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Abstract 

Epileptic seizure is the common neurological disorder, which is generally identified by electroencephalogram (EEG) 
signals. In this paper, a new feature extraction methodology based on optimum allocation sampling (OAS) and Teager 
energy operator (TEO) is proposed for detection of seizure EEG signals. The OAS scheme selects the finite length 
homogeneous sequence from non-homogeneous recorded EEG signal. The trend of selected sequence by OAS is still 
non-linear, which is analyzed by non-linear operator TEO. The TEO convert non-linear but homogenous EEG sequence 
into amplitude–frequency modulated (AM–FM) components. The statistical measures of AM–FM components used 
as input features to least squares support vector machine classifier for classification of seizure and seizure-free EEG 
signals. The proposed methodology is evaluated on a benchmark epileptic seizure EEG database. The experimental 
results demonstrate that the proposed scheme has capability to effectively distinguish seizure and seizure-free EEG 
signals.
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Introduction
Epilepsy is a chronic neurological disorder which affects 
more than 1% of the worlds population, included the 
all age’s people [1]. Epilepsy is characterized by repeti-
tive seizures which occur numerous per day to less than 
per annum [2]. Seizures activity is induced by abrupt 
and inordinate electrical discharges by a group of brain 
neurons [3, 4]. Clinically, electroencephalogram (EEG) 
recording is the prominent tool for analysis and detec-
tion of epilepsy. In the manual efforts, trained neurologist 
try to find the spikes in EEG related to sudden discharges 
of neurons to detect seizure [5]. Although such visual 
efforts are costly, time consuming, and error prone [6]. 
Therefore, need to develop automatic analysis and identi-
fication method for measurement of accurate changes of 
EEG signals during epileptic seizure.

Recently, numerous features extraction methods have 
been proposed in literature for detection of epileptic 
seizure. The EEG signal consider as stationary, the time 
and frequency domain features are extracted [7, 8]. The 
non-stationary behavior of EEG signals is analyzed by 
time–frequency representation base features [9, 10]. The 
linear prediction filter modeled the time series signals 
and energy of prediction error signal of modeled signal is 
used to identify the seizure interval [11]. EEG signals are 
modeled by fraction linear prediction method [12]. The 
energy of EEG signal and modeling error used as features 
with support vector machine (SVM) classifier for EEG 
signals classification [12]. Clustering technique based 
features are used for detection of epileptic EEG signals 
[13]. Various time–frequency based methods are pre-
sented, which consider EEG signals as non-stationary like 
short time Fourier transform [6], wavelet transform [9], 
and multi-wavelet transform [10]. EEG signals decom-
pose into approximation and detail by discrete wavelet 
transform (DWT) and approximate energy of wavelet 
coefficients consider as feature for detection epileptic 
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EEG epochs by probabilistic neural network (PNN) clas-
sifier [14]. A non-stationary signal analysis method 
empirical mode decomposition (EMD) based features are 
proposed for identification of epilepsy [15–17]. Two and 
three dimensional phase space representation based fea-
tures are extracted from EMD computed IMFs and least 
squares SVM (LS-SVM) classifier is reported for classifi-
cation [18]. The spectral features are extracted from tun-
able-Q wavelet transform (TQWT) decomposed signals 
and used with bagging for detection of seizure activity 
[19]. The non-linear parameters are also find vital util-
ity in feature extraction for epileptic EEG signals. The 
Kraskov entropy non-linear feature with TQWT is apply 
to identify epileptic seizure EEG signals [20]. A non-
linear features based on fractal dimension, higher order 
spectra, entropies, and Hurst exponent are extracted, 
which classification performance is evaluated by fuzzy 
classifier [21]. The other nonlinear parameters which 
extract the epilepsy information from EEG signals are as 
follows: approximate entropy [22], correlation dimension 
[23], and Lyapunov exponent [24].

