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Cardiovascular disease (CVD) is a major cause of morbidity and mortality worldwide. Inflammatory processes arising from
metabolic abnormalities are known to precipitate the development of CVD. Several metabolic and inflammatory markers have
been proposed for predicting the progression of CVD, including high density lipoprotein cholesterol (HDL-C). For ~50 years,
HDL-C has been considered as the atheroprotective ‘good’ cholesterol because of its strong inverse association with the pro-
gression of CVD. Thus, interventions to increase the concentration of HDL-C have been successfully tested in animals; however,
clinical trials were unable to confirm the cardiovascular benefits of pharmaceutical interventions aimed at increasing HDL-C levels.
Based on these data, the significance of HDL-C in the prevention of CVD has been called into question. Fundamental in vitro and
animal studies suggest that HDL-C functionality, rather than HDL-C concentration, is important for the CVD-preventive qualities
of HDL-C. Our current review of the literature positively demonstrates the negative impact of systemic and tissue (i.e. adipose
tissue) inflammation in the healthy metabolism and function of HDL-C. Our survey indicates that HDL-C may be a good marker of
adipose tissue health, independently of its atheroprotective associations. We summarize the current findings on the use of anti-
inflammatory drugs to either prevent HDL-C clearance or improve the function and production of HDL-C particles. It is evident
that the therapeutic agents currently available may not provide the optimal strategy for altering HDL-C metabolism and function,
and thus, further research is required to supplement this mechanistic approach for preventing the progression of CVD.
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Introduction
There have been several sharp turns in the evidence trail
marking the atheroprotective role of high density lipopro-
teins (HDLs). Very early studies on dyslipidaemia highlighted
the positive correlation between total triglycerides (TGs) with
the risk of developing cardiovascular disease (CVD). Since the
mid-1970s, numerous epidemiological and animal studies,
including the Framingham Study (Gordon et al., 1977), re-
ported that HDL cholesterol (HDL-C) has the strongest in-
verse relationship with the development of CVD of the
known serum lipid factors (Badimon et al., 1990; Rubin
et al., 1991; Liu et al., 1994; Plump et al., 1994). This associa-
tion is underpinned by reverse cholesterol transport (RCT) –
a process by which HDL-C transfers the cholesterol from pe-
ripheral cells, for example, lipid-laden foam cells, to the liver
for secretion into bile and faeces. The promotion of RCT is
considered a major anti-atherogenic function of HDL-C
(Gofman et al., 1966; Miller and Miller, 1975; Rhoads et al.,
1976). Based on these findings, interventions to increase the
levels of HDL-C were developed but found to be ineffective
for preventing cardiovascular outcomes in several large clini-
cal trials (Brousseau et al., 2004; McKenney et al., 2006; Barter
et al., 2007; Boden et al., 2011; Lüscher et al., 2012; Schwartz
et al., 2012). Given these results, the importance of HDL-C
for preventing CVD has been questioned and revisited. An
expert panel from the National Lipid Association concluded
that although ‘HDL-C is not a therapeutic target at the pres-
ent time’, ‘rigorous research into the biology and clinical sig-
nificance of low HDL-C should continue’ and that ‘the
development of novel drugs designed to modulate the serum

levels and functionality of HDL particles should also con-
tinue’ (Toth et al., 2013), a recommendation which has been
echoed by other experts in the field (Brown et al., 2014; Toth
et al., 2014). In our opinion, the key issue in this matter is the
functionality of HDL-C, which can be affected by adipose tis-
sue (AT) and low-grade systemic inflammation (Brewer, 2007;
Rader and Daugherty, 2008; Rosenson, 2010; Zhang et al.,
2010; Chung et al., 2011). Here, we discuss the data available
illustrating the effect of inflammation on the functionality of
HDL particles and potential therapeutic interventions that
can help reverse these effects and, thus, prevent the develop-
ment of metabolic abnormalities leading to the progression
of CVD and associated co-morbidities.

Mechanism of the synthesis of mature or
functional HDL-C
Currently, the most important known function of HDL-C is
to provide the successful transfer of cholesterol from periph-
eral tissues to the liver for extraction (i.e. RCT). The HDL-C
particles that can effectively accomplish this task are the
functionally mature ones, which are rich in apolipoprotein
A1 (Apo-A1) and cholesterol (Rader and Daugherty, 2008).
Several apolipoproteins, enzymes and transfer proteins par-
ticipate in formation and function of these mature HDL-C
particles. The first step in the formation of HDL-C requires
Apo-A1 and ATP-binding cassette transporter A1 (ABCA1)
(Lee and Parks, 2005; Zannis et al., 2006). ABCA1 mediates
the efflux of phospholipids and free cholesterol from AT to
Apo-A1, a step that is necessary for the initial lipidation of
Apo-A1 and formation of nascent HDL-C particles (Verghese
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et al., 2007; Phillips, 2014). The next step is the maturation of
HDL-C particles, which involves several enzymes – lipopro-
tein lipase (LPL), phospholipid transfer protein (PLTP) and
lecithin cholesterol acyltransferase (LCAT). LPL hydrolyzes
circulating very LDL triglyceride (VLDL-TGs), while PLTP
transfers phospholipids and free cholesterol from the surface
of VLDL-TG to HDL-C (Tall et al., 1985; Rinninger et al., 1998;
2001; Ji et al., 2014). Thereafter, LCAT esterifies cholesterol,
rendering it more hydrophobic and amenable for efficient
packaging and transport by HDL-C to the liver (Rader, 2009;
Dobiásová and Frohlich, 1999; Asztalos et al., 2007). Finally,
the transporter ABCG1 mediates cholesterol efflux from the
surface of cells and macrophages to mature HDL-C particles
(Kennedy et al., 2005). The mature particles are subject to
cholesterol ester transfer protein (CETP)-mediated exchange
of cholesteryl esters with TGs from VLDL or LDL, which sub-
sequently binds to LDL receptors in the liver (Bruce et al.,
1998). Successful completion of this exchange process and
binding of HDL-C to scavenger receptor class B type I (SR-
B1) receptors in the liver allows for elimination of cholesterol
in the liver, thereby preventing the deposition of cholesterol
in the endothelium and the development of atherosclerosis.

In addition to playing amajor role in RCT, the HDL-C par-
ticles have been shown to (a) have anti-inflammatory, anti-
oxidative and anti-apoptotic properties; (b) contribute to
innate immunity, the modulation of glucose metabolism
and platelet function; and (c) influence stem cells and em-
bryogenesis (Gordon et al., 2011). The changes in the func-
tionality of HDL-C particles are discussed throughout this
review article; however, our review is mainly focused on the
effect of inflammatory processes on the functionality and
atheroprotective properties of HDL-C particles. The func-
tional diversity of HDL-C particles is related to their composi-
tional complexity and heterogeneity. As an example, mature
cholesterol and Apo-A1-rich HDL-C particles have been
shown to be successful at RCT, while the smaller,
cholesterol-poor, TG- and Apo-A2-rich HDL-C particles de-
grade easily and are unable to contribute to RCT. The pub-
lished data suggest that the differences in HDL-C
functionality depend on the composition of the HDL-C parti-
cles (Asztalos et al., 2011).

