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Inequality in genetic cancer risk suggests bad
genes rather than bad luck

Mats Julius Stensrud"? & Morten Valberg'?3

Heritability is often estimated by decomposing the variance of a trait into genetic and other
factors. Interpreting such variance decompositions, however, is not straightforward. In par-
ticular, there is an ongoing debate on the importance of genetic factors in cancer develop-
ment, even though heritability estimates exist. Here we show that heritability
estimates contain information on the distribution of absolute risk due to genetic differences.
The approach relies on the assumptions underlying the conventional heritability of liability
model. We also suggest a model unrelated to heritability estimates. By applying these
strategies, we describe the distribution of absolute genetic risk for 15 common cancers.
We highlight the considerable inequality in genetic risk of cancer using different metrics,
e.g., the Gini Index and quantile ratios which are frequently used in economics. For all these
cancers, the estimated inequality in genetic risk is larger than the inequality in income in
the USA.
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here are several approaches to quantify the contribution of

heritable factors to disease!?. A straightforward strategy is

using familial recurrence risks, e.g., the recurrence risk in
monozygotic co-twins, given a co-twin is affected (1y;), or the
recurrence risk in a pair of siblings (As). If the relative risk in
relatives of affected individuals is different from 1, family related
factors influence the risk. Indeed, it has been argued that the
majority of such factors are most likely genetic>=. The familial
risk estimates may have immediate interest for relatives of affected
individuals. These estimates are simple predictors of the individual
disease risk, and they may be particularly useful when few other
risk factors are known. However, these familial risk estimates
per se do not yield accurate information about the magnitude and
inequality of genetic and environmental risk®. Nor do they indi-
cate the relative importance of heritable, common environmental
and other factors. The familial risk estimates are purely observa-
tional, and do not have a causal interpretation.

Heritability, on the other hand, allows for comparison between
heritable and other factors: The heritability denotes the fraction of
the variation of the trait that is due to genetic differences”. These
estimates are characteristics of the population under study, and
cannot be immediately generalised to other populations. To
interpret the heritability, we must make assumptions about the
underlying causal structure, i.e. we must define a causal model'’.

Heritability is often used to evaluate the importance of genetic
effects, but the interpretation is not always easy. Intuitively,
a large heritability may correspond to a large variability in
absolute genetic risk. Nevertheless, it is not straightforward to see
how the absolute genetic risk distribution depends on heritability.
Indeed, for cancer development the contribution of genetic,
environmental factors and chance is debated®~!% 3% 36, despite
the access to heritability data®’.

To better understand the importance of heritable factors, we
obtain the distribution of absolute risks due to genetic differences.
After estimating the absolute genetic risk distribution, we study
the fundamental inequality in cancer risk across individuals,
using e.g. Nordic twin data for 15 common cancers?’. Our
analysis suggests that genetic differences lead to substantial
inequality in the risk of several cancers.

Results

Deriving the distribution of absolute genetic risk. Human
diseases are often considered to be dichotomous traits; you are
either affected or unaffected. For such traits, the heritability of
liability is frequently used to study inheritance?. The concept
implies that every individual has a liability to disease, which is the
sum of e.g. several genetic and environmental components.
Usually the liability is assumed to be normally distributed in the
population, and a threshold on the liability scale determines
whether an individual acquires the disease. Hence, the standard
liability model is usually interpreted as a threshold model”.
This model allows for the decomposition of the variance into
genetic and environmental components. It is appealing, because
the variance on the liability scale does not depend on the disease
prevalence. Furthermore, the normally distributed liability may
have some justification in the central limit theorem; if we believe
that the liability of a trait is due to several additive genetic and
environmental factors, the liability may approximately follow a
normal distribution.

In the 1970s a mathematically equivalent interpretation of the
threshold model was described, which is based on the genetic
liability g, ie. the liability solely due to genotype®’. In the
Methods section, we have derived the risk of disease given i,
which we denote Y. Indeed, we express the distribution of Y to
study how the genetic risk varies on an individual level
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Fig. 1 Genetic risk distribution for four common cancers. The distribution of
risk due to genetic differences is displayed for four common cancers, using
heritability and prevalence data from Nordic twin registries2?

Wray et al.?3 use some similar concepts to see that the probit
model fits with real, observed family data’®. Here, we will use
summary estimates of the heritability #* from twin studies to
derive the distribution of Y for 15 common cancers. When the
absolute risk distribution is derived, we can obtain various
measures of the genetic inequality in risk.

