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Cysteinyl-tRNA synthetase governs cysteine
polysulfidation and mitochondrial bioenergetics
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Cysteine hydropersulfide (CysSSH) occurs in abundant quantities in various organisms, yet

little is known about its biosynthesis and physiological functions. Extensive persulfide

formation is apparent in cysteine-containing proteins in Escherichia coli and mammalian cells

and is believed to result from post-translational processes involving hydrogen sulfide-related

chemistry. Here we demonstrate effective CysSSH synthesis from the substrate L-cysteine, a

reaction catalyzed by prokaryotic and mammalian cysteinyl-tRNA synthetases (CARSs).

Targeted disruption of the genes encoding mitochondrial CARSs in mice and human cells

shows that CARSs have a crucial role in endogenous CysSSH production and suggests that

these enzymes serve as the principal cysteine persulfide synthases in vivo. CARSs also

catalyze co-translational cysteine polysulfidation and are involved in the regulation of

mitochondrial biogenesis and bioenergetics. Investigating CARS-dependent persulfide

production may thus clarify aberrant redox signaling in physiological and pathophysiological

conditions, and suggest therapeutic targets based on oxidative stress and mitochondrial

dysfunction.
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Cysteine hydropersulfide (CysSSH) is found physiologically
in prokaryotes, eukaryotic cells, and mammalian tissues1,2.
Previously, we unequivocally verified the presence of

remarkable amounts of CysSSH, glutathione persulfide (GSSH),
and longer chain sulfur compounds (polysulfides, including CysS/
GS–(S)n–H) in cultured cells and tissues in vivo in mice and
humans3–6. The chemical properties and abundance of these
species suggest a pivotal role for reactive persulfides (i.e., com-
pounds containing an—SSH group) in cell-regulatory processes.
Researchers proposed that CysSSH and related species can behave
as potent antioxidants and cellular protectants, and may function
as redox signaling intermediates3–10. Persulfides are also essential
structural components of several proteins and enzymes, e.g. ser-
ving as metal ligands in iron-sulfur clusters (or sulfide donors)
and in iron-cysteine and zinc-cysteine complexes11–15. In fact, the
existence of a cell reservoir for sulfane sulfur (sulfur-bonded
sulfur atoms with six electrons), including low-molecular-weight
(LMW) and protein-bound cysteine polysulfides, has long been
known1,3–7,15,16. Thus, although the prevalence of endogenous
polysulfides is clearly established and their biological relevance
increasingly being recognized, the chemical biology and physio-
logical functions of these species are not known with any cer-
tainty. Current dogma holds that persulfide/polysulfide formation
arises as a result of hydrogen sulfide (H2S) oxidation3,4,7–9 or
chemical reaction with nitric oxide3,17. Two H2S-generating
enzymes involved in sulfur-containing amino acid metabolism—
cystathionine γ-lyase (cystathionase, CSE) and cystathionine β-
synthase (CBS)—can catalyze CysSSH biosynthesis using cystine
(CysSSCys) as a substrate3,4,6–10,18–21. However, the observed Km

is high, and both cells and mice lacking CSE and/or CBS still
display appreciable levels of CysSSH20–24, which suggests the
possibility that alternative processes may be responsible for
endogenous persulfide production. Thus, it appears that other
biosynthetic routes of CysSSH formation exist that have yet to be
identified.

This study reveals that cysteinyl-tRNA synthetases (CARSs), in
addition to their canonical role in protein translation, act as the
principal cysteine persulfide synthases (CPERSs) in vivo. CARSs
play a novel and prominent role in endogenous production of
both LMW polysulfides and polysulfidated proteins that are
abundantly detected in cells and in mice. Notably, CARS2, a
mitochondrial isoform of CARS, is involved in mitochondrial
biogenesis and bioenergetics via CysSSH production.

Results
Redox property of cysteine and protein polysulfides. CysSSH
has unique redox-active properties that distinguishes it from the
cysteine (CysSH) thiol. In evaluating the physiological rationale
for biological CysSSH production, our present study confirmed
that cysteine persulfide/polysulfides (CysSSH/CysS–(S)n–H) pos-
sess mixed sulfur reactivity—both nucleophilic and electrophilic
(Supplementary Figs 1 and 2)—a property that is unique and
distinct from that of other simple biologically relevant thiols. The
dual electrophilic-nucleophilic character of hydropersulfides is
well documented (the anionic RSS− species being nucleophilic
and the protonated RSSH species possessing electrophilic prop-
erties akin to disulfides, RSSR)25–27. Moreover, dialkylpolysulfides
can also be nucleophilic and electrophile-mediated cleavage of S-S
bonds is established28. The unique properties and reactivity of
polysulfides allowed us to develop several analytical techniques
aimed at determining endogenous production of LMW and
protein-bound polysulfides (Supplementary Fig. 3). We first
developed a convenient method for selective detection of poly-
sulfidated proteins: the biotin-polyethylene glycol (PEG)-con-
jugated maleimide (biotin-PEG-MAL) labeling gel shift assay

(PMSA; Supplementary Fig. 3a)15. PMSA demonstrated extensive
protein-bound cysteine polysulfidation (Supplementary Fig. 4),
not only for recombinant proteins, prepared in an Escherichia coli
cell expression system (Supplementary Table 1) but also for
endogenous proteins expressed in mammalian cells.

We then used liquid chromatography-electrospray ionization-
tandem mass spectrometry (LC-ESI-MS/MS) with β-(4-hydro-
xyphenyl)ethyl iodoacetamide (HPE-IAM) as a trapping agent to
identify and precisely quantify various hydropolysulfides, and
also to verify the site specificity of polysulfidation as well as the
number of sulfur atoms involved in proteins (Supplementary
Fig. 5, and Supplementary Table 2). We chose HPE-IAM for the
LC-ESI-MS/MS analyses, as described recently6 because of its
mild electrophilicity that ensures specific labeling of hydropoly-
sulfides to form stable adducts without appreciable artifactual
decay related to their dual nucleophilic and electrophilic character
(Supplementary Fig. 2). In fact, we quantified CysS–(S)n–H
formed in alcohol dehydrogenase 5 (ADH5) and glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) by LC-MS/MS analysis,
after pronase digestion of the HPE-IAM-labeled proteins, which
revealed that more than 70% of cysteine residues were
polysulfidated (Fig. 1a and Supplementary Fig. 6), a result
consistent with the PMSA profile alluded to above (Supplemen-
tary Fig. 4). The treatment of ADH5 with N-ethylmaleimide
(NEN) indeed completely abrogated the HPE-IAM labeling of
CysSH and CysSSH/SSSH as evidenced by LC-ESI-MS/MS
analysis shown in Supplementary Fig. 6b. This data indirectly
supports the electrophilic decomposition of protein-bound
cysteine polysulfides induced by a strong electrophile NEM.
Additional LC-quadrupole (Q)-time-of-flight (TOF)-MS analyses
identified sites of polysulfide formation and the sulfur chain
length in each protein (Supplementary Fig. 7).