More recently, optimum allocation sampling (OAS) 
scheme is used for optimum selection of samples with min-
imum variability from long length EEG sequences [25, 26]. 
OAS finds application in EEG signals analysis by feature 
extraction and classification methods [26, 27]. Although, 
such methods directly apply feature extraction with-
out considering the non-linear trend of EEG signals. The 
improved feature extraction can be provided by exploring 
the non-linearity of EEG components in terms of linear 
amplitude or frequency component. The Teager energy 
operator (TEO) is non-linear operator which is generally 
used for analysis of wide variety of non-linear signals [28, 
29]. Some of the common application of TEO are: speech 
classification [29], damage identification [30], and ampli-
tude–frequency modulated (AM–FM) component sepa-
ration [31]. In other words, by virtue of OAS scheme and 
TEO non-linear operator, complexity of non-homogeneous 
and non-linear EEG signals can be better explored.

In this paper, we are presenting a new methodology 
based on OAS and TEO for detection of seizure EEG 
signals. It is very hard to evaluate randomly, homoge-
neous EEG time series samples from long length non-
homogeneous EEG time series for meaning full feature 
extraction. In this work, the OAS scheme is applied on 
non-homogeneous EEG time series to evaluate stationary 
and homogeneous EEG time series. In OAS method the 
EEG sequence divided into stationary sub-sets or groups 
and from each sub-set, the optimum selection of samples 
is carried out on the basis of minimum variance concept. 
In spite, computing the stationary and homogeneous 
EEG time series but still nature of EEG time series is non-
linear that also requires to analyze. A non-linear TEO is 
used to explore the non-linearity of optimally allocated 
homogeneous EEG time series. The TEO separates the 
non-linear EEG time series into well defined AM–FM 
components. The statistical measures of AM–FM com-
ponents are used as input features to LS-SVM classifier 
for classification of seizure and seizure-free EEG signals.

Methodology
The proposed methodology for automatic detection 
of seizure EEG signals is depicted in Fig.  1 by four sub 
blocks: EEG signals (data-set), feature extraction, classi-
fication, and performance evaluation. The description of 
each sub blocks as follows.

Data‑set
The proposed method is tested on one freely avail-
able EEG data-set which can be assessed as describe in 
[32]. The data-set consist of five subsets Z, O, N, F, and 
S, formed by control and epileptic patients EEG signals. 
Each subset contain recording of 100 single channel EEG 
signals having 23.6  s duration and 173.61 sampling fre-
quency. The subsets Z and O formed by acquiring the 
EEG signals, from the scalp of five healthy subjects in 
eyes open and closed condition, respectively. Subsets N, 
F, and S formed from epileptic patients recorded EEG 

Fig. 1  An OAS and TEO based algorithm for classification of EEG signals. g group, rsp representation sample points
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signals, out of these subsets N and F formed in seizure-
free intervals and subset S recorded at the time of seizure 
activity. The two classes are formed for detection of epi-
leptic seizure EEG signals: one with subset S represents 
seizure class and other is formed with subsets N and F 
which is termed as seizure-free class.

Feature extraction
As recorded EEG time series shows the non-homogene-
ous and non-linear nature. It is very hard to extract the 
characteristics of such complex signal by direct feature 
extraction methods. In this paper, EEG signals is ana-
lyzed in two steps: optimally allocation sampling and 
TEO. These steps are followed by AM–FM based statisti-
cal feature extraction.

Optimum allocation sampling
Optimum allocation refers to a method of sample allo-
cation, used with stratified sampling. OAS is drafted for 
handling large size of non-homogeneous sequence with 
the least computational cost. The OAS scheme divides 
long length non-homogeneous sequence into some 
homogenous groups and discovers the representative 
sample points from each group. As recorded EEG sig-
nals contain long length of non-homogenous sequence 
with respect to time period, this study intends to apply 
OAS for discovering representation sample points from 
each group minimizing the variance. In this study, at first, 
we settle on the total sample size (n) from the length of 
EEG signal with a desired confidence interval and con-
fidence level using sample size calculator [33]. Then we 
determine the optimum sample size for each group using 
the OAS scheme by following equation that considers the 
variability among observations in each group,

where n(i) is the optimum sample size of the ith 
group, Ni is the sequence size of the ith group, and 
Sij

2 is the variance of the jth channel of the ith group. 
If n(1), n(2), . . . , n(k) are the sample sizes obtained 
by Eq.  (1) from the group sizes, N1, N2, Nk , respec-
tively, the sum of all obtained sample sizes from all 
the groups in a class EEG signal will be equal to n,   i.e., 
n(1)+ n(2)+ · · · + n(k) = n. In this study, the num-
ber of homogeneous groups of EEG signals, obtain by 
OAS are four (k = 4), g1, g2, . . . , g4 [27]. The total num-
ber of samples in EEG signal or population is N = 4096, 
then number of samples in each group or group size is 
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× n i = 1, 2, . . . , k; j = 1, 2, . . . , p,