Several assays have been proposed to assess the function-
ality of HDL-C. Some assays are designed to measure the anti-
inflammatory and anti-oxidative properties of HDL-C, while
others evaluate HDL-C RCT efflux (Navab et al., 1991; 2001;
Zhang et al., 2003; Annema et al., 2010; Suzuki et al., 2010;
Khera et al., 2011). Furthermore, electrophoretic and NMR
methods have been developed to estimate HDL-C particle
size and composition. Thus far, there has been no consensus
regarding the superiority of one method versus another for
HDL-C characterization, and attempts to standardize the var-
ious nomenclature systems of HDL-C are a work in progress
(Asztalos et al., 2011). Further research is needed to elucidate
the relationship between HDL-C particle heterogeneity and
function (Gordon et al., 2011).

Effect of inflammatory processes on HDL-C
metabolism
Several factors and conditions, including genetic (i.e. familial
disorders) and acquired (e.g. decreased cholesterol efflux,

inflammation, hypertriglyceridaemia and AT dysfunction),
affect the concentration and functionality of HDL-C. Here,
we will focus on mechanisms related to inflammation, which
have been depicted in detail in Figure 1.

Adipose tissue lipid kinetics. Cholesterol efflux occurs in
several tissues, including the liver, intestine and AT (Basso
et al., 2003; Sahoo et al., 2004; Lee and Parks, 2005; Timmins
et al., 2005; Singaraja et al., 2006; Zannis et al., 2006;
Verghese et al., 2007; Chung et al., 2011; Ji et al., 2012;
Phillips, 2014). Regarding the role of AT, in vitro and animal
studies demonstrated that cholesterol efflux from adipocytes
plays a significant role in the initial lipidation of Apo-A1
and the formation of mature and functional HDL-C particles
(Zhang et al., 2010; Chung et al., 2011). These results are
supported by studies demonstrating that hepatic cholesterol
efflux was essential but insufficient to correct HDL-C
deficiency in hepatic ABCA1�/� knockout mice, illustrating
that extrahepatic ABCA1 expression and cholesterol
metabolism are critical for the formation of mature HDL-C
particles (Singaraja et al., 2006). Others showed that
individuals with compensated liver cirrhosis have higher
levels of IL-6 and NF-κB but lower levels of HDL-C and
Apo-A1 (Trieb et al., 2016). Thus, it appears that although
the liver plays a significant role, it is not isolated in its
contribution to the formation of mature HDL-C particles.

With the development of AT inflammation, several path-
ways are activated leading to the impairment of HDL-C me-
tabolism. AT inflammation has been shown to suppress the
expression and function of cholesterol transfer proteins (e.g.
ABCA1) leading to decreased efflux of cholesterol from AT
(De Haan et al., 2014; Figure 1). This results in the formation
of immature rather than mature HDL-C particles, which fail
to successfully transfer cholesterol to the liver (Rashid and
Genest, 2007). In our recent clinical study, we used a deute-
rium labelling approach to estimate the fractional synthesis
of triglycerides (fTG) in AT in humans with differing degrees
of obesity. Our results demonstrated that fTG is inversely asso-
ciated with the markers of insulin sensitivity (Tuvdendorj
et al., 2013). Furthermore, fTG is associated with the total con-
centration of HDL-C and the fractional contribution of large
HDL-C particles (Tuvdendorj et al., 2016). Based on the prin-
ciples of the stable isotope tracer labelling approach (synthe-
sis-breakdown/lipolysis = net balance; Turner et al., 2003;
Wolfe and Chinkes, 2005; Tuvdendorj et al., 2013, 2016)
and the reports that AT TG efflux directly correlates with
the efflux of cholesterol (Le Lay et al., 2003; Verghese et al.,
2007), we assumed that the fTG represented AT cholesterol ef-
flux in these individuals. Taken together, these data suggest
that inflammation in AT is one of the principal factors affect-
ing HDL-C functionality (Figure 1A). Thus, these data suggest
that metabolically healthier people have high cholesterol ef-
flux and higher levels of circulating total and functional
HDL-C particles that are able to fulfil their atheroprotective
role. Notably, our data describing the association between
AT lipid flux and HDL-C metabolism were true for women
but not for men, supporting the sex-dependent nature of
lipid metabolism (Hazzard and Applebaum-Bowden, 1990;
Williams, 1997).

An additional factor in reduced HDL-C functionality
arises from AT dysfunction and chronic inflammation
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hindering the ability of adipocytes to take up excess dietary
calories. As a result, the concentration of circulating fatty
acids (FAs) is increased. Because FAs are used in the liver
for the synthesis of triglycerides and VLDL-TG, a concomi-
tant increase in the overall concentration of circulating

lipids occurs (Figure 1A). As a result, CETP modulates the
increased exchange of TGs for cholesteryl esters in HDL-C
particles. These TG-enriched HDL-C particles are vulnerable
to clearance resulting in a decreased concentration of HDL-
C (Rashid et al., 2002; Figure 1A).

Figure 1
Schematic presentation of the mechanisms causing decreased HDL-C concentration or function due to inflammation. (A) The majority of mech-
anisms that affect HDL-C metabolism are associated with AT inflammation and function. Increased levels of FFA and VLDL-TG can enhance the
activity of CETP resulting in TG-enriched HDL-C particles. These particles are prone to higher liver clearance rates. Decreased adiponectin levels
affect the expression of the Apo-A1 gene. Inflammatory markers have been shown to affect LPL and ABCA1 gene expression impeding maturation
of HDL-C. Other mechanisms which affect HDL-C concentration include (a) enhanced sPLA2 activity causing increased hydrolysis of HDL-C; (b)
increased secretion of complement sC5b-9 from liver; and (c) decreased expression of RAR-α in macrophages. The later mechanism also affects
HDL-C function and results in (a) increased production of SAA in AT which displaces Apo-A1 from HDL-C and decreases PON-1 activity; (b) inter-
feron-γ secretion which decreases the expression of SR-B1 and CD36; (c) MPO expression which modifies Apo-A1 structure; and (d) MMP and
macrophage cathepsin B-induced cleavage of Apo-A1. (B) Mechanisms associated with the modification of HDL-C particles. Inflammatory envi-
ronments induce HDL oxidation activating NLRP3 inflammasome pathways and the secretion of cytokines while decreasing ABCA1 and ABCG1
expression and the cholesterol carrying capacity of HDL-C via RCT. FFA, free fatty acid; RAR-α, retinoic acid receptor-α.
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Inflammatory markers. As depicted in Figure 1A, from a cell
signalling perspective, AT inflammation is associated with
increased activation of pro-inflammatory pathways
resulting in enhanced secretion of inflammatory cytokines
[i.e. TNF-α, IL-6, IL-1β, C-reactive protein (CRP) and serum
amyloid A (SAA; Mortensen, 2001; Ryden et al., 2002; Berg
and Scherer, 2005; Stienstra et al., 2012; Rodríguez-
Hernández et al., 2013)]. These cytokines increase the
activity of downstream factors (e.g. transcription factor
activator protein 1, NF-κB and INF regulatory factor), thus
up-regulating the gene expression of inflammatorymediators
(Figure 1A). Notably, TNF-α plays a central role in this
inflammatory process. It promotes the secretion of other
pro-inflammatory cytokines and decreases the production of
the anti-inflammatory cytokine adiponectin (Hotamisligil
et al., 1993; Kern et al., 2001; Ryden et al., 2002; Xu et al.,
2003). Animal, but not human, studies have shown that
decreased production of adiponectin results in decreased
expression of mRNA for Apo-A1 and ABCA1, resulting in
decreased levels of Apo-A1 and HDL-C (Arita et al., 1999;
Hotta et al., 2000, 2001; Kondo et al., 2002; Oku et al.,
2007). Additionally, all these cytokines suppress the activity
of LPL, which also leads to decreased levels of both the
Apo-A1 and HDL-C (Hotamisligil et al., 1993; Kern et al.,
2001; Ryden et al., 2002; Dusanov et al., 2016; Jung et al.,
2016; O’Reilly et al., 2016; Ottobelli et al., 2016) (Figure 1A).