Protein polysulfidation induced by cysteinyl-tRNA synthetase.
Because such extensive protein polysulfidation is unlikely to occur
effectively by simple chemical means3,4,7–10, we hypothesized that
CysSSH and CysS–(S)n–H may be incorporated during protein
translation. To evaluate this hypothesis, we analyzed the incor-
poration of CysSSH/CysS–(S)n–H into tRNA via cysteinyl-tRNA
synthetase (CARS) from E. coli (EcCARS) by using synthetic
CysS–(S)n–H and LC-MS/MS analyses (Supplementary Fig. 8).
We observed effective production of CysSSH-bound tRNA (Cys-
tRNACysSSH), which indeed suggests translational incorporation
of CysSSH/CysS–(S)n–H into proteins. Unexpectedly, we identi-
fied extremely high levels (>80% of total cysteine residues) of
tRNA-bound cysteine persulfide, trisulfide, and even tetrasulfide,
when using simple (native) cysteine with EcCARS (Fig. 1b and
Supplementary Fig. 9). As an important result, these cysteine
polysulfides bound to tRNA were effectively incorporated into
nascent polypeptides, which is synthesized de novo in the ribo-
somes (Fig. 1c), as verified by a modification of the puromycin-
associated nascent chain proteomics (PUNCH-P) method29, here
termed PUNCH-PsP, PUNCH for Polysulfide Proteomics (Sup-
plementary Fig. 10). This PUNCH-PsP analysis allowed us to
obtain specific and selective identification of the intact forms of
CysS–(S)n–H residues in the nascent peptides of GAPDH present
only within the ribosomes of E. coli, as Supplementary Fig. 10a
shows. We clearly identified high degrees of polysulfidation
occurring at the 247Cys residue of the mature GAPDH protein
expressed and synthesized in E. coli. All native forms of CysSH,
CysSSH, and CysSSSH residues were efficiently recovered from
the native whole GAPDH protein and the extension of poly-
sulfidation reached more than 60% of the 247Cys residue of
mature protein (Supplementary Fig. 10e). All these rigorous LC-
Q-TOF analyses unambiguously revealed that extensive and
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prevalent cysteine polysulfidation is introduced co-translationally
and sustained in the mature protein physiologically present even
in the post-translational processes of the cells.

Consistent with these findings, EcCARS itself appeared to have
strong catalytic activity for generating CysS–(S)n–H (CysSSH and
CysSSSH) from the natural substrate cysteine (Fig. 1d). The
persulfide synthase activity of EcCARS depended partly on added
pyridoxal phosphate (PLP) (Fig. 2a) but not on ATP and tRNA:
the latter two being required for Cys-tRNACys biosynthesis by
EcCARS. Persulfide generation by EcCARS was enantioselective,
because only L-cysteine but not D-cysteine demonstrated activity,
which ruled out nonspecific post-translational persulfidation.
Furthermore, we performed a stable isotope (34S) tracer
experiment combined with LC-MS/MS-based HPE-IAM assay
to clarify the catalytic mechanism of cysteine polysulfidation by
EcCARS (Supplementary Fig. 11). Specifically, by means of LC-
MS/MS analysis for the enzymatic reaction with stable isotope
(34S)-labeled cysteine as a substrate, we found that EcCARS
catalyzed the cleavage of a sulfur atom from one cysteine and its
transfer to another cysteine to form CysSSH, as Supplementary
Fig. 11a illustrates.

Identification of CARSs as CPERSs. Kinetic analyses confirmed
that, because of a very low Michaelis constant Km and high cat-
alytic rate constant kcat, EcCARS is very efficient in producing
CysSSH, i.e., functioning as a CPERS, with a high affinity for
cysteine (Supplementary Fig. 12 and Supplementary Table 3), in
particular when compared with the kinetic parameters of other
enzymes such as CSE (Supplementary Table 3)7,21. Although the
kcat/Km value is almost equal to values of EcCARS, CSE, and CBS
utilize only cystine (but not cysteine) as a substrate, which is quite
distinct from CARSs that use cysteine (but not cystine) for
CysSSH production3. In addition, because the intracellular cystine
content range is physiologically at low micromolar or sub-
micromolar concentrations, which are far lower than the Km

value of CSE (more than 200 μM), CSE cannot directly utilize
cysteine for persulfide production. Also, the cystine/CSE reaction
may not compete successfully with the reactions with other
enzymes metabolizing cystine and substance such as glutathione,
which exists abundantly in cells and thus readily interacts with
cysteine under physiological conditions. The intracellular cysteine
concentration is reportedly 100–1000 μM in cells and major
organs3, which is much higher than the Km of CARS. These
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Fig. 1 Formation of cysteine persulfide (CysSSH) and CysS–(S)n–H in proteins and their biosynthesis by EcCARS. a Quantitative identification by LC-MS/
MS analysis of CysS–(S)n–H formed in recombinant ADH5 after pronase digestion of the HPE-IAM-labeled protein. b Formation of cysteine (CysSH) and
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the EcCARS-catalyzed reaction (upper panel). HPE-AM, β-(4-hydroxyphenyl)ethyl acetamide; HPE-IAM, β-(4-hydroxyphenyl)ethyl iodoacetamide.
Data a, b are means± s.d. (n= 3)
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biochemical reports, therefore, strongly suggest that CARS can
function as a major source of CysS–(S)n–H generation under
physiological conditions.

Investigation of EcCARS PLP-binding sites with LC-Q-TOF-
MS analysis and Mascot data searches indeed revealed that lysine
(K) residues, including 73KIIK76 and 266KMSK269 motifs, bound
to PLP (Supplementary Fig. 13). The sequence data showed that
several Lys residues, especially at the KIIK and KMSK motifs, are
conserved in EcCARS and other homologues from different
organisms, including mammals (Fig. 2b and Supplementary
Fig. 14). Also, conserved two cysteine residues bound to the active
center Zn2+ (Fig. 2b and Supplementary Fig. 14). To clarify the
function of PLP bound to EcCARS, we constructed a series of Lys
mutants of this enzyme (Supplementary Table 4) and measured
enzyme activities in terms of persulfide, i.e., CysS–(S)n–H,
formation and protein synthesis or translation. We observed,
via the HPE-IAM labeling LC-MS/MS analysis, a marked
decrease in CysSSH and CysSSSH synthesis, compared with the
wild type (WT), for various Lys to Ala mutants at K73A, K76A,
K266A, K269A, and double mutants K73/76A and K266/269A of
EcCARS (Fig. 2c), all of which had intact protein synthesis

potential as assessed by the PUREfrex cell-free protein synthesis
assay (Fig. 2d). We also quantified the amounts of PLP bound to
EcCARS by LC-ESI-MS/MS using 2,4-dinitrophenylhydrazine
(DNPH). The DNPH-labeling LC-MS/MS analysis indicated that
the amounts of PLP bound to WT EcCARS and four different Lys
mutants correlated well with their CPERS (persulfide producing)
activities (Supplementary Fig. 13b). In contrast, cysteine to
aspartate mutants such as C28D (also C28S) and the double C28/
209D mutant still maintained high persulfide production, similar
to that of the WT cells (Fig. 2e), albeit their protein synthesis and
translational activity were strongly attenuated (Fig. 2f).

Our computational modeling of the three-dimensional struc-
ture of EcCARS supported PLP binding to the particular Lys
residues at the 73KIIK76 and 266KMSK269 motifs of EcCARS
(Fig. 3a). The present computational simulation predicts two
potential PLP-binding sites at K73 and K269 of KIIK and KMSK
motifs. Also, this modeling revealed that PLP-bound motifs have
a vicinal location within 10–20 Å distance but apparently distinct
from both the ATP-binding HIGH motif and the Zn2+-binding
active site of the EcCARS for Cys-tRNACys biosynthesis. A
commensurate change in the binding capacity and/or stability of
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PLP seems to exist, caused by the mutation of any one of four Lys
residue among four Lys residues because each single Lys mutation
at the KIIK and KMSK motifs greatly affected all CysS–(S)n–H
synthesis activity of EcCARS (Fig. 2c). One possible explanation
for the commensurate effect is that PLP may need multiple Lys
residues, rather than a single Lys binding, to exhibit stable
binding and full catalytic activity of CARS to function as CPERS
during CysS–(S)n–H formation. That is, for their stable binding
and catalytic activity, PLP-dependent catalytic activity may need
stabilization by a multiple Lys binding, because CysSSH produced
by CARS, due to its highly nucleophilic nature, may readily
interfere with the electrophilic aldehyde group of PLP to form an
imine (Schiff base) linkage on the Lys residues, which would
cause instability of the catalytic activity of PLP bound to these
particular Lys residues of CARS. This interpretation receives
support from by the aforementioned computational structural
analysis showing the close localization (in 20 Å) of these Lys
residues at KIIK and KMSK motifs (Fig. 3a). Together these data
suggest that EcCARS is indeed an efficient CPERS enzyme with
independent catalytic functions in aminoacyl-tRNA biosynthesis.

