myelosuppression, stomatitis

Phase I/II clinical trials for 
various cancers

Shared salvage

Dipyridamole Inhibits nucleoside 
transporters (ENT1–4) & 
phosphodiesterase

FDA-approved Increases cAMP and cGMP 
levels in platelets, vasodilation

Anti-platelet

Dilazep Inhibits nucleotide 
transporter (ENT1)

Disturbances, allergic 
reactions, mouth ulcers, 
headache

Stroke

NTP-specific

Cyclopentenyl cytosine (CPE-C) Inhibitor of CTP synthetase Not approved (Phase I) The depletion of CTP and 
dCTP pools

Anticancer, antiviral

Diazo-5-oxo-L-norleucine (DON) Inhibitor of CAD, CTP 
synetthase, GMP synthetase

Not approved (Phase I/II) Inhibits glutaminolysis, uric 
acid synthesis

Anticancer

dNTP-specific

Fludarabine Inhibits RNR, DNA 
polymerase, primase

FDA-approved Inhibits DNA synthesis, 
causes lymphopenia

Acute leukemias, 
lymphoproliferative disorders

Cladribine Inhibits RNR, DNA 
polymerase

FDA-approved for cancer Inhibits DNA synthesis, 
myelosuppression, rashes, and 
nausea

Acute leukemia, 
lymphoproliferative disorders

Gemcitabine Inhibits RNR, DNA 
synthesis

FDA-approved Inhibits DNA synthesis, bone 
marrow suppression, nausea, 
fever, hair loss

Ovarian, breast, non-small 
cell lung, pancreatic cancer

Clofarabine Inhibits RNR, DNA 
polymerases

FDA-approved Tumor lysis, inflammation, 
dehydration, low blood 
pressure

Acute lymphoblastic leukemia

Fluorouracil (5-FU, prodrug 
capecitabine & floxuridine)

Inhibits thymidylate synthase FDA-approved Toxicity in patients with DPD 
deficiency, nausea, vomiting 
& diarrhea

Colon, esophageal, gastric, 
pancreatic, breast, & cervical 
cancers

Trifluridine Inhibits thymidylate synthase 
(TS) and DNA synthesis

FDA-approved as eye-drops, Transient burning, stinging, 
local irritation of the eyelids

Herpes simplex virus, 
vaccinia virus in eye

TAS-114 dUTPase inhibitor, DPD 
inhibitor

Not approved (Phase I/II) Enhancer of fluoropyrimidines Non-small cell lung cancer
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