Impaired HDL-C metabolism is also associated with
inflammation-induced macrophage migration to AT
(Figure 1A). Macrophages cause cell-mediated modifications
of Apo-A1, such as chlorination, nitration, oxidation and
proteolysis. In vitro studies demonstrated that macrophages
limit the ability of Apo-A1 to solubilize lipids and promote
ABCA1-dependent cholesterol efflux. The proteolytic mecha-
nism identified is C-terminal cleavage of Apo-A1 at Ser 228 by
cathepsin B, which diminishes the functionality of Apo-A1
and HDL-C (Figure 1A). Cathepsins are proteases that are se-
creted by inflammatory macrophages (Brehm et al., 2014;
Abd-Elrahman et al., 2016; Yan et al., 2016). In point of fact,
this cathepsin B-promoted cleavage process is inhibited by
the lipidation of Apo-A1, which causes the C-terminal region
of Apo-A1 to becomemore α-helical, thereby providing cleav-
age protection (Dinnes et al., 2016).

In chronic inflammation, adipocytes secrete SAA (Poitou
et al., 2005; Sjöholm et al., 2005), which has a high affinity
for HDL-C and is known to displace apolipoproteins from
HDL-C (Figure 1A). When SAA is attached to HDL-C, LCAT-
mediated esterification of HDL-C is reduced affecting the
formation of mature HDL-C particles. SAA also inhibits the
activity of HDL-associated antioxidant enzyme paraoxonase
(PON-1) resulting in HDL-C being unable to prevent the oxi-
dation of LDL. Thus, SAA affects both the synthesis of mature
HDL-C and its anti-oxidative properties (Clifton et al., 1985;
Malle et al., 1993; Kappelle et al., 2011). Interestingly, patients
with rheumatoid arthritis (RA) have been shown to have in-
creased levels of SAA and low levels of HDL-C (van Eijk
et al., 2009) along with higher rates of cardiovascular compli-
cations (Lehtinen, 1993; Lautermann and Braun, 2002; Peters
et al., 2004). Interventions to ameliorate inflammation in pa-
tients with RA have been shown to decrease SAA (van Eijk
et al., 2009; McInnes et al., 2013) and improve HDL-C metab-
olism (van Eijk et al., 2009; Charles-Schoeman et al., 2016),

which is discussed below (see subsection ‘Methotrexate and
Etanercept’).

Other factors affecting HDL-C metabolism. Complement
systems 3 and 4 (C3 and C4 respectively) play a significant
role in inflammation, dyslipidaemia and metabolic
syndrome. They have been shown to increase the levels of
CRP, TG and fibrinogen. Increased plasma levels of
circulating sC5b-9 complex have been shown to be
inversely correlated with the concentration of HDL-C
(Pasqui et al., 2000; 2002; Onat et al., 2005; Liu et al., 2016);
Figure 1A). Inflammation also results in increased secretion
of secretory PLA2 (sPLA2) from various tissues. sPLA2

increases the hydrolysis of HDL-C particles, breaking down
the phospholipids from HDL-C and thus decreasing the
HDL-C concentration (Tietge et al., 1999; Rye and Duong,
2000). The above factors affect the concentration and,
consequently, the functionality of HDL-C (Figure 1A).

Several other agents have also been shown to directly af-
fect the functionality of HDL-C. Low-grade systemic inflam-
mation causes a down-regulation in the expression of
retinoic acid receptor-α and alters its binding to the pro-
moters of SR-B1 and ABCA1 (Maitra and Li, 2013). This leads
to decreased expression of SR-B1, ABCA1 and ABCG1 in mac-
rophages and thus decreased RCT (Figure 1A).Matrixmetallo-
proteinases (MMPs) are expressed during inflammation and
modulate the function of inflammatory cytokines. MMP3,
MMP7 and MMP12 have been shown to cleave Apo-A1 at its
carboxyl terminus (Lindstedt et al., 1999). Furthermore, INF-
γ, another inflammatory cytokine, has been shown to induce
activation of macrophages and to decrease the expression of
SR-B1 and messaging associated with CD36 (Zuckerman
et al., 2000; Imachi et al., 2001; Bujold et al., 2009). Addition-
ally, the conditional acute phase reactant myeloperoxidase
(MPO) uses chloride ions and cell-generated hydrogen perox-
ide to create hypochlorous acid that damages Apo-A1 (Smith,
2010; Figure 1A), thus altering the structure and function of
HDL-C. Plasma Apo-A1 is a selective target for MPO-mediated
protein modification which results in high levels of covalent
modifications. All of these mechanisms have been shown to
reduce the capacity of HDL-C to take up cholesterol and thus
inhibit HDL-C function (i.e. RCT). HDL-C particles become
oxidized during acute inflammation and present an addi-
tional source of impaired transport (Figure 1B). The oxidized
HDL-C particles exacerbate inflammation by activating the
NLRP3 inflammasome and thereby impacting HDL-C and
the inflammatory environment by (1) activating downstream
cytokines and caspase 1; (2) inducing the secretion of IL-18
and IL-1β; and (3) decreasing ABCA1 and ABCG1 activity
(Figure 1B), thus further impairing HDL-C (van Lenten et al.,
1995; Nakajima et al., 2000; He et al., 2013; Li et al., 2016).

Anti-inflammatory interventions and HDL-C
metabolism
The essential question at this time is whether interventions
to suppress inflammation and inflammatory markers can in-
fluence HDL-C levels and improve HDL-C functionality. The
CETP inhibitors and other established pharmaceuticals are
known to affect HDL-C metabolism; however, these drugs
do not affect inflammatory processes; therefore, we will not
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Table 1
Effects of pharmaceutical agents on inflammation and HDL-C metabolism

Pharmaceutical agents

Effect on

ReferencesInflammation HDL-C metabolism

Aspirin Inhibits NF-κB and MAPK Increases expression of ABCB11
in the liver leading to increased
bile acid excretion and RCT

Amann and Peskar, 2002
Demetz et al., 2014

Decreases inflammatory
cytokines

Increases SR-B1 expression leading
to increased cholesterol transport.