CARS2 functions as a CPERS conserved in mammals. Two
different CARSs exist in mammals: CARS1 (cytosolic) and
CARS2 (mitochondrial)30–32. Both CARSs (mouse CARS1 and
human CARS2, which we tested herein) had strong CysS–(S)n–H
producing activities, which depended on the presence of PLP
(Fig. 3b–d). Also, a very nice correlation was found between the
CPERS activity and PLP content of CARS2 containing varied
amounts of PLP incorporated after treatment with different
concentrations of PLP (Fig. 3e). To clarify how much cellular
CysS–(S)n–H originated from CARS1 and CARS2 in human cells,
we attempted to disrupt CARS1 and CARS2 genes in
HEK293T cells via the CRISPR/Cas9 system in HEK293T cells.
We could not obtain CARS1-knockout (KO) cells, but we suc-
cessfully established CARS2 KO cells. We selected one of the
clones, carrying a 30-bp deletion plus an 8-bp insertion just
downstream of the translation-initiating codon in the CARS2 first

exon, was selected for LC-MS/MS analysis (Supplementary
Fig. 15). CysS–(S)n–H and GSSH levels decreased significantly in
CARS2 KO cells (Fig. 4a, b), which suggests that CARS2 is a
major producer of persulfide. Because we still detected a low level
of CARS2 in CARS2 KO cells (Fig. 4c), we also treated the cells
with siRNA against CARS2, which resulted in the 67 and 42%
decreases in CysSSH and GSSH levels, respectively (Fig. 4a, b).
When we knocked down CARS1 in CARS2 KO cells, CysSSH
decreased only marginally, which suggests a predominant role of
CARS2 in the production of CysSSH. Immunoblot analysis and
immunostaining verified the reduced CARS2 and CARS1 protein
levels in CARS2 KO cells and in cells with CARS1 or CARS2
siRNA (Fig. 4c and Supplementary Figs 16 and 17).

Markedly reduced persulfide formation in CARS2 KO cells was
recovered by adding back WT CARS2. CARS2 C78/257D mutant
rescued the persulfide production of CARS2 KO cells, but K124/
127A, and K317/320A mutants (mutants of KIIK and KMSK
motifs, respectively), did not (Fig. 4d, e). The CARS2 KO cells had
a markedly decreased Cys-tRNA synthetase activity, and again
adding back the C78/257D mutant resulted in lost Cys-tRNA
synthetase activity, as assessed by the expression of mitochondrial
cytochrome c oxidase subunit 1 (MTCO1 encoded by mitochon-
drial DNA), but still retained full CPERS activity; conversely,
K124/127A and K317/320A mutants had impaired CPERS
functions but retained Cys-tRNA synthetase activity (Fig. 4f, g).
These results clearly verify that CARS2 truly functions as a
CPERS in mammals and that this function is separate from
cysteinyl-tRNA synthetase activity.

We also evaluated the potential contribution of CSE and CBS
to the endogenous persulfide production in HEK293T cells.
Silencing of CSE and CBS suppressed the persulfide production,
but notably, intracellular cysteine (CARS substrate) levels were
significantly decreased (Supplementary Fig. 18). In CARS2 KO
cells, knockdown of CSE and CBS also reduced cysteine levels but
not persulfide production (Supplementary Fig. 18). Therefore,
cysteine production is dependent on both CSE and CBS, and thus
cysteine is provided via the metabolic pathways mediated by CSE/
CBS in each cell line irrespective of CARS2 expression. In

K266
(KMSK)

K269
(KMSK)

K73
(KIIK)

K76
(KIIK)

K185
(KMSK)

K188
(KMSK)

Zn

PLP

Adenosine

C209

C28

HIGH
motif

Cysteine

PLP

EcCARS Mouse CARS1

CysSSH
from human CARS2

Human CARS2

2.0 2.0
1.6
1.2
0.8
0.4

1.6 18
16
14
12
10
8
6
4
2
0

0 10 50 100
PLP treatment (μM)

P
LP

-D
N

P
H

ad
du

ct
 (

μM
)1.2

C
ys

S
S

-H
P

E
-A

M
(μ

M
)

0.8

0.4

0

* *
*

*

H
P

E
-I

A
M

ad
du

ct
s 

(μ
M

)

H
P

E
-I

A
M

ad
du

ct
s 

(μ
M

)

0

1.6
1.2
0.8
0.4

0
CysSSH

0 30 60 90 120
Reaction time (min)

CysSSSH

+ 100 μM PLP

+ 50 μM PLP

+ 10 μM PLP

25 μM CysSH alone

CysSSH

PLP bound to
human CARS2

CysSSSH

PLP (–)
PLP (+)

PLP (–)
PLP (+)

a b c

d e

Fig. 3 Computational modeling of EcCARS structure, and CysS–(S)n–H biosynthesis by CARS1/2. a A molecular docking model of PLP-bound EcCARS
generated by SwissDock using the crystal structure of EcCARS (PDB ID: 1LI5). Cysteinyl-tRNA is placed by superimposing the crystal structure of the
EcCARS-Cysteinyl-tRNA binary complex (PDB ID: 1U0B) to the docking model. b, c PLP-dependent CysSSH and CysSSSH biosynthesis by mouse
CARS1 and human CARS2. CysSSH and CysSSSH production was quantified by means of HPE-IAM labeling LC-MS/MS analysis in the reaction of
recombinant mouse CARS1 and human CARS2 (200 μg/ml each) with 25 μM L-cysteine in the presence or absence of 100 μM PLP (37 °C, 2 h). The data
are means± s.d. (n= 3). *P< 0.01. d Concentration-dependent effects of PLP on CysSSH and CysSSSH production by recombinant human CARS2. Human
CARS2 (200 μg/ml) reacted with 25 μM cysteine in the presence of 0, 10, 50, or 100 μM PLP at 37 °C for 30–120min. No appreciable cysteine persulfide
production was detected in the reaction mixture of cysteine and PLP alone as long as no >100 μM PLP was used. e Precisely quantitative analysis for PLP
bound to human CRAS2. Human CARS2 treated with various concentrations of PLP (d) at 37 °C for 1 h was reacted with DNPH to form PLP-DNPH adduct,
followed by quantification by LC-ESI-MS/MS analysis

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01311-y ARTICLE

NATURE COMMUNICATIONS |8:  1177 |DOI: 10.1038/s41467-017-01311-y |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


addition, almost two thirds of CysSSH seems to be supplied by
CARS2 in HEK293T cells based on the decrease by almost two
thirds in the CysSSH levels. The rest of CysSSH in the CARS2 KO
cells were not derived from CSE/CBS expressed in
HEK293T cells, since no further reduction of CysSSH was
obtained even by CSE/CBS knockdown in CARS2 KO cells. These
results suggest that CSE and CBS do not contribute directly to
persulfide production but rather may promote the biosynthesis of
cysteine and its supply to CARS, at least in this cultured cell
model under physiological conditions.

