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Identification of MST1 as a 
potential early detection biomarker 
for colorectal cancer through a 
proteomic approach
Jiekai Yu1, Xiaohui Zhai1,2, Xiaofen Li1, Chenhan Zhong1, Cheng Guo1, Fuquan Yang4, Ying 
Yuan3 & Shu Zheng1,5

Colorectal cancer (CRC) is a common malignant neoplasm worldwide. It is important to identify new 
biomarkers for the early detection of CRC. In this study, magnetic beads and the Matrix-assisted 
laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) platform were used 
to analyse CRC and healthy control (HC) serum samples. The CRC diagnosis pattern was established 
to have a specificity of 94.7% and sensitivity of 92.3% in a blind test. The candidate biomarker serine/
threonine kinase 4 (STK4, also known as MST1) was identified by Tandem mass spectrometry (MS/
MS) and verified with western blotting and enzyme-linked immunosorbent assay (ELISA). The results 
indicated that there was a higher concentration of MST1 in HC subjects than stage I CRC patients for 
the early detection of CRC and a lower concentration in stage IV patients than in other CRC patients. 
The sensitivity and specificity of MST1 combined with carcinoembryonic antigen (CEA) and faecal occult 
blood test (FOBT) in diagnosis of colorectal cancer were 92.3% and 100%, respectively. Additionally, 
low MST1 expression was associated with the poor prognosis. These results illustrate that MST1 is a 
potential biomarker for early detection, prognosis and prediction of distant metastasis of CRC.

Colorectal cancer (CRC) is the third most common cancer, and it is associated with the second highest malig-
nancy mortality worldwide. Each year, approximately 120,000 CRC cases are newly identified, and approximately 
50,000 CRC patients die. The incidence of CRC is increasing each year, and the age of CRC patients is decreas-
ing1,2. Therefore, CRC has become a major public health issue. Although there has been great progress in diag-
nosis and therapy, the therapeutic effectiveness requires improvement, and the five-year survival rate is only 
approximately fifty percent3. The prognosis of CRC at an early stage is much better, and its five-year survival 
rate can reach ninety to one hundred percent4,5. Effective detection of early CRC patients is difficult because 
they rarely experience uncomfortable symptoms. If the CRC could be detected in early stages, the overall treat-
ment effectiveness and the overall survival rate would be improved6. The faecal occult blood test (FOBT)7 and 
serum diagnostic biomarkers such as carcinoembryonic antigen (CEA)8 and carbohydrate antigen 19-9 (CA19-
9)9 have been used for CRC diagnosis, but the accuracy of the FOBT and these biomarkers requires improvement. 
Alternatively, colonoscopy can significantly improve the diagnosis of CRC. However, this diagnostic method has 
its shortcomings, such as cost, risk, and inconvenience10. In all, it is vital to discovery new CRC biomarkers with 
high specificity and sensitivity.

Proteomics technology has been used for the detection and validation of protein biomarkers in many kinds of 
cancer diseases, such as gastric cancer, ovarian cancer, lung cancer, pancreatic cancer, colorectal cancer and breast 
cancer11–16. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is 
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a high-throughput technique that can analyse complex biological specimens and detect multiple protein changes 
simultaneously with high sensitivity and specificity17–20. Combination of magnetic beads and MALDI-TOF-MS 
is a new method and platform that can be used to identify new cancer biomarkers and other types of disease21–25. 
Therefore, this method is suitable for detection of serum protein biomarkers of CRC.

MALDI-TOF-MS, like Surface-enhanced laser desorption/ionization (SELDI-TOF-MS), can provide only the 
molecular weight of biomarkers, thus restricting the exploration for clinical biomarkers26. Therefore, separation, 
purification and verification of the candidate biomarkers are also necessary for clinical application. Some pro-
tein biomarkers found by SELDI-TOF-MS have been identified by many different methods. In the separation 
process, other high-abundance proteins usually mask target proteins with low abundance. The rapid acetonitrile 
(ACN)-based extraction method can be applied to remove high-abundant proteins and enrich low-abundant 
target proteins from serum27. Separation and purification of a protein from complex biological specimens is a 
complicated procedure. Solid phase extraction (SPE), high-performance liquid chromatography (HPLC) and 
tricine-SDS-PAGE are the main technologies used to separate and purify low-abundance proteins from serum, 
urine or tissue lysate28,29. After the identification of the biomarker, verification is used to verify the different 
expression of the proteins through immune methods or other quantitative approaches. Owing to the difficulty 
of designing an antibody for a peptide, the western blotting method is usually adopted to verify the protein con-
taining the peptide.

In our previous research, we have adopted MALDI-TOF-MS for the screening of cancer biomarkers, and some 
biomarkers of oesophageal cancer30, papillary thyroid cancer31, and colorectal cancer32 have been successfully 
discovered. In this paper, we carried out further research on the identification of CRC biomarkers and performed 
validation with western blotting and enzyme-linked immunosorbent assay (ELISA).