Tancevski et al., 2006
Herová et al., 2014

– Increases LCAT and PON-1 activity Jafarnejad et al., 2008

Salsalates Inhibits NF-κB Increases adiponectin and
expression of ABCA1 and AMPK
leading to increased cholesterol
efflux to Apo-A1 and HDL-C

Fullerton et al., 2015
Fakhri et al., 2014
Goldfine et al., 2013a
Goldfine et al., 2013b

Metformin Decreases NF-κB, CRP and IL-6 Increases PON-1 enzyme activity
and the anti-oxidative function
of HDL-C

Camps et al., 2016
Yoshifumi, 2016
Goldberg et al., 2016

Statins Decreases NF-κB(at high dose).
Also decrease MMP9 and CRP

Increases the expression of Apo-A1
gene by activating PPAR-α
Decreases VLDL-TG, TGs and CETP
activity and raises HDL-C
concentration

Kim et al., 2007;
Singh et al., 2008;
Bonnet et al., 2008;
van de Ree et al., 2003
Martin et al., 2001
Schaefer and Asztalos, 2006

Extended release niacin Decreases NF-κB, TNF-α
and IL-6

Decreases clearance of HDL-C by
decreasing CETP activity. Increases
Apo-A1 and adiponectin mRNA
expression raising HDL-C
concentration

Si et al., 2014 Yadav et al.,
2015 Digby et al., 2010

– – May increase anti-ApoA1 antibody
formation that reduces HDL-C
anti-oxidative function

Batuca et al., 2016

Methotrexate Decreases MMP-1, TNF-α,
IL-6, IL-1 and IFN-γ

Increases expression of ABCA1
leading to enhanced RCT

Coomes et al., 2011
Cutolo et al., 2001
Reiss et al., 2008 Chan
and Cronstein, 2010

PPAR-α agonists Decrease NF-κB, CRP and IL-6 Increase Apo-A1 and adiponectin
leading to increase HDL-C
concentration. Increase ABCA1,
ABCG1 and SR-B1 activity in
macrophages leading to
enhanced RCT

Ogata et al., 2009
Mahdy et al., 2012
Colin et al., 2015
Wagner et al., 2010

– PPAR-α agonists did not
decrease inflammation in
rodents with renal crystal
formation. Fenofibrate did
not decrease inflammatory
markers in one study

– Taguchi et al., 2016
Hogue et al., 2008

PPAR-γ agonists Suppresses IFN-γ and
increases M2 macrophages

Increase adiponectin and ABCA1
leading to higher HDL-C
concentration.
Enhance cholesterol efflux and
increase expression of SR-B1

Colin et al., 2015
Zuckerman et al., 2000
Bujold et al., 2009

Biological agents (IL-6
inhibitor, JAK inhibitor
and TNF-α inhibitor)

Modulate immune
response
Decrease inflammatory
cytokines

Improve HDL-C concentration
and metabolism

Souto et al., 2015;
Genovese et al., 2008
Mathieu et al., 2010
Kawashiri et al., 2011
Ghoreschi et al., 2011
van Eijk et al., 2009

continues
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be discussing them in this review. In this section, we will dis-
cuss interventions that alter HDL-C metabolism via inflam-
matory pathways, including several pharmaceutical and
non-pharmaceutical interventions that have been shown to
ameliorate inflammation and potentially improve HDL-C
metabolism, as well as others which are currently being eval-
uated. A summary of these interventions, including positive
and negative treatment outcomes, is presented in Table 1.

Pharmaceutical approaches

Current therapies
Aspirin and salsalates. Aspirin is one of the oldest drugs in
use and its effects in treating inflammation are widely
known. It inhibits COX-1 and COX-2 and thus the
synthesis of prostaglandins and thromboxane (Spite and
Serhan, 2010). In terms of CVD treatment, aspirin has been
shown to reduce the risk of first myocardial infarction in
men in direct correlation with initial CRP levels ( Ridker
et al., 1997). Aspirin does not, however, appear to reduce
inflammation via pathways which impact CRP levels, as
aspirin has been shown to be minimally effective in
reducing CRP levels in at-risk diabetic populations (Hovens
et al., 2008) and aspirin-treated healthy volunteers (Feng
et al., 2000; Feldman et al., 2001). Currently, meta-analyses
indicate that aspirin therapy should only be recommended
for the most at-risk patients for the prevention of
cardiovascular events in diabetics due to its pro-

haemorrhagic effects (Pignone et al., 2010). Mechanistically,
in addition to its effects on COX-1 and COX-2, aspirin
inhibits the activation of NF-κB, activator protein 1 and
MAPK (Amann and Peskar, 2002). In terms of its direct
impact on HDL-C metabolism, studies in isolated human
macrophages showed that aspirin increased SR-B1
expression and labelled HDL-associated cholesteryl oleate
uptake, as well as enhancing SR-B1 expression in mice
in vivo (Tancevski et al., 2006). Additional studies in M1
macrophages showed reduced inflammatory cytokine
secretion upon exposure to aspirin, which was associated
with a reduction in chemerin secretion by adipose tissue
(Herová et al., 2014). Increased levels of circulating
chemerin have been shown to inversely associate with HDL-
C levels (Herová et al., 2014). Rodent studies demonstrated
that aspirin increases the expression of ATP binding cassette
subfamily B member 11 (ABCB11) in the liver leading to
increased bile acid excretion and enhanced RCT, indicating
an improvement in cholesterol transfer to HDL-C (Demetz
et al., 2014). Further studies in diabetic rats showed that
long-term aspirin therapy reduces HbA1c and advanced
glycated end product formation while improving HDL
functionality (Jafarnejad et al., 2008). Additionally, HDL-C
may play a role in increasing the oxidative capacity of
aspirin via the HDL-associated enzyme PON-1, which
actively hydrolyzes aspirin to salicylate, whose free radical
scavenging properties may protect against atherosclerosis
(Santanam and Parthasarathy, 2007). Interestingly, aspirin-
resistant patients were revealed to have reduced HDL-C

Table 1 (Continued)

Pharmaceutical agents

Effect on

ReferencesInflammation HDL-C metabolism

McInnes et al., 2013
Charles-Schoeman
et al., 2016

– – Etanercept may cause
hypertriglyceridaemia

Haroon and Devlin, 2009

LXR agonists Decrease TNF-α, IL-6, IL-1β,
MMP-9 and IFN-γ

Increase HDL concentration
and function by increasing
ABCA1, ABCG1 and RCT

Joseph et al., 2003
Wang et al., 2006
Jamroz-Wisniewska
et al., 2007
Jiang et al., 2003
Miao et al., 2004
Repa et al., 2000b
Naik et al., 2006

– – May cause increase in TGs, VLDL
and LDL by inducing SREBP-1c

Repa et al., 2000a
Schultz et al., 2000
Grefhorst et al., 2002

Sildenafil Decrease NF-κB, TNF-α and
IL-1

Increase HDL-C function by
unknown mechanism

Nunes et al., 2015

HDL-C reconstituted therapy
Apo-A1 Milano

Decrease MMP-9 Increase HDL-C function by
increasing ABCA1 activity

Uehara et al., 2015
Nasr et al., 2015

4F mimetic peptide Decrease inflammatory
cytokines

Increase RCT Bloedon et al., 2008
Smythies et al., 2010

5-Lipoxygenase inhibitors Decrease adipose tissue
inflammation, SAA, CRP and
MPO levels

Improve HDL-C metabolism Horrillo et al., 2010
Bäck et al., 2007
Allayee et al., 2007
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levels, indicating that aspirin efficacy may in some way be
associated with HDL-C function (Azmin et al., 2013).