To further clarify CPERS functions of CARS2 in vivo, we
generated the Cars2-deficient mice by using CRISPR/Cas9
technology. As Fig. 5 illustrates, a guide RNA (gRNA) was
designed against exon 1 of Cars2. We established a mutant mouse
line with a mutant Cars2 allele (line 1) that had a 200-bp deletion
containing a translation-initiating codon in exon 1 (Fig. 5a, b).
Mating of F1 Cars2 heterozygous KO (Cars2+/−) mice produced
WT and Cars2+/– mice, but not homozygous mice (viable
offsprings included 20 WT mice and 19 Cars2+/– mice), which
suggests that Cars2–/– mice are embryonic lethal. Cars2+/– mice
were normally born without any apparent abnormalities in
macroscopic appearance or growth profiles during the observa-
tion period of at least 6 months after birth, but they demonstrated
reduced mitochondrial expression of CARS2 protein by half and
marked attenuation of CysSSH production; in contrast, we

observed no appreciable change in mitochondrial DNA-encoded
MTCO1, which indicated intact Cys-tRNA synthetase activity in
Cars2+/– mice (Fig. 5c–e and Supplementary Fig. 19a). Therefore,
we quantified the sulfide metabolites in the liver of Cars2+/– mice
and their WT littermates via LC-MS/MS analysis with HPE-IAM
as described earlier. As we expected, CARS2+/– mice showed a
striking difference in persulfide production compared with
the WT littermates (Fig. 6a, b). Endogenous levels of CysSSH
and all other derivatives (e.g., GSSH, HS-, thiosulfate, and
hydropolysulfides) decreased by 50% or more in the liver and
lung of Cars2+/– mouse compared with WT mice.

To exclude the possibility of off-target effects by the gRNA
used to produce line 1 Cars2+/− mice, we developed another
strain of Cars2+/– mice (line 2) with an alternative gRNA
targeting Cars2 exon 3. Line 2 Cars2+/– mice had phenotypes
almost identical to those of line 1 (Supplementary Figs. 20
and 21).

That heterozygous Cars2 mutant mice manifested a CysSSH
reduction by ~50% should be noted; it suggests that Cars2
contributes almost entirely to the CysSSH production in mouse
tissues under physiological conditions. As an important finding,
Cars2 disruption did not alter expression levels of other sulfide-
metabolizing enzymes, including CSE, CBS, and 3-
mercaptopyruvate sulfur transferase (3-MST) (Fig. 5e, Supple-
mentary Figs. 19b, c and 21), which emphasized the sole
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contribution of CARS2 to endogenous persulfide biosynthesis
in vivo.

To explore the possibility that CARS2, a mitochondrial protein,
can produce CysSSH and provide it to the whole cell, we isolated
mitochondria from mouse liver and measured the release of de
novo-synthesized CysSSH from the mitochondria (Supplemen-
tary Fig. 22). A large fraction of CysSSH was indeed released from
mitochondria, which supports the idea that CysSSH produced in
mitochondria is released into the cytoplasm and maintains
protein polysulfidation. As expected, CysSSH derived from
whole-cell proteins was decreased in Cars2+/– mice, but cysteine
(CysSH) did not (Fig. 7). Specifically, formation of 20–30% of
CysSSH in all cell proteins (polysulfidation) depended on CARS2
expression not only in the in vivo experiment using Cars2 KO
mice (Fig. 7a) but also in the in vitro cell culture study (Fig. 7b),
as identified by HPE-IAM labeling LC-MS/MS analysis with the
whole cell and tissues proteins isolated. These results suggest that
CysSSH derived from CARS2 significantly contributes to the
polysulfidation of the whole-cell proteins. Because protein
polysulfidation appears to be mediated via post-translational as
well as co-translational processes, the former being controlled by
the thioredoxin (Trx)–Trx reductase (TrxR) system as recently
reported4, we expect that CysSSH generated in mitochondria is
released into the cytoplasm and supplies sulfur to proteins for
polysulfidation (Fig. 7c). Our current evidence is the first
demonstration that unequivocally verified in human cultured
cells and in vivo in mice that CARS2 is the major enzyme for
persulfide biosynthesis and thus functions as a CPERS in
mammals.

CARS-mediated polysulfidation and mitochondrial physiology.
Unexpectedly, CARS2 KO cells showed markedly altered mito-
chondrial morphology (i.e., shrunken or fragmented appearance),
which greatly improved when CARS2 was added back, as seen
with the MitoTracker Red fluorescent mitochondrial stain (Fig. 8a
and Supplementary Fig. 17c), transmission electron microscopy
(Fig. 8b), and immunofluorescence staining for translocase of
outer mitochondrial membrane 20 (TOMM20) and CARS2
(Supplementary Fig. 17a, b). Not only WT CARS2 but also the
C78/257D mutant induced a strikingly improved mitochondrial
morphology, but other Lys mutants tested did not (Fig. 8a, b and
Supplementary Fig. 17c). In line with these findings, deletion of
CARS2 activated dynamin-related protein (Drp1), a major med-
iator of mitochondrial fission33, and Drp1 GTPase activity was
significantly attenuated by adding back the WT CARS2 and C78/
257D mutant, thereby producing CysSSH without CARS activity,
but not by adding back the K317/320A mutant (Fig. 8c). Usually,
Drp1 in HEK293T cells was extensively polysulfidated (Fig. 8d),
as evidenced by our new biotin-PEG-MAL capture method
(Supplementary Fig. 3b). However, Drp1 polysulfidation was
markedly suppressed by both CARS2 KO and additional CARS1/2
double-knockdown, respectively (Fig. 8d and Supplementary
Fig. 23). Because Drp1 is likely activated via chemical depoly-
sulfidation or a post-translational process operated physiologi-
cally by the Trx–TrxR system, for example, we identified Drp1 as
a major signal effector molecule reversibly regulated through a
unique polysulfidation and depolysulfidation process (Fig. 8e).

We next examined CARS2 contribution to mitochondrial
biogenesis and function. Mitochondrial DNA normalized against
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nuclear DNA was reduced in CARS2 KO cells, which was
similarly restored by WT CARS2 and C78/257D but not by Lys
mutants (Supplementary Fig. 24a), which suggests that CARS2-
derived persulfide enhances mitochondrial biogenesis. Mitochon-
drial membrane potential was decreased in CARS2 KO cells, but it
recovered or even increased when the WT and C78/257D mutant
were added back or overexpressed but not when Lys mutants
were used (Fig. 8f and Supplementary Fig. 25a). We also used an
extracellular flux analyzer to measure the oxygen consumption
rate (OCR) in HEK293T CARS2 KO cells. The OCR in CARS2
KO cells was ~50% of that in WT cells (Fig. 8g), consistent with
the incomplete elimination of CARS2 protein and thereby
attenuated expression of MTCO1 in CARS2 KO cells (Fig. 4g).
The decrease of OCR in CARS2 KO cells was recovered by
introduction of WT CARS2 and C78/257D mutant but not by Lys
mutants (Fig. 8g and Supplementary Fig. 25b). A novel concept
emerging from these observations is that CARS2-derived cysteine
persulfides play an important role in the electron transport chain
(ETC) in mitochondria, which sheds light on a completely new
and fundamental role of persulfides in supporting mitochondrial
bioenergetic function.