N1 = N2 = N3 = N4 = 1024. Total sample size n is 3287 
of the EEG signal is obtained by using sample size cal-
culator [33]. This sample size is obtained by considering 
99% confidence level and confidence interval is 100%. 
For total sample size n,   each group sample size can be 
obtained by Eq.  (1), which is shown in Table  1. So, for 
each EEG signal optimum samples are selected by OAS 
for further processing. A detailed description of the OAS 
method is available in references [26, 27, 34].

Teager energy operator
The TEO is a non-linear differential operator, which 
assess the modulation energy of non-linear EEG signal. 
This modulation energy demodulated in to AM–FM 
components using energy separation algorithm [35]. 
AM–FM components of kth group OAS, gk(t) can be 
defines as [35, 36]:

where ψ(gk(t)) is TEO for kth group gk(t) that can be 
defined as:

and,

In discrete domain TEO can be defined as [36]:

The above equation clearly shows that the computation 
of TEO at any point relies on current, previous, and next 
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(6)Ψ (g[n]) = g2(n)− g[n+ 1] ∗ g[n− 1].

Table 1  Optimally allocated samples (AOSs) in each group 
of S and SF EEG signals

Groups Size Group wise calculated 
sample size

S SF

g1 n1 758 850

N1 1024 1024

g2 n1 835 772

N1 1024 1024

g3 n1 808 860

N1 1024 1024

g4 n1 886 805

N1 1024 1024

AOS Total n 3287 3287

Total N 4096 4096
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samples, not on the entire time samples, which shows its 
instantaneous nature. So, TEO provides finest time reso-
lution in discrete time counterpart.

AM–FM components based statistical features
In this work, OAS and TEO based features are proposed 
for classification of seizure and seizure free EEG signals. 
TEO extract the AM–FM components from stationary 
and homogeneous EEG time series obtained by OAS 
technique. The statistical measures of AM–FM compo-
nents proposed as valuable features for extracting the 
attributes of EEG signals. AM based statistical features 
are: minimum, maximum, first quartile, and third quar-
tile. FM based statistical features are: median, mean, 
and standard deviation (SD). The minimum, maximum, 
first quartile, median, and third quartile are compos-
itely represents five point summary in a database. This 
five number summary provides a clear representation of 
EEG signals characteristics, preserve in AM–FM com-
ponents [37]. The symmetric nature of EEG signals can 
be assessed by central tendency and variability measures. 
The mean and SD are used for measuring the central ten-
dency and variability of EEG signals, respectively [37].

Let kth group EEG signal AM component is ak and FM 
component is fk . Following equations are used for com-
putation of AM–FM based features [37]:

where n is number of samples in AM–FM components.

(7)Minimumvalue, MINAM = min(ak),

(8)Maximumvalue, MAXAM = max(ak),

(9)First quartile, Q1AM = 25th%(ak),

(10)Third quartile, Q3AM = 75th%(ak),
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(n+ 1)

2
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,
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Classification
The statistical performance of proposed method is com-
puted by LS-SVM classifier. The resultant equation of LS-
SVM classifier [38]:

where PT is number of feature vectors, 
αp (l = 1, 2, . . . ,PT) are support values, yp (+ 1 or − 1) is 
class label of pth input feature vector vp, K (v, vp) is ker-
nel function, and b is bias term. In this paper, the utility 
of radial basis function (RBF) kernel is tested [38],

where σ is width of RBF kernel.

Performance evaluation
The sensitivity (SEN), specificity (SPE), accuracy (ACC), 
error rate detection (ERD), and Matthews correlation 
coefficient (MCC) have been introduced to assess the 
performance of LS-SVM classifier [20, 39]. The robust-
ness of proposed framework for EEG signals classifica-
tion applications like seizure disorder detection in clinical 
settings by above parameters, the 10-fold cross validation 
method is applied to compute these parameters.