Salsalate, which is chemically related to aspirin, has
been shown to increase the levels of adiponectin, HDL-C
and Apo-A1 (Goldfine et al., 2013a,b; Fakhri et al., 2014;
Fullerton et al., 2015) while also suppressing the activation
of NF-κB. Salsalate increases the expression of ABCA1 gene
and activates AMPK, leading to increased cholesterol efflux
to HDL-C and Apo-A1 (Goldfine et al., 2013a,b; Fakhri
et al., 2014; Fullerton et al., 2015). Additionally, salsalate
decreases the levels of HbA1c, fasting blood sugar and C-
peptide.

Metformin. Metformin is an anti-diabetic drug, which also
suppresses inflammation, decreases the levels of LDL-C and
leptin and reduces body weight (Camps et al., 2016;
Yoshifumi, 2016). It activates AMPK, which suppresses
pathways associated with NF-κB. It also reduces the levels of
other biomarkers of inflammation, including CRP, IL-6,
E-selectins, intracellular adhesion molecule 1 (ICAM-1),
fibrinogen and tissue plasminogen activator, but with less
effect than lifestyle modifications (Goldberg et al., 2016).
Furthermore, metformin up-regulates the activity of PON-1
and thus increases the anti-oxidative capacity of HDL-C to
prevent LDL oxidation. Goldberg et al. (2016) report that
metformin increases HDL-C independently of changes in
adiponectin. In spite of these effects, recent reports suggest
that metformin-sensitive AMPK could be a key player in the
development of Alzheimer’s disease pathology (Domise et al.,
2016). Thus, careful consideration in using metformin, as well
as salsalate (Goldfine et al., 2013a,b; Fakhri et al., 2014;
Fullerton et al., 2015), may be required. Metformin has been
reported to cause metabolic acidosis and renal failure in some
patients, which also needs to be taken into consideration.

Statins. Statins have been shown to have anti-inflammatory
effects, which are most evident at higher dosages. High-dose
atorvastatin (80 mg) suppresses NF-κB-associated
inflammation, reduces the levels of MMP9 (Kim et al., 2007;
Singh et al., 2008) and markedly decreases the concentration
of CRP (van de Ree et al., 2003; Bonnet et al., 2008). Statin
therapy is known for its ability to not only decrease LDL-C
levels but also concurrently increase HDL-C. Multiple
pathways are involved in the elevation of HDL-C levels.
Firstly, statins inhibit Rho factor, which results in increased
activation of PPAR-α and thus in an increased expression of
the Apo-A1 gene (Martin et al., 2001; Schaefer and Asztalos,
2006). Secondly, statins decrease VLDL-TG and TG levels as
well as CETP activity. The synergetic effect is an increased
concentration of HDL-C (Martin et al., 2001; Schaefer and
Asztalos, 2006).

Extended release niacin. Niacin exerts its atheroprotective
effects by acting on AT through GPCRs, thereby influencing
both pro- and anti-inflammatory markers. In vivo studies show
that niacin decreases the levels of inflammatory markers TNF-α
and IL-6 and suppresses the activation of the NF-κB pathway
(Si et al., 2014). The use of extended release niacin increases
Apo-A1 and HDL-C levels while decreasing levels of total
cholesterol, TG, LDL, monocyte chemoattractant protein
(MCP-1) and SAA (Si et al., 2014; Yadav et al., 2015). While

some studies showed that niacin administration had no effect
on the anti-oxidative capacity of HDL, others demonstrated a
decrease in oxidized-LDL-induced cell apoptosis and a
reduction in blood vessel wall inflammation (Si et al., 2014;
Yadav et al., 2015). Niacin also up-regulates the expression of
factors involved in RCT (Si et al., 2014), decreases CETP
activity and reduces HDL-C clearance. Additionally, niacin
increases adiponectin mRNA expression (Digby et al., 2010).

Methotrexate and etanercept. Methotrexate is a disease
modifying anti-rheumatic drug, which is used as a first line
treatment for RA. It exerts its anti-inflammatory effect by
promoting the accumulation of adenosine, which
subsequently binds to the A2A receptor. As a result, the
expression of ABCA1 and 27-hydroxylase is promoted and
RCT is increased. This action reverses the atherosclerotic
effect of other COX-2 inhibitors used to treat RA, as has been
demonstrated in RA patients (Reiss et al., 2008; Chan and
Cronstein, 2010). Additionally, methotrexate decreases
MMP1, LTB4, inflammatory cytokine (e.g. TNF-α, IL-6 and
IL-1β) and INF-γ expression while increasing the expression
of anti-inflammatory IL-10 (Coomes et al., 2011; Cutolo
et al., 2001). The ongoing cardiovascular inflammation
reduction trial will probe the efficacy of methotrexate
therapy on patients who have suffered from prior
myocardial infarction combined with diabetes or metabolic
syndrome (Everett et al., 2013). Although a negative impact
on the ratio of total cholesterol to HDL-C has been observed
following methotrexate administration, the impact of
methotrexate on HDL-C function is unknown (Navarro-
Millán et al., 2013). The impact of targeting methotrexate-
sensitive pathways on CVD progression will provide useful
insights into the inflammation processes at work in
atherosclerosis.

Etanercept is a TNF-α inhibitor that is used to treat RA.
Several clinical trials have investigated its effect on inflam-
mation and HDL-C parameters in patients with RA (van
Eijk et al., 2009; Charles-Schoeman et al., 2016). These
and other studies have demonstrated improvements in
HDL-C metabolism. Interestingly, the majority, but not
all (Rodriguez-Jimenez et al., 2014), reports showed that
treatment with etanercept also decreased the concentra-
tion of TNF-α (van Eijk et al., 2009; Charles-Schoeman
et al., 2016). It is possible that the effect of etanercept
on HDL-C metabolism was exerted via the SAA mecha-
nism (van Eijk et al., 2009).