CARS2 linked up to mitochondrial ETC. In our efforts to elu-
cidate the mechanism of how CARS2-derived CysSSH contributes
to the mitochondrial bioenergetics function, we noticed a quite
different profile of the products of human CARS2 in the cell-free
enzyme reaction compared with cellular CARS2 metabolism in
HEK293T cells in culture (Fig. 9a, b). Although CARS2 synthe-
sized mostly CysSSH/SSSH in a cell-free solution (Fig. 3c, d),
preferential formation of HS− (H2S) together with thiosulfate
(S2O3

2−) over CysSSH was evident with HEK293T cells. We thus
hypothesized that the mitochondrial compartment is a unique
metabolic environment in which de novo CysSSH synthesized by

CARS2 may be further metabolized, possibly being coupled with
the mitochondrial ETC.

To understand how the ETC function and CysSSH derived
from CARS2 are associated (Fig. 8g and Supplementary Fig. 25b),
we examined the effect of ETC suppression on the metabolic
profile of CysSSH and its derivatives in HEK293T cells (Fig. 9c–h).
We then used two approaches to inhibit the ETC in the cells: one
method was to use a specific inhibitor of complex III, antimycin
A (Fig. 9c–e), and the other ETC disrupter used was ethidium
bromide to induce mitochondrial DNA deprivation (Fig. 9f–h
and Supplementary Fig. 24b; see Supplementary Methods for
details). Both ETC suppressive treatments caused a significant
increase in CysSSH and simultaneous reduction of HS−

production, as assessed by the HPE-IAM labeling LC-MS/MS
analysis (Fig. 9c–h). These inverse and stoichiometric relation-
ships between CysSSH and hydrosulfide anion (HS−) formation
strongly suggested an ETC activity-dependent conversion of
CysSSH to HS− mediated via the ETC occurring in the cells
(Fig. 9e, h). We interpret these results to mean that CysSSH
derived from CARS2 in mitochondria is effectively reduced by
accepting an electron from the ETC to release HS− (H2S), as
Fig. 9i illustrates.

These data thus provide robust support for the idea that the
CARS2-CysSSH pathway is involved in the mitochondrial
function because CARS2-dependent CysSSH production is
functionally integrated into and tightly linked to the mitochon-
drial ETC, which is in turn involved in the energy metabolism, as
Fig. 10 illustrates. In fact, low (nM) concentrations of H2S
reportedly sustained the ETC function possibly mediated by
sulfide:quinone reductase and other potential enzymes that
oxidize sulfides to thiosulfate (S2O3

2−)7,34–38. How H2S is
supplied endogenously in mitochondria remained unclear,
however. Our earlier and current studies suggest that CSE, CBS,
and 3-MST are not major sources of H2S in mitochondria in
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various mammalian cell lines and in mice in vivo (Fig. 5e and
Supplementary Fig. 18)7,20–24. In this context, our study is the
first to verify that HS− (or H2S) is indirectly formed from CARS2
via CysSSH generation in the mitochondrial environment (Figs. 9i
and 10). Moreover, our recent study determined that CysSSH
contributed to the endogenous formation of iron-sulfur clus-
ters14. Because iron-sulfur clusters are known to be synthesized
and utilized in complexes I-III of the ETC in mitochondria39, and
are actively transported extramitochondrially, the CysSSH-
dependent HS− metabolism may be coupled with the generation
of iron-sulfur centers of the mitochondrial ETC and cytosolic
formation and maintenance of various iron-sulfur complex
machineries as well. Our reasonable conclusion is, therefore, that
CARS2 functions as a major CPERS, which in turn promotes
mitochondrial biogenesis and bioenergetics (Fig. 10).

Discussion
Until now, endogenous persulfides were thought to be formed as
a result of H2S/HS− oxidation via post-translational processes,
and serve as protein cysteine thiol-bound intermediates of
detoxification enzymes3,7,21, and as metal ligands for iron and
zinc complexes11–15. While CSE and CBS can catalyze CysSSH
biosynthesis by using cystine as a substrate3,4,6–10,18–21, several
cells and tissues without CSE/CBS expression and CBS/CSE KO
mice reportedly synthesized appreciable amounts of
persulfides3,20,22–24, but the source of the persulfides (poly-
sulfides) or the sulfane sulfur reservoir has remained elusive. We
here demonstrate that CARSs catalyze CysS–(S)n–H formation
from cysteine and co-translational protein polysulfidation. Also,
CSE and CBS may still play a major role in the CysSSH pro-
duction via the direct catalytic reaction using cystine as the
substrate especially under pathophysiological conditions asso-
ciated with oxidative and electrophilic stress, where intracellular
cystine concentrations are considerably approaching the high Km

value of CSE3,7,21,40–42.
The second, even more crucial, finding is that the mitochon-

drion is a key cellular compartment for the formation and action
of CysSSH and CysS–(S)n–H. Notably, CysSSH is mostly

generated by CARS2 localized in the mitochondria and is released
extramitochondrially into the cytoplasm so that it can effectively
produce CysS–(S)n–H and protein polysulfidation in whole-cell
compartments. The current study established that CARS2-derived
CysSSH (CysS–(S)n–H) indeed sustains mitochondrial biogenesis
and the ETC function. While the implications of these findings
await further investigation, a recent clinical study by Coughlin
et al. documented an intriguing result: CARS2 mutations iden-
tified in a patient were associated with ETC impairment and
mitochondrial dysfunctions31. Although the patient’s clinical
symptoms resulted from loss of a canonical function of CARS2,
which the neurological disorders might be caused by impairment
of CPERS activity of CARS2 is plausible, and thus this impaired
activity may overlap with the observed impairment of Cys-tRNA
aminoacylation.

The nature of sulfane sulfur or polysulfides has continued to be
a puzzle for a long time, because of a complicated polysulfide
chemistry with dual electrophilic and nucleophilic characteristics.
Previous reports demonstrated the ability of a trisulfide species to
react with numerous electrophiles. For example, Fletcher and
Robson reported that thiocystine (cystine trisulfide, CysSSSCys)
readily reacted with electrophilic halogens (e.g., Br2), which
resulted in cleavage of the S–S bond25. A review by Parker and
Kharasch also discussed numerous examples of the electrophilic
cleavage of the S–S bond in disulfides by electrophilic reagents
such as protons, sulfenium ions, and halogens26. More recently
(and directly relevant to our studies), Abdolrasulnia and Wood
reported that CysSSSCys reacted readily with iodoacetic acid (a
well-established thiol-modifying agent) to ultimately give car-
boxymethylthiocysteine (CysSS–CH2COOH)27, which is con-
sistent with the idea that a nucleophilic sulfur atom of the
polysulfide reacted with the electrophilic iodoacetic acid species
and led to S–S bond cleavage. Previous examination of the
reaction of electrophiles with disulfides (the simplest of all
polysulfides) is entirely consistent with this idea28. Thus, ample
precedence for the nucleophilic character of polysulfides exists, by
capitalizing on such a unique property, we are now able to
identify the cysteine and protein polysulfidation occurring
endogenously by means of a conventional PMSA or capturing
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assays and even by using HPE-IAM labeling LC-MS/MS analysis.
The present discovery of a novel polysulfide biosynthesis, there-
fore, can now explain substantial endogenous generation of sul-
fane sulfur, which we clarified as composed of various polysulfide
derivatives and which is biosynthesized by CPERSs and CARSs.

Our findings raise a number of important questions; however,
for example, why are such protein-bound cysteines abundantly
polysulfidated, does polysulfidation affect protein folding? And,
what function does this modification play in compartments other
than mitochondria? Determining how CPERS activity is regulated
will also be important. Given the powerful effects of persulfides
on mitochondrial morphology and bioenergetics, the availability
of persulfides in cells must be subject to stringent regulation.
Although CPERSs play a critical role in generating CysSSH, the
Trx–TrxR system may help maintain cellular persulfide con-
centrations within certain limits by controlling the rate of per-
sulfide degradation4.

