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Abstract

Defect in the complex I of the mitochondrial electron-transport chain is a characteristic of 

Parkinson’s disease (PD) which is thought to play a critical role in the disease pathogenesis. 

Mutations in vacuolar sorting protein 35 (VPS35) cause autosomal dominant PD and we recently 

demonstrated that pathogenic VPS35 mutations cause mitochondrial damage through enhanced 

mitochondrial fragmentation. In this study, we aimed to determine whether pathogenic VPS35 

mutation impacts the activity of complex I and its underlying mechanism. Indeed, VPS35 D620N 

mutation led to decreased enzymatic activity and respiratory defects in complex I and II in patient 

fibroblasts. While no changes in the expression of the complex I and II subunits were noted, the 

level of assembled complex I and II as well as the supercomplex was significantly reduced in 

D620N fibroblasts. Importantly, inhibition of mitochondrial fission rescued the contents of 

assembled complexes as well as the functional defects in complex I and II. Overall, these results 

suggest that VPS35 D620N mutation-induced excessive mitochondrial fission leads to the defects 

in the assembled complex I and supercomplex and causes bioenergetics deficits.
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1. Introduction

Parkinson’s disease (PD) is a chronic neurodegenerative disease and was first described as 

“shaking palsy” by James Parkinson in 1817 [1]. It is the second most common 

neurodegenerative disease after Alzheimer’s disease [2]. The prevalence of PD increases 

with age, affecting more than 1% of the population over the age of 60 and about 4% at the 

age of 80 [3]. Sporadic PD accounts for the majority of PD cases with less than 10% of all 

cases being familial. Mutations in α-synuclein, leucine-rich repeat kinase 2 (LRRK2), 

PTEN-induced kinse 1 (PINK1), parkinson protein 7 (PARK7, commonly known as DJ-1), 

parkin RBR E3 ubiquitin protein ligase (PARK2, commonly known as Parkin) have been 

associated with familial forms of PD (fPD) [4–9].

Although the pathogenic mechanism of PD remains elusive, it is well documented that 

mitochondrial dysfunction represents a critical event during the course of PD [10]. 

Significant deficits in the expression and activity of mitochondrial electron transport chain 

complex I were consistently found in the substantia nigra of PD patients [11–17] and 

specific inhibition of complex I by MPTP or rotenone caused Parkinsonism in rodents, 

primates and humans [10]. Importantly, fPD-related proteins such as alpha-synuclein, 

PINK1, Parkin, DJ-1 and LRRK2 are localized to mitochondria and impact mitochondrial 

function through regulation of mitochondrial dynamics and quality control [18]. Recent 

studies demonstrated that PINK1 or DJ-1 deficiency may impact complex I activity by 

altering the mitochondrial respiratory chain organization [19].

Recently, it has shown that mutation of VPS35 causes a rare, autosomal dominant form of 

PD and the clinical phenotype is similar to sporadic PD [20, 21]. The frequency of the 

D620N mutation is estimated to be about 1.5% in familial PD [22]. VPS35 is a subunit of 

the cargo-recognition subcomplex of the large protein complex retromer, a master conductor 

of endosomal sorting and trafficking involved in the endosome-to-Golgi and endosome-to-

plasma membrane retrieval of membrane proteins [23, 24]. We recently found that VPS35 

and retromer could recognize mitochondrial dynamin like protein 1 (DLP1) complex by 

binding to DLP1 through a conserved FLV domain at the C-terminus and plays an essential 

role in the recycling of this fission-inhibitory mitochondrial DLP1 complex via 

mitochondria-derived vesicle-dependent trafficking and lysosomal degradation [25, 26]. 

Furthermore, the pathogenic VPS35 mutant increased VPS35-DLP1 interaction and 

enhanced mitochondrial fission which leads to mitochondrial fragmentation and dysfunction 

[25, 26]. In this study, we aimed to determine whether pathogenic VPS35 mutation impacts 

the activity of complex I and its underlying mechanism.