Peroxisome proliferator-activated receptors agonists. PPARs are a
nuclear receptor subfamily with three members, PPAR-α,
PPAR-γ and PPAR-β/δ. PPAR agonists have been shown to
have anti-inflammatory properties. PPAR-γ agonists increase
the expression of adiponectin and display anti-
inflammatory activity by promoting the polarization of
monocytes towards alternative M2 macrophages (Colin
et al., 2015). Rosiglitazone decreases the levels of inducible
NO synthase (iNOS), ICAM-1 and COX-2 (Cuzzocrea et al.,
2004). The PPAR-γ agonist 15-deoxy-delta12, 4-PGJ2
(15d–PGJ2) reverses the INF-γ-related effects on HDL-C
metabolism (Zuckerman et al., 2000; Bujold et al., 2009).
This agonist enhances CD36 messaging, leading to
increased cholesterol efflux to HDL-C, and increases the
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expression of SR-B1 and its binding to HDL-C (Zuckerman
et al., 2000; Bujold et al., 2009). PPAR-α agonists, for
example, fibrates, ameliorate inflammation by decreasing
the levels of CRP and IL-6 while inhibiting the activation of
the NF-κB pathway (Ogata et al., 2009; Mahdy et al., 2012).
PPAR-α agonists additionally decrease VLDL-TG levels by
increasing β-oxidation of free FAs in the liver, thus
decreasing the availability of FAs for VLDL-TG synthesis
(Mahdy et al., 2012). Reduced VLDL-TG levels are also
facilitated by PPAR-γ agonists, which increase the
expression of ABCA1. However, the reports on the effect of
PPAR-γ agonists on the concentration of HDL-C are not
consistent. Carreón-Torres et al. (2009) demonstrated that
in rabbits, rosiglitazone increases the production rate of
Apo-A1, resulting in increased concentration of HDL-C and
increased activity of PON-1. Mizoguchi et al. (2011), who
studied insulin tolerant and diabetic patients, reported that
treatment with pioglitazone increased HDL-C levels while
decreasing CRP and the size of atherosclerotic plaques. In
this particular study, patients receiving aspirin, renin
angiotensin system inhibitors and statins were included,
which may have biased the final results. In contrast, Millar
et al. (2010) demonstrated that in subjects with metabolic
syndrome, rosiglitazone increased the production rate of
Apo-A2 with no effect on Apo-A1 metabolism. PPAR-α
agonists have been shown to stimulate the synthesis of
both Apo-A1 and Apo-A2 and thus increase plasma HDL-C
levels (Colin et al., 2015). They have also been shown to
stimulate the activity of ABCA1, ABCG1 and SR-B1 in
macrophages and thus increase RCT (Mahdy et al., 2012;
Colin et al., 2015).

PPAR agonists are already being used in clinical practice;
however, they are primarily used to treat dyslipidaemia and
insulin resistance. PPAR-γ agonists are primarily used to treat
type 2 diabetes and they play a significant role in enhancing
FA oxidation in the liver (Colin et al., 2015). PPAR-β/δ ago-
nists are used to improve lipid metabolism, as they by reduce
TG and LDL-C and increase HDL-C levels. Moreover, PPAR-β/
δ activation increases the expression of genes promoting in-
sulin sensitivity (Colin et al., 2015). Unfortunately, many of
the currently available medications are either ineffective or
have adverse effects that may outweigh their benefits for
treating inflammation-related impairments in HDL-C func-
tion. For example, fibrates have a weak impact on PPAR-α ac-
tivity, although a newer agent, K-877, binds strongly to PPAR-
α and is in phase III clinical trials for atherosclerotic
dyslipidaemia in Japan (Colin et al., 2015). Wagner et al.
(2010) demonstrated that in monkeys, the new PPAR-α ago-
nist CP-900691 increases the levels of adiponectin and
HDL-C while decreasing the levels of CRP, TG, VLDL and
LDL-C. Other selective PPAR agonists, for example, CER-002
(PPAR-δ), DSP-8658 (PPAR-α/ϒ), INT131 (PPAR-α/ϒ) and
GFT505 (PPAR-α/δ), are undergoing clinical trials and exhibit
promise for treating the cardiovascular risks associated with
metabolic syndrome and type 2 diabetes (Colin et al., 2015).
To date, there is no information on the effect of these new ag-
onists on inflammation-related abnormalities.

Future therapies
HDL-C reconstituted therapy. The use of artificial components
of HDL-C, as a reconstituted therapy (i.e. rHDL), has also

been investigated. Apo-A1 Milano and Fukuoka Apo-A1
mimetic peptides have proved effective in animal models
(Uehara et al., 2015). This approach enhanced the biological
function of HDL-C without elevating its concentration.
Both therapeutics act as anti-atherosclerotic agents and
remove cholesterol via the ABCA1 transporter. Notably,
when these agents were used in patients with symptomatic
carotid plaque, no significant differences were noted in
expression of genes involved in formation of thrombus
(Nasr et al., 2015). However, the use of reconstituted
peptides prevented the significant postoperative surge in
plasma IL-6, which was seen in the placebo group. Surgical
intervention reduced systemic levels of tissue factor, MMP9
and MCP-1 in the rHDL group, although the effects on
MMP9 and MCP-1 were abolished in the immediate
postoperative period (Nasr et al., 2015). The 4F mimetic
peptide was studied and found to have anti-inflammatory
properties in vitro and in humans (Bloedon et al., 2008;
Smythies et al., 2010). The mimetic peptide decreased the
levels of pro-inflammatory cytokines and the adhesion of
monocytes to human endothelial cells while increasing RCT
by enhancing cholesterol efflux in macrophages (Smythies
et al., 2010).

Liver X receptors agonists. The results from studies in mice
have demonstrated that agonists of liver X receptors -α
and -β (LXR-α and LXR-β respectively) increase the total
concentration and the size of HDL-C particles by up-
regulating the expression of ABCA1 and ABCG1 (Repa et al.,
2000b; Jiang et al., 2003; Miao et al., 2004). Furthermore,
LXR agonists have been shown to promote RCT resulting in
the reduced deposition of cholesterol in atherosclerotic
plaques (Naik et al., 2006). Conflictingly, LXR agonists have
also been shown to up-regulate the expression of CETP in
CETP-expressing transgenic mice, which completely
abolished the beneficial effect of LXR on HDL-C metabolism
and increased the levels of LDL-C and VLDL-TGs (Jiang
et al., 2003; Masson et al., 2004; Beltowski, 2008). LXR
agonists also induced the sterol regulatory element binding
protein-1c in the liver, which has been shown to associate
with the increased concentration of TGs (Repa et al., 2000a;
Schultz et al., 2000; Grefhorst et al., 2002). In contrast, it has
been hypothesized that LXR-β selective agonists would
decrease the levels of TG and LDL-C. Several LXR-β selective
pyrazole and imidazole biaryl sulfones have been prepared.
In particular, imidazole 18 (EXEL-04286652, BMS-779788) is
an LXR-β partial agonist that induces ABCA1, making it a
reagent of interest for further study (Kick et al., 2015;
Matsuda et al., 2015). Additionally, a novel synthetic,
steroidal LXR ligand, ATI-111, has been developed. This
molecule exhibits a strong effect on LXR-α with a modest
effect on LXR-β. Encouragingly, animal and in vitro
studies indicate that ATI-111 has beneficial anti-
atherosclerotic and anti-inflammatory effects ranging from
reduced hypertriglyceridaemia to decreased atherosclerotic
lesions. To assess the full potential of ATI-111, clinical trials
will be necessary. Presently, a phase I clinical trial with
XL-652 (XL-014), a novel LXR ligand, is underway (Colin
et al., 2015). Furthermore, the LXR agonists have been
shown to have anti-inflammatory properties. Mouse studies
with LXR agonists T0901317 and GW3965 demonstrated
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decreased levels of inflammatory cytokines TNF-α, IL-6, IL-1β,
IFN-γ, MMP-9 and ICAM-1 (Joseph et al., 2003; Wang et al.,
2006; Jamroz-Wisniewska et al., 2007), indicating another
beneficial side of LXR agonists warranting further
investigation.