Some aminoacyl-tRNA synthetases reportedly possess func-
tions in physiological processes besides their role in translation43.
The mitochondria-promoting functions of CARS2 suggest its
non-canonical roles and therefore may therefore represent

“moonlighting” roles of CARS2. However, CARSs effectively
synthesize cysteine polysulfides, and this process is closely related
to the initial translational process of de novo synthesis of nascent
polypeptides in ribosomes (cf. Fig. 1b and Supplementary
Fig. 10). The CPERS function of CARSs is apparently associated
not only with translation but also with the mitochondrial
respiration, which indicates that CARSs, rather than having a
moonlighting role, have a primary function of producing
persulfides.

In conclusion, our discovery of reactive persulfide production
mediated by the CARS or CPERS pathway and the potent effects
on mitochondrial functions observed would seem to represent a
significant evolution of molecular and cell biology, thereby
inviting a paradigm shift in the current understanding of cellular
translation, redox signaling, and energy metabolism (Fig. 10). Our
discovery of CARS and CPERS as a major sources of reactive
persulfides in biology may usher in a new era of modern redox
biology and life science research that hold great potential to
invigorate translational studies in a variety of disease processes
known to be associated with aberrant redox regulation and
mitochondrial dysfunction.
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Methods
LC-ESI-MS/MS analyses for per/polysulfides. LC-ESI-MS/MS analysis with
HPE-IAM (Supplementary Fig. 5 and Supplementary Table 2) was used to
determine CysSSH or CysS–(S)n–SH formed from EcCARS and CARSs. To identify
CysS–(S)n–H formed and incorporated into Cys-tRNA via the enzymatic reaction
of EcCARS, 200 μg/ml recombinant EcCARS was reacted with 0.5 mg/ml tRNA
(Sigma-Aldrich) and CysS–(S)n–H or 10 μM cysteine as the substrate, in 50 mM
HEPES buffer (pH 7.5) containing 1 mM ATP, 25 mM KCl, and 15 mM MgCl2 at
37 °C, followed by alkylation with 1 mM HPE-IAM for 20 min at 37 °C. CysS–
(S)n–H were formed from 10 μM cystine and 30 μMNa2S2 in 30 mM HEPES buffer
pH 7.5 at 37 °C for 5 min. The Cys-tRNACys–(S)n–H synthesized by EcCARS was
precipitated by adding 10% trichloroacetic acid to the reaction mixture, followed by
trapping by cotton wool filters (100 μl) placed in pipette tips. The precipitated total
tRNA containing Cys-tRNACys–(S)n–H was washed with 10% trichloroacetic acid
(200 μl twice) and with 70% ethanol (200 μl twice) to completely remove the free
cysteine and CysS–(S)n–H. CysS-HPE-IAM and CysS–(S)n-HPE-IAM adducts
were dissociated by alkaline heat hydrolysis of the ester bond of aminoacyl moieties
of the Cys-tRNACys and Cys-tRNACys–(S)n–H. The hydrolysis was performed in
20 mM Tris-HCl (pH 8.0), which contained known amounts of stable isotope-
labeled internal standards, at 70 °C for 15 min. The eluted solutions were acidified
with formic acid and analyzed via LC-ESI-MS/MS. Also, Cys-tRNA-bound CysSSH
was identified by detecting a CysSSH-adenosine adduct formed in the Cys-tRNA
molecules synthesized by EcCARS from the substrate cysteine. The CysSSH-
adenosine adducts in the reaction of EcCARS with cysteine and Cys-tRNA were
measured by using LC-ESI-MS/MS analysis. In brief, CysSSH incorporated into

tRNA as catalyzed via EcCARS with cysteine was prepared in the same manner as
that described above, followed by alkylation with HPE-IAM and acetylation with
acetic anhydride, as described earlier44. After precipitation and washing of samples
with ethanol, the acetylated and HPE-IAM-labeled Cys-tRNACysSSH was digested
to generate acetylated CysSS-HPE-AM-bound adenosine by treatment with RNase
ONE (Promega, Madison, WI) at 37 °C for 1 h, after which LC-ESI-MS/MS ana-
lysis was performed. To measure CysS–(S)n–H generated directly by EcCARS and
CARSs, recombinant EcCARS, mouse CARS1, or human CARS2 was incubated
with cysteine in 50 mM HEPES buffer (pH 7.5) containing 25 mM KCl and 15 mM
MgCl2 with or without 1 mM ATP at 37 °C. The mixtures were then reacted with
1 mM HPE-IAM in methanol at 37 °C for 20 min to form CysS–(S)n–HPE-IAM
adducts. After centrifugation, aliquots of the supernatants were diluted 10–100
times with 0.1% formic acid containing known amounts of isotope-labeled internal
standards and were subjected to LC-ESI-MS/MS. To clarify the molecular
mechanism of CysSSH formation, 50 μM 34S-labeled L-cysteine was reacted with
200 μg/ml EcCARS as a substrate in 50 mM HEPES buffer (pH 7.5) containing
25 mM KCl and 15 mM MgCl2 at 37 °C for 15–60 min. The reaction products
treated with HPE-IAM were diluted with 0.1% formic acid containing known
amounts of isotope-labeled internal standards, which were then subjected to LC-
ESI-MS/MS as described above. To determine kinetic parameters, WT EcCARS
and C28S EcCARS were incubated with different concentrations of L-cysteine in
50 mM HEPES buffer (pH 7.5) containing 25 mM KCl and 15 mM MgCl2 at 37 °C
for 30 s. The reaction mixtures were treated with 1 mM HPE-IAM, followed by LC-
ESI-MS/MS as described above. The data were fitted by nonlinear regression to the
Michaelis–Menten equation by using GraphPad Prism software ver. 6.0 (GraphPad
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2−. The data are means± s.d. (n= 3). *P< 0.05; **P< 0.01; N.S., not significant

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01311-y ARTICLE

NATURE COMMUNICATIONS |8:  1177 |DOI: 10.1038/s41467-017-01311-y |www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Software, San Diego, CA) to obtain the kinetic parameters. Each calculated enzyme
parameter was compared with that of recombinant CSEs (rat and human), which
we obtained from the enzymatic reaction with L-cystine as the substrate, according
to our previous report3. For analysis of intracellular persulfide levels in cultured
HEK293T cells, and livers and lungs obtained from WT and Cars2+/– littermate
mice, the cultured cells and mouse tissues were lysed or homogenized in a cold
methanol solution containing 1 mM HPE-IAM, after which cell lysates were
incubated at 37 °C for 20 min. After centrifugation, aliquots of the supernatants of
the lysates were diluted 20 times with 0.1% formic acid containing known amounts
of isotope-labeled internal standards, which were then analyzed via LC-ESI-MS/MS
for per/polysulfide determination. A triple quadrupole (Q) mass spectrometer
LCMS-8050 (Shimadzu) coupled to the Nexera UHPLC system (Shimadzu) was
used to perform LC-ESI-MS/MS. Per/polysulfide derivatives were separated by
means of Nexera UHPLC with a YMC-Triart C18 column (50 × 2.0 mm inner
diameter) under the following elution conditions: mobile phases A (0.1% formic
acid) with a linear gradient of mobile phases B (0.1% formic acid in methanol)
from 5 to 90% for 15 min at a flow rate of 0.2 ml/min at 40 °C. MS spectra were
obtained with each temperature of the ESI probe, desolvation line, and heat block
at 300, 250, and 400 °C, respectively; and the nebulizer, heating, and drying
nitrogen gas flows were set to 3, 10, and 10 liters/min, respectively. Various per/
polysulfide derivatives were identified and quantified by means of multiple reaction
monitoring (MRM). Supplementary Table 2 summarizes the MRM parameters for
each derivative.