Exploring inequality in risk for 15 cancers. Mucci et al.?’

recently reported heritability estimates for 15 common cancers
based on the heritability of liability model, using data from
Nordic twin registries. We will apply the sampling algorithm
described in the Methods section to derive the distribution of
absolute risk for these 15 cancers. To illustrate this, Fig. 1 shows
the estimated genetic risk distribution for the 4 most common
cancers. We interpret the genetic risk as the individual life-time
risk of disease, given that the individual’s genetic make-up
was known, but the environmental exposure unknown.
The interpretation relies on the assumptions underlying the
heritability of liability model, e.g. that genetic factors and the
environmental factors are independent on the liability scale.

By obtaining the risk distributions, we are able to explore the
genetic contribution to disease risk. To do this, we will suggest
some useful summary measures.

Gini index. First, we use the Lorenz curve, and its summary
measure the Gini index. Although rarely used in medicine and
epidemiology, this metric adequately describes the variation in
disease risk?>?®, Importantly, it allows for comparison across
measurement scales; the Gini index does not depend on
the cumulative risk of a disease in a population (or the total size of
an economy), neither on the size of the population itself. It only
relies on the relative mean absolute difference between indivi-
duals?®. Crudely, the Gini index is a number between 0 and 1,
describing the inequality in disease risk across individuals. More
precisely, the Lorenz curve is represented by a function
L(S), in which S is a cumulative proportion of the population, and L
(S) is the fraction of the total risk that is carried by S. E.g. if the risk
is equal among subjects in the population, the fraction of risk
carried by any 50% of the population would be L(0.5) = 0.5, which
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Fig. 2 Gini indices for 15 common cancers. The Gini indices with 95%

confidence intervals are derived by using data from Nordic twin
registries20. The red dashed line marks the Gini index of income in the USA

means that the Lorenz curve is a straight line. The Gini index is a
ratio describing the deviation from this straight line, which can be
interpreted as a coefficient of deviation in risk, either on the
absolute or the relative scale2® (A formal mathematical derivation is
found in the Methods section).

In our context, a Gini index of 0 means that everybody has the
same genetic risk to a particular cancer, whereas a Gini index of 1
implies maximum inequality in risk across individuals. The Gini
index is widely used in economics and demography, e.g., to study
inequality in income and wealth. In Fig. 2, we show the Gini
index for 15 common cancers. The Gini index is derived by using
the heritability %> and life-time risk estimates form a recent
Nordic twin study®’. The red dashed line denotes the Gini index
of income in the USA, using data from the World Bank?’.
Interestingly, the plot reveals a major inequality in cancer risk for
the common cancers. For all specific cancers, the inequality in
genetic risk seems to be larger than the inequality in income in
the USA. We also studied the genetic risk of cancer overall, using
the heritability of acquiring any type of cancer. This heritability
estimate is lower than the individual cancers®’, which is expected
because a factor increasing the risk of a particular cancer does not
necessarily increase the risk of other cancers. Still, the Gini index
of acquiring any type of cancer was almost as large as the Gini
index for income in the USA.

We have displayed the relation between the Gini index and the
heritability (Fig. 3a), and the relation between the Gini index and
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Fig. 3 Gini indices, h? estimates and twin recurrence risks are not co-linear.
a The relation between Gini indices and heritability estimates are displayed
for 15 common cancers. b The relation between Gini indices and
monozygotic twin recurrence risks (Ay). The area of each circle is
proportional to the life-time risk of the correspondin cancer

the observed relative risk in monozygotic co-twins of affected
individuals (dy;) (Fig. 3b). The areas of the circles are proportional
to the life-time risk of the cancers. The three different measures of
genetic contribution are related, but not co-linear, indicating that
they capture non-overlapping information about the risk of
disease. In particular, for cancer sites with similar heritability, the
Gini index is relatively larger for the rarer sites.