Phosphodiesterase-5 inhibitors. Sildenafil inhibits cGMP-
specific PDE5, an enzyme that promotes degradation of
cGMP. Inhibition of PDE5 results in smooth muscle
relaxation, which alleviates erectile dysfunction and
pulmonary arterial hypertension (Balhara et al., 2015;
Igarashi et al., 2016). Sildenafil therapy increased HDL-C and
decreased P-selectin and LDL-C levels through mechanisms
which are not yet understood (Mandosi et al., 2015). Nunes
et al. (2015) reported that administration of sildenafil
reduces the expression of pro-inflammatory cytokines IL-1β
and TNF-α while increasing the levels of anti-inflammatory
cytokine IL-10. In addition, sildenafil has been shown to
reduce the expression of GFAP, NF-κB, inactive AMPK and
iNOS and to increase IKβα levels (Nunes et al., 2015). Thus,
sildenafil may potentially be used to treat inflammation and
the associated decrease in HDL-C function.

Monoclonal antibodies. Amonoclonal antibody, canakinumab,
is an IL-1β inhibitor which has been shown to be effective in
treating juvenile RA (Gencer et al., 2015). The canakinumab
anti-inflammatory thrombosis outcomes study trial is
currently underway to determine the effects of canakinumab
on stable CVD patients who exhibit high levels of
inflammation (hsCRP >2 mg. L-1; Ridker et al., 2011). While
existing data on canakinumab would indicate that overall
HDL-C levels will not be affected (Ridker et al., 2012), the
impact of targeting inflammation via the IL-1β pathway for
reducing cardiovascular events will provide insight into the
role of inflammation in CVD and the potential benefits of a
more thorough investigation of the effect of canakinumab on
HDL-C. A similar but more direct approach for treating
dyslipidaemia may reside in the use of monoclonal antibody
inhibitors of proprotein convertase subtilisin/kexin type 9
(PCSK9), such as alirocumab and evolocumab, which were
approved by the FDA in 2015. PCSK9, which contributes to
the development of atherosclerosis, is believed to be expressed
in macrophages, smooth muscles and endothelium.
Functionally, PCSK9 down-regulates the expression of the
stress response genes and reduces inflammation in liver cells,
indicating that PCSK9 affects metabolic pathways beyond
cholesterol metabolism. Inhibition of PCSK9 improves the
removal of LDL-C from blood by the liver (Lan et al., 2010).
Furthermore, Walley et al. (2014) demonstrated that reducing
PCSK9 function increases pathogen lipid clearance via the LDL
receptor, thereby decreasing the inflammatory response and
improving sepsis outcomes in both mice and humans. This
finding is in contrast to that of Sahebkar et al. (2016), who
conducted a meta-analysis evaluating the effects of several
PCSK9 inhibitors on the levels of high-sensitivity CRP (hs-
CRP) and demonstrated that PCSK9 inhibitors do not affect
the hs-CRP levels. The PCKS9 story is relatively new and will
be revisited in coming years. Nevertheless, monoclonal
antibodies show promise for ameliorating inflammation and
related dyslipidaemia.

Biological agents. According to several recent studies and
meta-analyses, biological agents for the treatment of
inflammatory arthritis induced changes in several lipid
profiles. Specifically, tocilizumab, an IL-6 inhibitor, and
tofacitinib, a JAK inhibitor, are recombinant proteins, which
have been shown to decrease the levels of inflammatory
cytokines and increase HDL-C concentration. The
mechanisms whereby these agents exert their beneficial
effect involve modulation of the immune response. JAK
inhibitors block intracellular signalling of several cytokines.
This effect was confounded by the inability of the TNF-α
antagonists to show any marked improvement in HDL-C
(Dahlqvist et al., 2006; Genovese et al., 2008; Soubrier et al.,
2008; Mathieu et al., 2010; Ghoreschi et al., 2011; Kawashiri
et al., 2011; van Vollenhoven et al., 2012; McInnes et al.,
2013; Souto et al., 2015).

5-LOX inhibitors (theophylline and montelukast). Theophylline
and montelukast have been investigated for the treatment of
inflammation-related asthma (Allayee et al., 2007). Both of
these drugs inhibit the pathway controlled by 5-lipoxygenase
(5-LOX), a critical agent in the leukotriene pathway, which is
expressed in AT and plays a significant role in obesity-related
AT inflammation (Horrillo et al., 2010). Modulation of the
leukotriene pathway, using 5-LOX activated protein (i.e.
FLAP) inhibitors, has been shown to decrease the levels of
systemic pro-inflammatory cytokines, AT macrophage
content and systemic insulin resistance (Bäck et al., 2007;
Horrillo et al., 2010). Hakonarson et al. (2005) demonstrated
that interventions using 5-LOX inhibitors decreased the
levels of inflammatory markers such as SAA, CRP and MPO.
Similarly, Allayee et al. (2007) showed that treatment of
asthmatics with theophylline and montelukast decreased the
levels of CRP, IL-6, VLDL-TG and LDL-C. Unfortunately, in
this report, the HDL-C levels were reduced in the treatment
group compared with placebo, indicating a potential
detrimental effect of montelukast and theophylline therapy
on HDL-C metabolism. Nevertheless, because of the reported
significance of 5-LOX-associated pathways in obesity-related
inflammation, further studies that target this strategy for
reducing inflammation are of interest.

Non-pharmaceutical approaches
Diet and dietary components. A hypocaloric, high-fat, low-
carb diet has been found to decrease CRP and increase
adiponectin. This regime has also been shown to lower
hepatic VLDL-TG and TG secretion and decrease their
hydrolysis by hepatic lipase, thereby increasing HDL-C
(Ruth et al., 2013). Increased intake of tree nuts causes a
decrease in total cholesterol, LDL-C, TG and Apo-B, while
exerting no effect on HDL-C, Apo-A1, CRP and
hypertension (Ros et al., 2004; Demonty et al., 2009; Sabate
and Wien, 2013; Del Gobbo et al., 2015). Although
numerous isolated reports show the beneficial effect of red
wine and resveratrol supplementation on inflammatory
markers, the meta-analyses demonstrated no positive
impact from resveratrol supplementation on cardiovascular
risk factors (Sahebkar et al., 2015). In fact, a slight
decrease in HDL-C levels has been reported (Sahebkar
et al., 2015). Krill oil consumption, which has an anti-
oxidative effect, is associated with increased HDL-C and
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Table 2
Side effects of pharmaceutical agents that have anti-inflammatory properties and can contribute to improving the HDL-C function

Pharmaceutical agents Side effects References

Aspirin Drug resistance can occur in some patients. Azmin et al., 2013;
Zhang et al., 2017

Polyp formation and exacerbation of respiratory
disease has been observed.

Eskandarian et al., 2012;
Cook and Stevenson, 2016

Chronic salicylate intoxication can cause SIRS. Chalasani et al., 1996

Aspirin can cause gastritis and increased risk of
gastrointestinal bleeding.

Gartner, 1976

Salsalates Poor tolerance in HIV patients. Hileman et al., 2010

Activate AMPK and may cause Alzheimer’s
disease.

Domise et al., 2016

Metformin Effect may depend on race and ethnicity. Zhang et al., 2015

It may cause lactic acidosis especially if given
in renal diseases.

Lalau, 2010

It causes hepatotoxicity in PON-1- deficient mice. García-Heredia et al., 2016

Activates AMPK and may cause Alzheimer’s
disease.

Domise et al., 2016

Statins Down-regulate ABCA1 and ABCG1 activity in
macrophages.