Identification of CysS–(S)n–SH formed in nascent peptides. CysS–(S)n–SH
species synthesized endogenously and formed in nascent polypeptides by EcCARS
in E. coli cells in culture were analyzed by means of puromycin-associated nascent
chain proteomics (PUNCH-P)29, which was specifically modified here for

polysulfidated proteins (PUNCH for Polysulfide Proteomics, henceforth called
PUNCH-PsP). The E. coli JM109 cells transfected with an hGAPDH expression
vector (pGE-30) were cultured and hGAPDH expression was induced with IPTG
as described earlier, followed by collecting and sonication of the cells in cell lysis
buffer containing 0.3 mg/ml lysozyme and 2mM IAM without any reducing
agents. The supernatant obtained by centrifugation was applied to the Ni-NTA
agarose column for purification of the mature GAPDH protein. From the resultant
pellet of the E. coli cell lysate, the ribosomal fraction was isolated via sucrose
density gradient ultracentrifugation, as reported previously29. The ribosomal
fraction was suspended in polysome buffer (50 mM Tris-HCl, pH 7.5, 10 mM
MgCl2, and 25 mM KCl), containing an EDTA-free protease inhibitor cocktail (as
indicated by the manufacturer), and was then reacted with 2 mM IAM at room
temperature for 30 min. After the ribosomal fraction was washed with the poly-
some buffer, the ribosomes were treated with 5′-biotin-dC-puromycin (Jena
Bioscience, Jena, Germany) in TTBS (20 mM Tris-HCl, 150 mM NaCl, 0.1% Tween
20, pH 7.6) at 37 °C for 15 min and were then reacted with avidin magnetic beads
(Wako Pure Chemical Industries) to finally capture the newly synthesized poly-
peptides in ribosomes in the E. coli cells in culture. The puromycin-labeling con-
ditions were optimized for the E. coli ribosomes used in the present study,
according to the original report29. The CysS–(S)n–H residues in GAPDH were
detected by means of LC-Q-TOF-MS as described earlier, with tryptic digests of the
mature GAPDH purified simultaneously and the same digest of the nascent
GAPDH polypeptides within the cultured E. coli ribosomes captured with and
recovered from the biotin-puromycin-bound avidin beads. CysS–(S)n–H in the
nascent polypeptides can be selectively identified by using PUNCH-PsP, which we
successfully developed and describe here (Fig. 1c and Supplementary Fig. 10).
During this PUNCH-PsP analysis, the cysteine and CysS–(S)n–H residues located
in the polysulfide exit tunnel in the ribosomes are not accessible to exogenously
added IAM and can thus be protected from alkylation by IAM because of the
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unique physicochemical properties of the interior structure of the polypeptide exit
tunnel in the ribosome45–47, which allowed us to obtain specific and selective
identification of the intact forms of CysS–(S)n–H residues in the nascent peptides
present only within the ribosomes, as Supplementary Fig. 10a shows. As soon as
the mature GAPDH isolated from E. coli. with the Ni-NTA agarose was treated by
quick digestion with 10 μg/ml trypsin at 37 °C for 30 min, which was promptly
subjected to the LC-ESI-Q-TOF analysis, in a similar manner as shown for the
PUNCH-PsP method.

Preparation and purification of recombinant CARS proteins. To generate
recombinant CARSs, open-reading frames of these genes were transferred into
AG1 (Agilent Technologies, Santa Clara, CA) competent cells. Recombinant
EcCARS, mouse CARS1, and human CARS2 proteins were purified by using the
following standard procedure. Briefly, these proteins were produced in AG1, and
they were purified by using nickel nitrilotriacetic acid agarose; resultant purified
proteins were extensively dialyzed against phosphate buffer and stored at −80 °C
until use. Protein concentration was determined by using the Protein Assay CBB
Solution (Nacalai Tesque, Kyoto, Japan), and protein purity was confirmed via
SDS-PAGE.

Generation of CARS2 KO cell lines. The genome editing CRISPR/Cas9 system
was used to generate human CARS2 KO cell lines. To obtain gRNA, which is highly
specific for the first exon of the human CARS2 locus and has fewer off-target sites
within the human genome, we based an optimal gRNA design on the software
program CRISPRdirect48. To express Cas9 and gRNA in HEK293T cells, the pX459
V2.0-CARS2 gRNA vector was created by inserting annealed oligonucleotide pairs
(5′-caccTGGGCCTTGGGCGGGCTGGG-3′ and 5′-aaacCCC AGCCCGCC-
CAAGGCCCA-3′) into the BpiI sites of pX459 V2.0. pX459 V2.0 vector, which
enables expression of a gRNA (directed to the CARS2 exon 1; Supplementary
Fig. 15), SpCas9, and a puromycin resistance gene from a single vector, was
obtained from the Zhang laboratory via Addgene plasmid 6298849. HEK293T cells
were plated in 6-well plates (1.0 × 105 cells per well) 24 h before transfection.
Cultured cells were transfected with 2 μg of pX459 V2.0-CARS2 gRNA by using
Lipofectamine 2000 (Invitrogen, Carlsbad, CA). The medium was changed 24 h
after transfection. After another 24 h of incubation, the cells were replated on 10-
cm dishes and cultured for various time periods at 37 °C with a selection medium
containing 2.0 μg/ml puromycin (Invitrogen). Puromycin-resistant clones were
arbitrarily selected and used for screening CARS2 KO cell lines to finally obtain
stable CARS2 KO cell lines. Disruption of the CARS2 gene was verified by loss of
CARS2 protein expression as determined by western blotting.

Construction of mammalian hCARS2 expression vectors. To produce an
hCARS2 expression vector (pPyCAGIP-FLAG-hCARS2), the XhoI fragment of
pET-15b-hCARS2 was cloned into the XhoI site of pPyCAGIP-FLAG. The same
vectors containing various mutant hCARS2 genes were obtained via site-directed
mutagenesis by using inverse PCR with pPyCAGIP-FLAG-hCARS2 as a template
and primer sets for generation of pPyCAGIP-FLAG-hCARS2 C78/257D, K124/
127A, and K317/320A.

Transfection of various CARS2 genes and knockdown of CARS1/2. WT and
various mutant CARS2 genes were transfected into HEK293T WT and mutant cells as
reported recently3 by using expression plasmids such as pPyCAGIP-FLAG-hCARS2
and CARS2 mutant vectors. Transfection of the expression plasmid was performed by
using Lipofectamine 2000 according to the manufacturer’s instructions. In brief, we
incubated WT and CARS2 KO HEK293T cells seeded in 24-well plates (6 × 105 cells
per well) and 8-well culture slides (2 × 105 cells per well) for 12 h at 37 °C. For
transfection, we mixed 1.5 μg per well of the expression plasmid with 50 μl of Opti-
MEM (Invitrogen) in a tube. Before plasmid DNA and transfection reagent solutions
were added to the cells, solutions were mixed together and incubated for 5min at
room temperature and then added to the cells, after which incubation proceeded for
30 h or 3 days. Also, knockdown of CARS1 and CARS2 was performed as reported
recently3 by using the following small interfering RNAs (siRNAs): CARS1,
CARSHSS101368 (Invitrogen), and CARS2, CARS2HSS128464 (Invitrogen). siRNA
transfection was performed by using Lipofectamine RNAiMAX (Invitrogen)
according to the manufacturer’s instructions. The siRNA was introduced into WT
and CARS2 KO cells, as described above for CARS2 gene transfection.