Quantile ratios. Alternatively, we may study the inequality in
risk by using a quantile ratio. The population is partitioned into
subset according to quantiles of genetic risk, and we may estimate
the ratio of affected individuals in the highest risk partition
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Table 1 Summary measures of the genetic risk of 15 common cancers
Site Obtained from Mucci et al.2°

hz (%) envz (%) AR (%) )\zM GC;,Z Gcbeta RR20:20 RRinterv
Overall cancer 33.0 0.0 324 1.4 0.37 0.37 9 0.64
Head and neck 9.0 26.0 0.8 75 0.45 0.84 12 0.55
Stomach 22.0 6.0 11 6.2 0.64 0.81 66 0.34
Colon 15.0 16.0 29 3.8 0.48 0.71 16 0.51
Rectum and anus 14.0 10.0 1.9 35 0.49 0.68 17 0.50
Lung 18.0 24.0 3.2 55 0.52 0.80 22 0.48
Melanoma 58.0 0.0 1.2 16.3 0.90 0.93 69,946 0.05
Non-Melanoma 43.0 0.0 1.9 7.6 0.79 0.85 997 0.7
Breast 31.0 16.0 9.4 3.0 0.55 0.66 36 0.45
Corpus uteri 27.0 0.0 2.0 3.5 0.66 0.69 87 0.33
Ovary 39.0 0.0 1.6 5.4 0.78 0.79 610 0.19
Prostate 57.0 0.0 10.5 3.6 0.71 0.73 689 0.26
Testis 37.0 24.0 0.5 27.6 0.83 0.96 1339 0.3
Kidney 38.0 0.0 0.8 8.4 0.81 0.85 1049 0.15
Bladder, other urinary organs  30.0 0.0 2.2 45 0.68 0.75 120 0.30
Leukemia, other 57.0 0.0 0.6 253 0.92 0.95 181350 0.03
Summary measures of genetic cancer risk are displayed. Here, h? denotes heritability of liability estimates, and env? denotes the contribution of common environmental factors to the variance of liability.
AR denotes the absolute risk of cancer, and Ay, denotes the recurrence risk in monozygotic co-twins. The four leftmost columns are obtained from Mucci et al.2° GC ,2 denotes the Gini index derived
from the heritability method. GCy., denotes the Gini index derived from the beta distribution. RR,0.50 denotes the ratio of mean risks from the upper vs the lower 20 percentile. RRi v describes the
relative risk after an intervention in which those in the upper 20 percentile are manipulated to achieve the average risk in the lower 20 percentile

compared to the lowest risk partition. This metric is also
frequently used to compare incomes in economics, e.g., the 20:20
ratio (RRy0.59) which assess the 20% richest compared to the 20%
poorest of a population. Table 1 shows the RR;q.5o of genetic risk,
which highlight a substantial difference in risk across
subgroups; those in the highest 20 percentile carry substantially
more of the disease burden than those in the lowest 20 percentile.
In comparison, RRyg.p9 for income is ~5 in the UK and ~9 in
the USA%,

A hypothetical intervention. Related to quantile ratios, we may
estimate the effect of hypothetical interventions on particular risk
groups. Suppose, for example, that we were able to reduce the
genetic risk of each individual in the upper 20 percentile to the
average risk in the lowest 20 percentile. This question could be
relevant for public health professionals, because it suggests the
potential benefit of identifying and subsequently intervening on
high-risk populations.

We could calculate the relative risk of such interventions,
assuming that the environment is left unaltered. Indeed, this
relative risk is immediately obtained from the cumulative risk
distribution. Let y,, denote the 20 percentile of genetic risk and
let ygo denote the 80 percentile. Then

RRinterw = fgs(]yfy (}’)dy + fﬁﬂlyfy ()’)dy .
E(Y)

Relative risk estimates after such hypothetical interventions are
found in Table 1. Indeed, these risk estimates also suggest a major
contribution of genes to disease development; if we, e.g., were able
to reduce the risk of prostate cancer in the upper 20 percentile to
the average risk in the lower 20 percentile, we would reduce the
number of cancers by a proportion of 1 -0.26 =0.74.

Using different sources of heritability data. Heritability
data may not only be derived from twin studies. Genome-wide
association studies (GWAS) allows for the calculation of
heritability estimates without relying on family structures*3°,
These estimates account for the variability due to genetic variants
tagged by single-nucleotide polymorphisms (SNPs), usually with
a population frequency above 1-5%. Such array heritability

4

|8:1165

estimates are therefore considered to be lower bounds of the
overall heritability, but may yield important information about
the inequality in risk due to genetic variants associated with
common SNPs. Lu et al.>? estimated array heritability for a range
of cancers, highlighting that array estimates captures approxi-
mately half the heritability from older twin studies. We may
immediately apply our approaches to explore the inequality in
cancer risk due to genetic variants tagged by SNPs. This could
yield insight into, e.g., the benefit of targeting genetic variants
tagged by SNPs in future interventions. In Fig. 4, we display the
Gini indices derived from the array heritability estimates in Lu
et al?%, again highlighting the substantial inequailty in genetic
risk.