Results
Biomarkers and the diagnostic pattern for CRC and healthy control.  After filtering the noise 
and clustering, one hundred and seventy-three peak clusters from 1 kDa to 100 kDa were ranked by p values 
from nonparametric tests. After Wilcoxon rank-sum tests tested the relative signal strength, the Support Vector 
Machine (SVM) approach was used to identify the combination pattern with the maximum accuracy. Sixty-three 
healthy control (HC) and 89 CRC samples were selected to form the training test group. The remaining 65 serum 
samples, as a blind test set, were analysed on the second day to test the SVM pattern.

The top-scored 10 peaks (p < 10−5) were selected, and the area under the curve (AUC) of these markers were 
calculated (AUC > 0.78). Then, changes in the 10 markers were evaluated in CRC and HC samples. Markers 1781 
Da, 1868 Da and 1694 Da were expressed at higher levels in the CRC than in the HC samples. Otherwise, markers 
2084 Da, 1947 Da, 6856 Da, 1951 Da, 2886 Da, 2073 Da and 4478 Da were expressed at higher levels in the HC 
than in the CRC samples.

These peaks from the training set samples were selected, randomly combined, and input into the SVM pattern. 
The accuracy of all patterns was calculated, and the diagnostic pattern that achieved the highest Youden’s index 
was selected as the final pattern to distinguish CRC and HC samples. The pattern comprised 7 potential bio-
markers with an m/z of 1781 Da, 1868 Da, 2084 Da, 1694 Da, 2886 Da, 2073 Da, and 4478 Da (Table 1). The SVM 
pattern composed of 7 peaks had a specificity of 99% and a sensitivity of 98%, as evaluated by a leave-one-out 
cross-validation. The remaining 65 serum samples, as a blind test set, were analysed on the second day to test 
the above SVM pattern. The sensitivity and specificity of the pattern blind test were 93% and 95%, respectively. 
(Table 2 and Fig. 1a,b).

Biomarker 
(m/z) p-value

Mean in HC 
for training

Mean in CRC 
for training

Mean in HC 
for testing

Mean in CRC 
for testing

1781 9.45E-23 219.53 2314.12 141.80 2249.97

1868 1.37E-21 374.89 3534.34 208.64 2972.30

2084 4.09E-20 9603.80 1845.85 9406.46 1836.56

1694 4.95E-18 39.83 706.14 22.86 692.00

2886 1.24E-15 2775.09 1671.69 2544.17 1774.45

2073 4.57E-14 916.50 259.62 1104.23 244.11

4478 1.27E-13 4152.99 1557.13 3824.15 1390.04

Table 1.  Protein peaks selected for the pattern to compare CRC patients and HC samples.

Groups Total samples

Prediction Results Accuracy (%)

Correct cases Misjudged cases Sensitivity (%) Specificity (%)

Training
HC 63 62 1 98.4 /

CRC 89 88 1 / 98.9

Blind Test
HC 26 24 2 92.3 /

CRC 38 36 2 / 94.7

Table 2.  Prediction results from the training and blind test cases using the established diagnosis pattern.



www.nature.com/scientificreports/

3SCIENtIfIC Reports | 7: 14265  | DOI:10.1038/s41598-017-14539-x

Identification of candidate biomarkers.  The 2084 Da biomarkers that were expressed in low levels in 
CRC (Fig. 1c,d) in the pattern were separated and purified by HPLC (Fig. 2a).

The peptides were digested using trypsin and identified by MS/MS. The MS/MS data were searched using 
the BioWorks 3.3.1 software (Thermo, USA). Two peptide fragments with high confidence were found as 
K.GLEYLHFMR and R.AIFMIPTNPPPTFR. These two peptide fragments were matched with serine/threonine 
kinase 4 (STK4, also known as MST1; Fig. 2b,c and Table 3). In our premiere studies using SELDI-TOF-MS, 
MST1 was also determined to be expressed at low levels in the sera of CRC patients with an MZ of 3940 Da32.

Validation of MST1 expression by western blotting.  To confirm the identity of the MST1 protein, 
an immunoassay was performed using western blotting and ELISA to detect the expression of MST1 in serum. 
Forty serum samples including 20 CRC patients and 20 healthy control individuals were selected for the western 
blotting. The gray value analysis intensity of MST1 expression in samples from different PVDF membranes was 
normalized to the same quality control (QC, pooled by all 40 samples). The normalized western blotting intensity 
of MST1 in the CRC patients (468.47 ± 390.35) were significantly lower (p = 7.79E-08) than in the healthy con-
trols (1562.25 ± 594.96) (Fig. 3a,b). These results indicated that the expression levels of MST1 in the HC sera were 
higher than those in the CRC sera, which were in accord with the results from the MALDI-TOF-MS.