Results and discussion
EEG signals complexity is explored by OAS and TEO 
based features for classification. The OAS scheme selects 
the optimum number of homogeneous samples from 
each EEG signal. The optimally selected sample from 
OAS is used by non-linear TEO for extraction of AM–
FM components. The different statistical measures of 
AM–FM components used as feature to extract the char-
acteristics of EEG signal. This process is carried out for 
each EEG signal of each class to construct the feature set. 
The statistical analysis of proposed features set shown 
in Tables  2 and 3, by range and probabilistic (p) value 
of Kruskal–Wallis statistical test. In Tables  2 and 3, all 
groups statistical features based on AM component show 
higher range for seizure EEG signals. This could be hap-
pened because of higher amplitude variation for seizure 
class EEG signals with respect to opposite class EEG sig-
nals. The median and mean both are the measure of cen-
tral tendency, so they both show similar nature or higher 
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value for seizure free EEG signals, in Tables 2 and 3. The 
SD of FM component feature shows higher range for all 
groups seizure EEG signals, in Tables 2 and 3. This might 
be happened because of higher variability of seizure EEG 

signals with respect to its opposite class EEG signals. The 
lower p-value of all features in Tables  2 and 3, assessed 
their better discrimination ability of proposed features 
for both classes EEG signals. The statistical analysis of 

Table 2  Range (mean ± SD) and p-value of AM–FM based features for different groups

Features EEG signal Groups

Group 1 (g1) Group 2 (g2)

Mean ± SD P-value Mean ± SD P-value

MINAM S 0.21 ± 0.40 1.36 × 10−20 0.17 ± 0.43 3.99 × 10−15

SF 0.001 ± 0.019 0.002 ± 0.020

MAXAM S 15,164.42 ± 91,276.29 3.17 × 10−55 6986.66 ± 7440.20 1.15 × 10−57

SF 1078.283 ± 1049.443 953.445 ± 794.704

Q1AM S 104.48 ± 63.37 3.42 × 10−63 102.46 ± 62.36 3.93 × 10−64

SF 13.257 ± 7.805 13.009 ± 7.440

Q3AM S 411.06 ± 225.10 1.63 × 10−64 424.17 ± 228.68 3.61 × 10−65

SF 65.231 ± 34.295 65.310 ± 35.734

˜MFM
S 0.721 ± 0.119 2.16 × 10−09 0.705 ± 0.117 2.43 × 10−12

SF 0.790 ± 0.129 0.787 ± 0.126

µFM S 0.9345 ± 0.1581 1.2 × 10−17 0.9103 ± 0.1596 1.74 × 10−23

SF 1.0741 ± 0.1716 1.0744 ± 0.1645

σFM S 1.18 ± 0.88 2.45 × 10−6 1.06 ± 0.46 6.96 × 10−08

SF 1.157 ± 0.288 1.162 ± 0.311

Table 3  Range (mean ± SD) and p-value of AM–FM based features for different groups

Features EEG signal Groups

Group 3 (g3) Group 4 (g4)

Mean ± SD P-value Mean ± SD P-value

MINAM S 0.16 ± 0.40 7.84 × 10−16 0.18 ± 0.40 2.72 × 10−15

SF 0.001 ± 0.009 0.005 ± 0.031

MAXAM S 10,364.60 ± 20,727.67 1.34 × 10−56 8093.80 ± 11,366.96 2.58 × 10−55

SF 2823.767 ± 26,581.638 1043.689 ± 1372.878

Q1AM S 92.39 ± 55.96 3.2 × 10−64 88.69 ± 55.35 3.1 × 10−62

SF 12.627 ± 7.247 13.268 ± 7.823

Q3AM S 401.92 ± 222.95 2.85 × 10−65 385.93 ± 211.37 2.45 × 10−64

SF 62.912 ± 34.125 66.001 ± 37.661

˜MFM
S 0.714 ± 0.116 7.87 × 10−12 0.713 ± 0.117 3.04 × 10−12

SF 0.799 ± 0.129 0.800 ± 0.133

µFM S 0.9311 ± 0.1465 2.63 × 10−21 0.9299 ± 0.1478 2.02 × 10−21

SF 1.0879 ± 0.1710 1.0853 ± 0.1751

σFM S 1.19 ± 0.71 3.23 × 10−04 1.190 ± 0.819 8.07 × 10−07

SF 1.175 ± 0.309 1.151 ± 0.267
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proposed features motivated us to use these features 
input to LS-SVM classifier for classification of seizure 
and seizure free EEG signals.