2. Materials and Methods

2.1 Cell culture

Primary human fibroblast from a PD patient with the VPS35 D620N mutation was generated 

and characterized as previously published [27]. Primary human fibroblasts from a gender- 

and age-matched normal subject (normal human fibroblasts, NHFs) was obtained from 

Coriell Institute for Medical Research. Primary fibroblasts were maintained and treated with 

10 µM mdivi-1 or vehicle (i.e., DMSO) for 24 hr as we previously published [25, 26].
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2.2 Chemical and antibodies

Unless specified, all the chemicals were purchased from Sigma. Mdivi-1 was purchase from 

Enzo. Mouse anti-OXPHOS (Abcam, ab110413) and mouse anti-VDAC1 (Abcam, 

ab14734) were used in this study.

2.3 Mitochondria isolation

Mitochondria were isolated as described previously [28], then the mitochondria fraction was 

resuspended in mitochondria resuspension buffer (250 mM mannitol, 5 mM HEPES and 0.5 

mM EGTA, pH 7.4) and used for enzymatic activity and protein assays.

2.4 Measurement of respiratory activity

Cultured fibroblasts were collected into prewarmed mitochondria respiration medium (110 

mM sucrose, 60 mM potassium lactobionate, 0.5 mM EGTA, 3 mM MgCl2 ·6H2O, 20 mM 

taurine, 10 mM KH2PO4, 20 mM HEPES, and 2 mg/ml bovine serum albumin, pH 7.1). 

Oxygen consumption rate (OCR) was measured with an Oxygraph-2K system (Oroboros, 

Austria) as described previously [29]. A 2-mL cell suspension (600,000cells/ml) was added 

to each chamber, and intact cellular respiration as well as oxygen consumption after addition 

of indicated substrates or inhibitors was measured. Final concentrations of substrates and 

inhibitors were as described previously [29]. At step 5 [29], complex II substrate (succinate) 

was injected in addition to the three complex I substrates, then combined complex I and II 

substrate oxidation was measured. At step 6 [29], multiple titrations in a stepwise increment 

of FCCP were performed, which evokes the maximum oxidative capacity. At step 7, 

rotenone is added to inhibit complex I. Antimycin A is then added to inhibit complex III 

(step 8). The residual oxygen consumption is considered to be non-mitochondrial. Rotenone 

sensitive-complex I and rotenone insensitive-complex II rate could be calculated using the 

rate after FCCP and rotenone treatment.

2.5 Enzyme activity assay

The enzymatic activity of Complex I, II and citrate synthase was determined as described 

[30]. The same amounts of isolated mitochondria resuspended in 25 mM potassium 

phosphate buffer were frozen and thawed for 3 cycles. The spectrophotometric kinetic 

assays were performed at 37 °C using a microplate reader (Synergy H1). All activities were 

calculated as nmol min−1 per mg protein, and expressed as a percentage of control activity.

2.6 Blue-Native PAGE and immunoblot analysis

Blue-native gel electrophoresis was performed with NativePAGE Bis-Tris Gel system (Life 

Technologies,). Briefly, 10 µg of isolated mitochondrial proteins were resuspended in sample 

buffer and solubilized with 2% digitonin (Sigma-Aldrich) for 30 min on ice. Insolubilized 

pellets were removed by centrifugation for 30 min at 18,000g. The supernatant was 

collected, and 5% G-250 sample additive was added. Samples were loaded to 3–12% precast 

Bis-Tris gradient gels (Life Technologies), followed by electrophoresis at 4°C and 

transferred to immobilon. For regular immunoblot analysis, purified mitochondria were 

lysed with RIPA lysis buffer (Abcam) plus 1× protease inhibitor cocktail (Roche, Nutley, 

NJ). Equal amounts of 10 µg total protein extract were resolved by SDS–PAGE and 
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transferred to membrane (Millipore). After blocking with 5% nonfat dry milk or 5% BSA, 

primary and secondary antibodies were applied as recommended by producer, and the blots 

were developed with Immobilon Western Chemiluminescent HRP Substrate (Millipore, 

Billerica, MA).