Sone et al., 2004;
Wang et al., 2013;
Wong et al., 2008

Cause myopathy in some patients. Lahaye et al., 2014;
Brinton et al., 2016;
Jacobson, 2009;
Rosenson, 2004

Rosuvastatin did not reduce inflammation in
sepsis associated acute respiratory distress
syndrome.

Truwit et al., 2014

Unsafe in pregnancy. Hosokawa et al., 2003

They may cause hepatotoxicity. Russo et al., 2014

Niacin There is increased risk of flushing with niacin use. Maccubbin et al., 2009

May cause macular oedema. Domanico et al., 2015

May lead to the development of hepatitis. Etchason et al., 1991

PPAR-α agonists Did not decrease inflammation in rodents with
renal crystal formation.

Taguchi et al., 2016

Fenofibrate did not decrease inflammatory
markers in one study.

Hogue et al., 2008

Fibrates may cause increased risk of renal
problems.

Zhao et al., 2012

PPAR-γ agonists Thiazolidinediones may increase risk of
myocardial infarction and heart failure
especially rosiglitazone.

Singh et al., 2007
Nissen and Wolski, 2007

Increased risks of fractures in women. Loke et al., 2009

There is increased risk of bladder cancer with
pioglitazone.

Ferwana et al., 2013

Biological agents (IL-6 inhibitor,
JAK inhibitor and TNF-α inhibitor)

Several toxic side effects. Pichler, 2006

Increase chance of fungal infections with
anti-TNF-α fusion inhibitors.

Tragiannidis et al., 2016

LXR agonists May cause increase in TGs, VLDL and LDL by
inducing SREBP-1c

Repa et al., 2000a;
Schultz et al., 2000;
Grefhorst et al., 2002

Sildenafil May cause hypotension if given with nitrates. Webb et al., 1999
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Apo-A1 and decreased TG and inflammation levels in
healthy young adults (Berge et al., 2015; Cicero et al.,
2016). Caffeic acid is a naturally occurring phenolic
compound found in many fruits, vegetables and herbs
(Moon et al., 2009). It decreases TNF-α-induced induction
of adhesion molecules including ICAM-1, vascular
adhesion molecule (VCAM-1) and P selectin. It also
decreases TNF-α-induced activation of IL-8 and NF-κB
(Moon et al., 2009). Aloe vera exhibits several beneficial
effects. It decreases the activation of inflammasome
NLRP3, IL-8, IL-6, IL-1β and TNF-α, as well as the
activation of inflammatory NF-κB, p38 and JNK pathways,
and thus decreases inflammation and raises HDL-C levels
(Budai et al., 2013; Kumar et al., 2013).

Exercise and life style interventions; bariatric surgery; and electro
acupuncture therapy. Exercise and life style interventions
show promising effects on inflammatory markers and lipid
profiles. These strategies increase the levels of adiponectin
and HDL-C and decrease inflammatory cytokines such as
INF-γ (Nishida et al., 2015; Davidson et al., 2017, Wefers
et al., 2016). The improvement in HDL-C metabolism with
weight loss can occur via improvements in several of the
mechanisms discussed above. For example, increased levels
of adiponectin activate ceramidase and the formation of
sphingosine-1-phosphate, thus altering HDL-C sphingolipid
content, thereby improving HDL-C function (Belalcazar
et al., 2012). Goldberg et al. (2016) showed that lifestyle
intervention increases the levels of adiponectin and HDL-C
while decreasing the levels of inflammatory markers CRP,
IL-6, E selectin, ICAM-1 and fibrinogen. Moreover, weight
loss results in decreased levels of TG, which diminishes the
activity of CETP and thus results in higher levels of
functional HDL-C. Animal studies demonstrated that
weight loss results in increased expression of ABCG1
protein in AT leading to increased cholesterol efflux (Edgel
et al., 2012), which is associated with enhanced levels of
functional HDL-C particles (Wesnigk et al., 2016). Taken
together, these and other reports suggest that weight loss
beneficially affects HDL-C metabolism.

Roux en-Y gastric bypass surgery boosts HDL-C levels and
endothelial function. This results in decreased apoptosis of
endothelial cells and increased production of nitric oxide
and enhanced PON-1 activity. Additionally, there is an

increase in macrophage-induced cholesterol efflux. Further-
more, anti-inflammatory and anti-oxidative effects are en-
hanced because of a decrease in TNF-α-mediated VCAM-1
expression and NADPH oxidase activity (Adams et al., 2012;
Osto et al., 2015).

Electro-acupuncture shows promise in treating obesity
and controlling inflammation. It decreases BMI and the
concentrations of IL-6, TNF-α, TG and LDL-C, while in-
creasing the levels of adiponectin and HDL-C (Firouzjaei
et al., 2016).

Conclusions
While the association of HDL-C metabolism with the pro-
gression of CVD is still being investigated, the evidence
supporting a link between tissue and systemic inflammation,
lipid kinetics and CVD progression continues to grow. Our
current review details the manner in which tissue and
systemic inflammation modulates HDL-C metabolism via
several pathways, for example, cholesterol efflux,
hyperlipidaemia and apolipoprotein modification. The data
available suggest that regardless of its correlation with the
progression of CVD, HDL-C metabolism may provide a win-
dow into systemic or tissue (i.e. adipose) health. Our survey
of available anti-inflammatory interventions indicates that
increasing Apo-A1, ABCA1, SR-B1 and adiponectin levels
may improve the production and functioning of HDL-C
particles. The potential health benefits and indirect im-
provements in HDL-C metabolism resulting from anti-
inflammatory interventions must, however, be balanced with
their potential side effects (Table 2). Additionally, it should be
noted that not all the agents discussed are purely anti-
inflammatory and thus may affect HDL-C metabolism via
other factors and mechanisms. Although a healthy lifestyle
is the best approach to prevent the development of inflam-
mation, the challenges of implementing lifestyle modifica-
tion in the general population will require consistent social
and medical support. Thus, pharmaceutical interventions to
ameliorate inflammation and improve the functionality of
HDL-C and dyslipidaemia are of significant interest. A sum-
mary of the common anti-inflammatory agents of interest
for enhancing HDL-C function, with a list of associated side
effects, is presented in Table 2. The question of whether the

Table 2 (Continued)

Pharmaceutical agents Side effects References

Monoclonal antibodies Adverse effects including acute anaphylaxis,
serum sickness, cardiotoxicity etc.

Hansel et al., 2010;
Kizhedath et al., 2016

Increase chance of fungal infections with
anti-TNFα monoclonal antibodies.

Tragiannidis et al., 2016

5-Lipoxygenase inhibitors

Theophylline Can cause adverse effects due to theophylline toxicity. Eason and Markowe, 1989

Montelukast Increased risk of ecchymosis. Aypak et al., 2013

Methotrexate May cause elevation of liver enzymes and
hepatotoxicity.

Curtis et al., 2010

May cause bone marrow suppression. Sosin and Handa, 2003
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side effects outweigh the benefits of these agents for amelio-
rating inflammation and HDL-C metabolism will need to be
addressed by future clinical trials. In conclusion, further re-
search is needed to elucidate and target the mechanisms
linking HDL-C metabolism to both inflammation and the
progression of CVD. Some of the studies should address the
key mechanisms underlying the complexity and heterogene-
ity of HDL-C particles, which should provide a more detailed
understanding of the specific functions of these particles.
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