Alternative to the threshold model. Although frequently used,
the assumptions of the heritability of liability model are not
necessarily satisfied!. Considering the liability to be normally
distributed is convenient and may agree with the central limit
theorem, but testing this assumption is usually infeasible in
practice”?%, and it may not be robust if the genetic risk is
determined by few, rare genes'. When using twin data, we usually
assume no gene-environment interaction on the liability scale!,
and we consider monozygotic- and dizygotic twins to share the
same amount of environmental factors. Another issue is the
confidence intervals of heritability and common environmental
components, which are often wide even when hundreds of
thousands are included in the study?.

Until now we have based our results on the heritability of
liability assumptions. We may, however, suggest a different
approach that does not rely on the concept of heritability. We
achieve this by assuming that the risk due to both heritable
factors and common environment follows a parametric distribu-
tion. First, we let this distribution be the beta distribution, which
allows for a wide range of shapes of the risk distribution and is
bounded by 0 and 1. Importantly, in this model the risk
distribution is uniquely defined by the observed recurrence risk
(e.g., 4,,,) and the disease prevalence6. First, we use the beta model
to investigate the risk distribution due to the total effect of genes
and shared environment. That is, this measure will capture the
maximum inequality in risk due to genes and shared environ-
ment. Hence, we would generally assume that inequality
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Fig. 4 Gini indices derived from array heritability estimates. Gini indices
with 95% confidence intervals are calculated from array heritability
estimates derived from Lu et al.2% The black boxes are based on array
heritability removing loci with known association with the cancers. The red
dashed line marks the Gini index of income in the USA

measures from this approach, e.g., the Gini index, are larger in
magnitude than the heritability based estimates. Intuitively, the
differences should be relatively large if the shared environmental
component is substantial, and relatively small if the common
environmental component is minor. In Table 1, the Gini index
from the beta models (GCpet) are shown together with the Gini
index from the heritability model (GCy2). The Gini indices from
the beta model are generally larger than the estimates from the
heritability model. As expected, the discrepancy is larger for the
cancers with larger shared environmental components, which
may be obtained by twin data as the fraction of the variance on
the liability scale due to shared environment?® (env? in Table 1).
A plot similar to Fig. 2 including the beta Gini estimates is found
in Fig. 5. For the cancers that were studied in both Mucci et al.?
and Lu et al?%, we have also compared twin heritability, array
heritability and the estimates derived in this section (Fig. 6).

We may also use similar derivations for other distributions
than the beta distribution. In particular, a distribution equal to
fy(y) in Eq. (4) of the Methods section could be derived directly
by using estimates of 5; and the life-time disease risk. Then, we
replace h* by h2_, in Eq. (4), and we let 2, be a parameter that
determines the shape of fy(y). Indeed, we may interpret b2 as
the fraction of variance on the liability scale due to genes and
common environment.

Discussion

The contribution of heritable factors to major diseases is debated!*!®,
The antagonising views may arise due to ambiguous use of termi-
nology and misinterpretation of model assumptions®!8!%32, To gain
deeper insight into the importance of genetic factors in cancer
development, we have studied the absolute genetic risk distribution,
under explicitly defined models. Thereby we can use measures
of inequality that may be easier to understand than heritability itself,
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together with estimates from the alternative beta distribution (red). The red
dashed line marks the Gini index of income in the USA

e.g the Gini index and the 20:20 ratio. These measures may be
particularly desirable, because comparisons across scales can be
made. Indeed, these measures are widely used in economics and
demograph;r, and they have also been successfully applied in biology
previously™”.

Our results suggest that 15 common cancers show a major
inequality in the genetic susceptibility to disease. As a curious
comparison, we show that the inequality in cancer risk is larger
than the income inequality in the USA. We must emphasise,
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|_20

however, that our main results are based on the basic assump-
tions of the heritability estimates. In particular, we cannot
immediately extrapolate the results outside the study populations.