3. Results

3.1 VPS35 D620N impairs complex I and II respiration and enzymatic activity

We previously reported that human fibroblasts from PD patient bearing VPS35 D620N 

mutation (D620N fibroblast) demonstrated bioenergetics deficits as evidenced by impaired 

respiratory control ratio and decreased spare respiratory capacity compared with normal 

human fibroblasts from age-matched controls (NHFs) [25]. To investigate exactly where the 

respiratory impairment occurred, we followed a protocol developed by Hoppel with 

sequential injection of complex I and II substrates, FCCP and inhibitors to sequentially 

measure complex I and II respiration in digitonin-permeabilized fibroblasts [29]. Consistent 

with the prior results [25], the intact cell respiration rate, state 3 respiration rate and the 

maximum oxidation capacity of D620N fibroblasts was significantly decreased compared to 

that of NHFs (Fig. 1A–F). Importantly, both the uncoupled complex I respiration rate (i.e., 

the rotenone-sensitive rate) (Fig. 1G) and the uncoupled complex II respiration rate (i.e., the 

rotenone-insensitive rate) (Fig. 1H) were significantly decreased in the D620N fibroblasts 

compared with that of NHFs.

To corroborate this finding, we also used spectrophotometry to measure complex I and II 

enzymatic activities in D620N fibroblasts (Fig. 2). To account for possible variations in 

mitochondrial content due to isolation procedures, all of the measurements of individual 

complex activities were normalized by the activity of citrate synthase (CS), an enzyme of the 

tricarboxylic acids cycle, since CS activity remains unchanged between D620N fibroblasts 

and NHFs (Fig. 2A). Indeed, we found significant decrease of complex I and II activities in 

D620N fibroblasts (CI/protein, 37%; CII/protein, 28%; CI/CS, ~40%; CII/CS, 32%). as 

compared with NHFs when corrected by protein concentration or CS activity (Fig. 2A–C).

We previously demonstrated that inhibition of mitochondrial fission by mdivi-1 alleviated 

bioenergetics deficits in D620N fibroblasts [25], therefore, we further determined whether 

mdivi-1 could alleviate deficits in complex I and II respiration in D620N fibroblasts. Indeed, 

mdivi-1 treatment could restore intact cell respiration rate, state 3 respiration rate and the 

maximum oxidation capacity as well as the uncoupled complex I and II respiration rate in 

D620N fibroblasts to a value that was comparable to NHFs (Fig. 1), indicating that mdivi-1 

could rescue complex I and II respiration in D620N fibroblasts.

3.2 VPS35 D620N decreases levels of assembled Complex I and II

To explore the mechanism(s) underlying the VPS35 D620N mutation-induced deficits in 

complex I and II, we investigated the expression of oxidative phosphorylation (OXPHOS) 

proteins by western blot analysis of a selection of CI, CII, CII, CIV and CV subunits. The 

expression level of the all the subunits of OXPHOS complexes analyzed remained unaltered 

in mitochondrial fraction from patient fibroblasts, in comparison with the NHFs’ 
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mitochondria (Fig. 3A), suggesting that there is no overall changes in the expression of 

OXPHOS proteins.

OXPHOS proteins are organized into large complexes located on the mitochondrial inner 

membrane, and the function of OXPHOS complexes is dependent on their proper assembly 

[31]. To determine the integrity of assembled complex I and II, mitochondria purified from 

fibroblasts were subjected to blue native gel electrophoresis (BN-PAGE) followed by 

Western blot analysis. As shown in Figure 3B, there was a significant decrease in the total 

level of assembled complex I and supercomplex in D620N fibroblasts. Levels of assembled 

Complex II was also decreased in D620N fibroblasts. Since mdivi-1 could restore the 

complex I and II respiration in D620N fibroblasts (Fig. 1), we further determined whether 

mdivi-1 could rescue the levels of complex I and II in D620N fibroblasts. Indeed, the level 

of assembled complex I, supercomplex and complex II were rescued to a level comparable 

to NHFs (Fig. 3B,C) after mdivi-1 treatment.