Generation of Cars2-deficient mice. All experimental procedures conformed to
“Regulations for Animal Experiments And Related Activities at Tohoku Uni-
versity”, and were reviewed by the Institutional Laboratory Animal Care and Use
Committee of Tohoku University, and finally approved by the President of Uni-
versity. We generated two lines of Cars2-deficient mice as follows. Cars2 gRNAs
vectors were constructed with use of a pT7-sgRNA and pT7-hCas9 plasmid (a gift
from Dr. M. Ikawa, Osaka University)50. After digestion of pT7-hCas9 plasmid
with EcoRI, hCas9 mRNA was synthesized by using an in vitro RNA transcription
kit (mMESSAGE mMACHINE T7 Ultra kit; Ambion, Austin, TX), according to
the manufacturer’s instructions. A pair of oligonucleotides targeting Cars2 was
annealed and inserted into the BbsI site of the pT7-sgRNA vector. The sequences of
the gRNAs were designed as follows: 5′-GGACAGATCCAGCGAACAGG-3′ and

5′-AATAATCAAGAGAGCTAACG-3′, located at exons 1 and 3 of Cars2 gene, to
generate CARS2-deficient lines 1 and 2 mice, respectively. After digestion of pT7-
sgRNA with XbaI, gRNAs were synthesized by using the MEGAshortscript kit
(Ambion). We used C57BL/6N female mice (purchased from Crea-Japan Inc.,
Tokyo, Japan) to obtain C57BL/6N eggs, and we performed in vitro fertilization
with these eggs. In brief, Cas9 mRNA and gRNA were introduced into fertilized
eggs by injecting using a Leica Micromanipulator System, according to the pro-
tocols reported previously50, after which we transferred the eggs to the oviducts of
pseudo-pregnant females on the day of the vaginal plug. A founder mouse har-
boring the Cars2 mutant alleles was crossed with WT mice to obtain Cars2 het-
erozygous mice. After segregating the Cars2 mutant alleles, heterozygous mice with
a 200-bp deletion in exon 1 (line 1) and with a 1-bp insertion in exon 3 were
selected for additional analyses (Figs. 5–7; Supplementary Figs. 20 and 21).

MitoTracker Red staining for mitochondrial morphology. To analyze mito-
chondrial morphogenesis under several experimental conditions in cells, mito-
chondria were imaged by using the fluorescent probe MitoTracker Red CM-
H2Xros (Invitrogen). In brief, culture slides were coated with 0.5% polyethylene
imine for more than 1 h and washed twice with PBS. CARS2 KO cells were
transfected with expression plasmids for WT and individual mutants of human
CARS2 via Lipofectamine 2000. At 3 days after transfection, cultured cells were
washed with Hank’s buffer, incubated with 1 μM MitoTracker Red CM-H2Xros at
37 °C for 30 min, rinsed twice with Hank’s buffer, and examined with a Nikon EZ-
C1 confocal laser microscope (Tokyo, Japan). We used ImageJ and Prism software
for image processing and quantification of mitochondrial dimensions including
their length.

Mitochondrial bioenergetic functions. To determine the membrane potential
(ΔΨm) of mitochondria under several experimental conditions, tetra-
ethylbenzimidazolyl carbocyanine iodide (JC-1) staining was performed according
to the manufacturer’s protocol. Accumulation of the cell-permeable JC-1 probe
(Abcam) in mitochondria depends on the membrane potential, associated with a
fluorescence emission shift from green to red. Briefly, WT and CARS2 KO
HEK293T cells, cultured in 8-well multichamber Millicell slides coated with PEI,
were treated with various CARS2 vectors or were untreated, as described above. For
JC-1 staining, cultured cells were washed with HKRB buffer (20 mM HEPES,
103 mM NaCl, 4.77 mM KCl, 0.5 mM CaCl2, 1.2 mM MgCl2, 1.2 mM KH2PO4,
25 mM NaHCO3 and 15 mM glucose, pH 7.3), incubated with 20 μM JC-1 at 37 °C
for 30 min, rinsed twice with HKRB buffer, and examined with a Nikon EZ-C1
confocal laser microscope. ImageJ software was used for image processing and
quantification of the JC-1 fluorescent responses.

Mitochondrial bioenergetic functions. Mitochondrial function was investigated,
according to a previous report with a slight modification51, by measuring the basal
OCR of the mitochondria under various experimental conditions in WT and
CARS2 KO cells, using the XF96 Extracellular Flux Analyzer (Seahorse Bioscience,
Agilent). At the end of the experiment, rotenone and antimycin A (2.4 μM each)
were added to inhibit complexes I and III of the mitochondrial electron transport
chain, respectively, to determine the remaining mitochondria-independent OCR.
Net OCR was normalized to the cell number determined at the end of the
experiments by means of sulforhodamine B staining (Sigma-Aldrich, St. Louis,
MO). To obtain the mitochondria-specific OCR, only the rotenone/antimycin-
sensitive part of cell respiration was used.

Effect of suppression of ETC on metabolic profiles of CysSSH. The mito-
chondrial ETC in HEK293T cells was inhibited either by a complex III inhibitor,
antimycin A, or by elimination of mitochondrial DNA (mtDNA) induced by
ethidium bromide. For the direct but partial ETC (complex III) inhibition, WT and
CARS2 KO cells were treated with various concentrations of antimycin A for 1 h,
followed by methanol extraction for measurement of CysSSH and its related sulfide
derivatives by HPE-IAM labeling LC-ESI-MS/MS analysis as described earlier. To
indirectly suppress all ETC components (complexes), mtDNA from WT and
CARS2 KO HEK293T cells was eliminated specifically by treatment with ethidium
bromide (50 ng/ml, 127 nM) for 12 days under standard cell culture conditions
(37 °C, humidified, 5% CO2/95% air) with DMEM containing 10% FBS, 1%
penicillin-streptomycin, sodium pyruvate (1 mM), nonessential amino acids (1%),
and uridine (50 μg/ml), according to a previous method with a slight modifica-
tion52. The cells without mtDNA were then subjected to HPE-IAM labeling LC-
MS/MS analysis for persulfide metabolic profiling, similar to antimycin-treated
cells. The efficacy of the present mtDNA elimination and the resultant ETC sup-
pression were assessed by measuring mtDNA as described below (Supplementary
Fig. 24b), and these results were confirmed by substantial suppression of mito-
chondrial cytochrome c oxidase subunit 1 (MTCO1: encoded by mtDNA), as
identified by western blotting. In contrast, MitoTracker Red staining showed no
appreciable altered morphology of mitochondria in HEK293T cells with or without
ethidium bromide treatment, at least under the present experimental conditions.
The quantity of each sulfide produced from CARS2 in the cells was determined by
subtracting the amount of each sulfide in CARS2 KO HEK293T cells from that in
the WT cells, after quantification of each metabolite via HPE-IAM labeling LC-MS/
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MS analysis. Changes in the amounts of CysSSH (ΔCysSSH) and HS− (ΔHS−)
induced by complex III inhibition by antimycin A or by mtDNA elimination in
WT and CARS2 KO HEK293T cells were then calculated.

Statistical analysis. Results are presented as means± s.d. of at least three inde-
pendent experiments unless otherwise specified. For statistical comparisons, we
utilized two-tailed Student’s t test or two-way analysis of variance followed by the
Student–Newman–Keuls test, with significance set at P< 0.05.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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