Nevertheless, the major inequalities in risk suggest that many
cancer cases are preventable in principle!®, Even though
preventative strategies are lacking today, our analysis therefore
suggests that undiscovered targets for interventions may exist, at
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least in theory. The information on risk inequality may be useful
for public health professionals and other decision makers, when
prioritising future prevention strategies and research projects. In
particular, being able to identify high-risk individuals, and target
these individuals for genetic or environmental interventions could
be cost-effective strategies.

Fundamentally, our results put the debated role of chance in
cancer development into perspective®343>: Irrespective of the
definition of chance and the role of randomness in cancer
development, we show that the genetic risk varies considerably
across individuals. This points to major genetic variability in
the individual risk of acquiring cancer. These findings do not
contradict the results by either Tomasetti et al.>*3¢ or Wu et al.!
Rather, Tomasetti et al.>* suggest that the cancer incidence at a
site is strongly correlated with the number of baseline stem cell
divisions at this site. Thereby they study heterogeneity between
sites. We rather study heterogeneity within a cancer site, and
suggest that environmental and genetic factors lead to major
differences between individuals. Despite the seemingly random
nature of stem cell mutations, there may be currently unknown
processes, which vary across individuals, that influence the risk
of particular cancers. Some individuals may be loaded with
considerably higher risk than others, due to genetic or common
environmental factors. We may denote these individuals as
“unlucky”. However, it is not necessarily sensible to assume that
they are unlucky due to fundamentally random events'®.

Methods

Deriving the distribution of absolute risk. We will show how the absolute
genetic risk distribution is derived from the liability threshold model. To do
this, we use the conventional assumptions of the liability model. Let the liability
L~N(u=0, c*=1) be the sum of several components, and let ®(z) denote the
cumulative standard normal distribution. An individual is affected by disease X
with life-time risk Pr(X=1)=1-gq if

L>®(g).

To obtain estimates of 42, it is usually assumed that L has a genetic component

Lg ~N(/4:0.o‘2 :hz)7

which is independent of the other components. We aim to find

Pr(X = 1ig) =y

We define Lg = L — Lg, which is the component of L not determined by genotype.
Usually, L and L are assumed to be independent, and therefore Ly ~ N(0, 1 — H).
Let Lg =tg. Then,

Llig : N(ig,1 = 7).

We are now able to express the probability of disease, given the genetic liability

8lic) =P(X = 1jic)
=P(L>® " (q)lic)
=P(Llic>®"'(q)) (1)

o[ 0)
Vi-n )

This relation has been graphically illustrated by Smith?' and a mathematical
expression was suggested by Mendell and Elston?. Due to the probit relation
between f; and the absolute risk in Eq. (1), the liability threshold model has also
been denoted a probit model?3.

We are interested in how y varies among individuals in the population. Hence,
we view Y =g(Lg) as a random variable and let g’l(Y) = L. Then

o) -0 (20 e )

g Y) =0 (V)V1-h +07'(q)

)

Simulating the distribution of Y. Equation (1) allows us to simulate the
distribution of Y for a particular disease. To do this, we simply draw a standard
Gaussian variable for each subject, which represents the genetic liability, and then
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transform this variable into an absolute risk. The procedure can be described more
formally by the following algorithm:
1. Obtain h? and the population life-time prevalence 1~ q of the disease,
e.g. from published data.
2. For each i in (1, ...
distribution

, 1), draw the individual liability fg; from a normal

Lgi~N(u=0,6" = b*)
3. For each i, calculate the genetic risk y; from Eq. (1)

5= q)(lc,i - ®7l(Q)>

V1-—h?
Derivation of the distribution of Y. We may also express the distribution of Y’
algebraically. The probability density of Y is expressed as

_ dg™'(y)
Fr0) = fio (' 0)) %
Y L ) dy (3)
=6 ) gy

where f;, denotes the distribution function of Lg ~ N(0, h?). Furthermore

ly-olg ’
£E0) = e e )

1 (e'w)?
=———xe

V2r/1 -
Finally we plug into Eq. (3) to find
V1-— h2

Vi

VITR (oo

= \/}7 e 2h2

By the definition of Y, we have that

E(Y) = B (P(X = 1)) = P(X =

_etor (07l0)?
A

)=

2
@) ()
i

2

1)=1—gq.

The variance of Y can be found numerically by solving

VAR(Y) = E(?) = B = [ 7RO - (-9 5)

These derivations allow us to study how the absolute risk due to genetic differences
is distributed in the population.