4. Discussion

In this study, we found that VPS35 D620N mutation caused significantly decreased 

enzymatic activity and respiratory defects in both complex I and II of the electron transport 

chain in the fibroblasts from PD patient with VPS35 D620N mutation compared with age-

matched NHFs. While there was no change in the expression of OXPHOS complexes, the 

levels of assembled complex I, II and supercomplex were significantly reduced in the 

D620N fibroblasts which likely underlies the functional defects of these complexes. 

Importantly, the inhibition of mitochondrial fission by mdivi-1 rescued levels of these 

complexes and functional defects of complex I and II in D620N fibroblasts.

While VPS35 is largely involved in the retrograde transport of membrane proteins from 

endosome to the trans-Golgi network and to the plasma membrane as the recognition subunit 

of retromer [23, 24], increasing evidence also indicated a critical role of VPS35 and retromer 

in the regulation of mitochondrial function. This was initially demonstrated by the 

involvement of VPS35 in the formation of mitochondria-derived vesicles (MDVs) and 

transport of mitochondria-anchored protein ligase from the mitochondria to the peroxisomes 

[32]. More recently, Tang et al. and our group demonstrated that VPS35 D620N mutation 

caused excessive mitochondrial fission and impaired mitochondrial function [25, 33], 

although there was discrepancy on the detailed mechanism involved. In the present study, we 

extended our prior studies by demonstrating that VPS35 D620N mutation specifically 

caused defects in the enzymatic activity and respiration in both complex I and II. It is of 

importance to note that defects in complex I is a hallmark of PD and inhibition of complex I 

causes Parkinsonism in human [10]. There was ample evidence that other PD genetic factors 

could also impair complex I activity [18]. For example, abundant evidence shows that 

complex I enzymatic activity is reduced in PINK1-deficient mice and flies [34, 35]. 

Therefore, our study indicated that pathogenic VPS35 mutations could cause complex I 

defects.

Another important finding of the current study is the significantly reduced levels of 

assembled complex I, II and supercomplex in the D620N fibroblasts and its rescue by the 
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treatment of mdivi-1. The reduced complex I, II and supercomplex could be the structural 

basis that underlies the functional defects of complex I and II induced by D620N mutation. 

It remains to be determined whether the reduced complex I, II and supercomplex is due to 

defects in assembly or increased instability or disorganization. In this regard, it is of interest 

to note that increased mitochondrial respiratory chain disorganization was most recently 

reported in the fibroblasts from patients bearing Pink1 mutations [19]. We further found that 

the reduction in assembled complex I, II and supercomplex in the D620N fibroblasts could 

be rescued by the treatment of mdivi-1. In a prior study, we have clearly demonstrated that 

D620N caused mitochondrial fragmentation in both neuronal cells and human PD patient 

fibroblasts and the treatment of mdivi-1, a widely-used inhibitor of mitochondrial fission, 

could reverse D620N-induced mitochondrial fragmentation [25]. Our current results thus 

suggest that it is the D620N-induced mitochondrial fragmentation that likely caused reduced 

complex I, II and supercomplex either through impaired assembly or increased 

disorganization. In this regard, it has been reported that the PINK1 knockout also caused 

defective assembly of mitochondrial OXPHOS complexes which is associated with 

impairment in mitochondrial fission in flies [36], indicating that changes in mitochondrial 

fission/fusion balance could impact the assembly of mitochondrial OXPHOS complexes. A 

more recent study suggests that cristae shape determines the assembly and stability of 

supercomplex and hence mitochondrial respiratory efficiency which places the proper 

assembly of supercomplex as the critical link between mitochondrial morphology and 

function [37]. Therefore, our study supports the notion that VPS35 D620N mutation-induced 

excessive mitochondrial fission reduced the assembled complex I and supercomplex which 

leads to the bioenergetics defects. Nevertheless, the possibility that VPS35 D620N may 

impact complex I indirectly through effects on α-synulcein may not be ruled out since 

VPS35 D620N mutant causes accumulation and aggregation of a-synuclein [38] and 

mitochondrial accumulated α-synuclein interacts with complex I [39].