The statistical parameters SEN, SPE, ACC, ERD, and 
MCC are the performance measures of LS-SVM classi-
fier. For validation of proposed method by above param-
eters using LS-SVM classifier, the 10-fold cross validation 
method is applied. The RBF kernel of LS-SVM classifier 
is tested, which parameters sigma (σ ) and gamma (γ ) are 
group wise empirically selected, in Table 4. Table 4 shows 
the group wise performance parameters of proposed 
method. It is observed from Table 4 that the group 1 (g1) 
provides best performance parameters with LS-SVM 
classifier compared to other groups. It could be happen 
because of g1 group features shows better discrimina-
tion performance by lower p-values compared to other 
groups features. The group 1 performance parameters 
are as follows: ACC is 98%, SEN is 98.96%, SPE is 97.55%, 
ERD is 6.25%, and MCC is 95.5%. Table  5 presents, the 
comparison of proposed method with other state-of-
the-art methods and proposed method provides better 

performance parameters, form most of the methods. 
The classification results of proposed method for detec-
tion of seizure EEG signals makes it a viable choice in 
automatic epileptic seizure disorder detection in clinical 
applications.

Conclusion
This paper explored the utility of OAS and TEO in fea-
ture extraction for complex EEG signal. The OAS scheme 
analyzed the non-homogenous nature of EEG signal by 
diving it into groups and representation sample points 
are selected from each group to form homogeneous EEG 
group. The non-linear nature of selected length homo-
geneous EEG signal is analyzed by TEO. TEO separate 
non-linear EEG signal into well defined AM–FM compo-
nents. The statistical measures of AM–FM components 
are used to construct the group-wise feature set for clas-
sification of seizure and seizure free EEG signals. The 
groups performance is evaluated by statistical parameters 
computed through the LS-SVM classifier. The group 1 
provides best performance parameter as: ACC is 98%, 
SEN is 98.96%, SPE is 97.55%, ERD is 6.25%, and MCC is 
95.5%. These parameters are also better as compared to 
several existing methods for classification of seizure and 
seizure free EEG signals.

Future directions of this research work, in proposed 
OAS method the number of groups is selected empiri-
cally by stratification process. In near future, we would 
like improve empirically stratification process by adap-
tive stratification process based on statistical properties 
of test signal.

Table 4  Group wise performance parameters of proposed 
method

Groups/classifier 
parameters

ACC  
(%)

SEN 
(%)

SPE  
(%)

ERD  
(%)

MCC 
(%)

g1/σ = 10, γ = 100 98.00 98.96 97.55 6.25 95.50

g2/σ = 3, γ = 20 96.00 94.90 96.53 12.24 90.97

g3/σ = 4, γ = 10 97.33 94.23 98.98 7.69 94.10

g4/σ = 11, γ = 20 96.00 96.81 95.63 12.77 90.96

Table 5  Comparison of proposed method with other state-of-art methods

Authors Features/method Classifier Performance (%)

ACC SEN SPE MCC

Altunay et al. [11] Linear prediction error energy – 93.6 92.00 NA NA

Joshi et al. [12] FLP error energy and signal energy SVM 95.33 96 95 NA

Siuly et al. [13] Clustering LS-SVM 94.18 94.92 93.44 NA

Gandhi et al. [14] DWT and energy of wavelet coefficients PNN 99.33 99.6 99 NA

Pachori and Patidar [15] EMD, SODP based-confidence area measure ANN 97.75 97.68 98.07 NA

Bajaj and Pachori [16] Area measure of analytic IMFs of EEG signals – – 90 89.31 NA

Sharma and Pachori [18] EMD and phase space representation LS-SVM 98.67 100.00 96.00 NA

Hassan et al. [19] TQWT and bagging Bootstrap aggregating 98.40 98.33 98.60 NA

Patidar and Panigrahi [20] TQWT and Kraskov entropy LS-SVM 97.75 97.00 99.00 96.00

The proposed work OAS and TEO LS-SVM 98 98.96 97.55 95.50
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