Theoretic derivation of the Gini index. We will present a formal definition of the
Gini index as a function of the Lorenz curve. Let fy and Fy be the probability
density function (pdf) and cumulative density function (cdf) of Y, respectively. The
Lorenz curve of the distribution of Y is defined as

1 X
- <x<l.
1) = 5 /0 fo(t)dt, 0<x<1
The Gini index of the distribution of Y is then defined as
1
Gy =2 / (Fy — L(Fy))dFy
Jo
1
=2 (B0) - L)
0

The last equality (the integral limits) follows since fy has support [0,1]. In general,
the Gini index of the distribution of ¥ may easily be found using numerical
integration.

For a Beta(a, p) distributed variable, the Gini index is explicitly given as

2B(2a,2f)

G eta — )
T ab(a,p)

where B is the beta function®’.

Risk due to heritable factors and shared family environment. We assume that
the risk of a particular cancer varies continuously across individuals in the
population. More precisely, let X; be a binary variable taking value 1 if a subject is
affected and 0 if a subject is unaffected. The probability of developing cancer in
individual 4, p; = P(X; = 1), is drawn from a distribution f(p;) with support [0,1] and
mean p =E(p;). Let f{p;) follow a parametric beta distribution, which allows for a
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range of shapes. To completely specify f(p;), we must define E(p;) and VAR(p;). We
find E(p;) using published data on the life-time incidence of the disease Ijif.. To
derive an estimate of VAR(p;), we make use of studies on monozygotic (MZ) twins.
Following the terminology of Risch([3], let 4, denote the risk ratio of a relative of an
affected individual. We assume that p; is equal in a pair of MZ twins. We interpret
i as the risk of disease due to heritable factors and shared family environment.
Then we find Ay, the risk ratio for disease given a co- MZ twin is affected

P, = 11X, = 1)
PX, = 1)
P(X, = 1,X, = 1)
T PX = ) (X1 =1)
_ P = =1)
P(X,- = 1)2
_E(@)
E(p:)*’
VAR(pi)
E(py)?

A=

, since P(X; =

sinceP(X; = 1) =P(X; = 1)

=1+

Using estimates of Ay from MZ twin studies, we can find

= (A — DE(p;)?

~ (i~ 1)

VAR(p)) )

Hence, under these assumptions we can completely specify the distribution of risk
in the population, f(p;), if estimates of the cumulative incidence (I;) and the twin
recurrence risk (4y) are available. We may interpret this as follows: Each subject
obtains a risk (probability of developing disease) due to genetic factors and com-
mon environment. Then, this probability, combined with unmeasured individual
factors and chance, determines whether the subject gets the disease.

Indeed, we can use exactly the same approach to specify the probit liability
distribution in the main text. Then, we use Expression (4) as a parameterisation of
the probit liability distribution, with parameters E(y) =1 - g and hZ,,. Here, we
have replaced h? by h2,, in Eq. (5), because it no longer denotes herltablhty Rather,
2, is the fraction of the trait variance on the hablhty scale due to both heritable
factors and common environment. Mathematically, hZ , is a shape parameter of the
the probit liability distribution. Then, we combine Expressions (3) and (5) to

(4m — VE(p;)?
(= 1)(1 — g~ / PRy +(1— =0
/ \/_*‘;‘lgr; ( . nﬂ“ o lvq))z } (0"201)2

env

—E(Y?) +E(Y)’=0

(Am — 1)( dy+(1-¢g)*=0.

(3)

Indeed, Expression (8) can be solved numerically to find h2

Numeric results. To derive our numeric estimates, we have used the results from
Tables 2 and 3 in Mucci et al.>? and Table 2 in Lu et al.?? Confidence intervals were
obtain by inserting the confidence bounds reported in Mucci et al.?’ and Lu et al.?®
into our expressions for genetic risk. For the beta distribution, we used the con-
fidence intervals in Table 2 in Mucci et al.2? for recurrence risks in monozygotic
twins. All our numeric results were obtained by two independent approaches,
numeric integration of analytic expressions and simulations. Both approaches
yielded the same results.

Code availability. The computer code for all the calculations was written in R
version 3.3.2 using RStudio version 1.0.136. This computer code is available in
Supplementary Data 1.

Data availability. We have solely used data that are readily available in previously
published articles?®2°,
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