In conclusion, we demonstrated that VPS35 D620N mutation led to decreased enzymatic 

activity and respiratory defects in complex I and II along with reduced levels of assembled 

complex I and II in the patient fibroblasts. The inhibition of mitochondrial fission by 

mdivi-1 rescued content of these complexes as well as the functional defects of complex I 

and II. Overall, these results suggest that VPS35 D620N mutation-induced excessive 

mitochondrial fission impairs complex I complex and supercomplex which leads to the 

bioenergetics defects which support the critical pathogenic role of VPS35 mutation-induced 

mitochondrial dynamic deficits.
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Highlights

VPS35 D620N mutation caused decreased enzymatic activity of complex I and II

VPS35 D620N mutation caused respiratory deficits in complex I and II

VPS35 D620N mutation caused decreased levels of assembled complex I and II

Mdivi-1 rescued assembled complex levels and functional defects of complex I and II
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Figure.1. 
Impaired complex I and II respiration in VPS35 D620N fibroblasts and the rescue by 

mitochondrial fission inhibitor, mdivi-1. (A) A schematic tracing of the oxygen consumption 

rate following protocol 1 as reported in [29] with reagents being added at sequential steps 

marked with a numeric symbol: 1 = 2mM malate and 2.5mM pyruvate; 2 = 2µg/ml 

digitonin; 3 = 2.5mM ADP; 4 = 10mM glutamate; 5 = 10mM succinate; 6 = 0.5µM 

increment of FCCP; 7 = 75nM rotenone; 8 = 125nM antimycin. (B–H) Quantification of 

OXPHOS profiles of fibroblasts. (C) State 3 rate of malate (M) + pyruvate (P). (D) State 3 

rate of M + P + glutamate (G). (E) State 3 rate of succinate (S) on top of M + P + glutamate 

(G). (F) maximal respiration rate. (G) rotenone-sensitive complex I respiration rate. (H) 

Rotenone-insensitive complex II respiration rate. NHF, normal human fibroblasts. D620N, 

fibroblasts from the patient bearing VPS35 D620N mutant. Data are presented as mean ± 

SEM from 3 independent experiments. Asterisks indicate statistical significance. *p<0.05, 

**p<0.01, ***p<0.001.
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Figure.2. 
Decreased mitochondrial enzymatic activity in VPS35 D620N fibroblasts. Specific 

enzymatic activities of complex I (CI) and II (CII) and citrate synthase (CS) were measured 

in isolated mitochondria from fibroblasts. (A) Enzymatic activity normalized to protein 

concentration. (B, C) Enzymatic activity normalized to citrate synthase activity. Data are 

presented as mean ± SEM from 3 independent experiments. Asterisks indicate statistical 

significance. ***p<0.001, ****p<0.0001.
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Figure.3. 
VPS35 D620N decreases levels of assembled Complex I and II which is rescued by mdivi-1 

treatment. (A) Mitochondria isolated from fibroblasts were subjected to SDS-PAGE and 

probed with anti-OXPHOS antibody. VDAC1 was used as an internal loading control. (B) 

Mitochondria isolated from fibroblasts were subjected to BN-PAGE. CI, complex I; CII, 

complex II. (C) Quantitative analysis of band intensity normalized to the level of NHF

+DMSO. Data corresponds to mean ± SEM from 3 independent experiments. Asterisks 

indicate statistical significance. *p<0.05, **p<0.01.
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