Validation of MST1 expression by ELISA.  Another 67 serum samples were selected, including 16 from 
healthy controls and 51 from colorectal cancer patients. These samples were analysed using an MST1 ELISA 
Kit to validate the intensity of MST1 in the serum samples. The CEA concentrations were also measured. The 
mean concentration of MST1 detected in the healthy controls (959.65 ± 407.07 ng/ml) was significantly higher 
(p = 1.87E-06) than that in the CRC patients (242.80 ± 261.99 ng/ml) and significantly higher (p = 0.00016) than 
that in the stage I CRC patients (343.97 ± 277.76 ng/ml), thus indicating its potential for use in the early diagnosis 
of CRC (Fig. 3c). In addition, the levels of MST1 were lower (p = 0.026) in stage IV CRC patients (132.49 ± 138.36 
ng/ml), which exhibit distant metastasis, than the mean value in stage I, II and III CRC patients (266.44 ± 275.82 
ng/ml) (Fig. 3c).

Figure 1.  Biomarker SVM patterns. (a) Scatter diagram of the cross-validation results from the training 
set. (b) Scatter diagram of the results from the blind test set (Group 0 and 1 represent the HC subjects and 
CRC patients). (c) MST1 (2084 Da) expressed at low levels in the CRC group (group 1) in the training sets by 
MALDI-TOF-MS. (d) MST1 (2084 Da) expressed at low levels in the group CRC (group 1) in the test sets by 
MALDI-TOF-MS.
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Figure 2.  Purification and identification of MST1 (2084 Da). (a) Purification and detection data of the 2084 Da 
target biomarkers by MALDI-TOF-MS. (b) MS/MS spectra of K.GLEYLHFMR.K in the target biomarkers. (c) 
MS/MS spectra of R.AIFMIPTNPPPTFR in the target biomarkers.

Peptides identified p sf

K.GLEYLHFMR 1.8E-004 0.81

R.AIFMIPTNPPPTFR 2.5E-005 0.85

Table 3.  Structure data of the target protein. The value of p indicates the probability of protein. The score of sf 
indicated the quality of match.
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Evaluation of the diagnostic value of MST1.  According to the results, the expression levels of MST1 
in the healthy control sera were higher than those in the colorectal cancer sera. Moreover, the concentration of 
MST1 decreased as the CRC patients advanced from stage I to stage IV. This result may indicate that MST1 is not 
only a biomarker for CRC detection but also a biomarker associated with the malignancy grade of CRC.

To evaluate the diagnostic value of MST1, a receiver operating characteristic (ROC) curve analysis was per-
formed. The AUC for serum MST1 associated with a diagnosis of CRC was 0.934 (Fig. 4a). On the basis of the 
ROC curves, a serum MST1 concentration of 398.50 µg/ml was selected as the optimal cutoff value for differenti-
ating CRC patients and controls, with a sensitivity of 82.4% and specificity of 93.8%, respectively.

The preoperative CEA value and FOBT were also detected in these samples. The AUC of CEA was 0.773 in the 
ROC curve analysis (Fig. 4b). The sensitivity was 37.3%, and the specificity was 93.8% with a cutoff value of 5 µg/l. 
And for FOBT, the sensitivity and specificity was 64.1% and 100%.

The diagnosis of MST1 Combined with CEA and FOBT in colorectal cancer was analysed by logistic regres-
sion and ROC curve. The sensitivity and specificity of the combination were 92.3% and 100%, respectively. The 
AUC of Combination is 0.995 (Fig. 4e). To evaluate the early diagnosis of MST1 in CRC, serum samples from 
25 early stage CRC (I, II stage) patients were compared with HC samples. The AUC of MST1 was 0.925, and the 
AUC of CEA was 0.7 for early stage CRC detection (Fig. 4c,d). The sensitivity for MST1 serum levels for CRC 
early detection was 80.0% and specificity was 93.8%; in contrast, the sensitivity of CEA was 32.0% and specificity 
was 93.8% (Table 4).

MST1 expression in samples of prognosis and treatment of CRC.  Gene expression was analyzed 
using Affymetrix U133plus2.0 microarrays on mRNA samples from an additional cohort of 46 fresh CRC tissues 
before surgery, including 3 of stage I, 15 of stage II, 25 of stage III and 3 of stage IV, with a median follow-up 
period of 70.5 months14. Patient follow-up was conducted by a combination of phone calls and letters. Overall 
survival was defined as the time from completion of surgery to final follow-up date or death of the patient. MST1 
mRNA expression level was evaluated using 7 microarray probe sets annotated to STK4. ROC curves were estab-
lished for determining cutoff values of high MST1 expression group (n = 21) and low MST1 expression group 
(n = 25) for prediction of CRC prognosis (alive or dead) using Youden’s index. The Kaplan–Meier method with 
log-rank test was used to determine the cumulative probability of overall survival. Kaplan–Meier survival analysis 
indicated that low MST1 expression was associated with shortened survival (p = 0.0008; Fig. 4f). Furthermore, 
among the 46 CRC patients, 16 cancer deaths occurred within 5 years, and 25 patients lived for over five years 
after diagnosis. The group of cancer death within 5 years showed significantly lower MST1 expression than the 
group lived over five years after diagnosis (p = 0.0027).

The sera of 23 CRC patients before treatment (before chemotherapy or before surgery) and after treatment 
(one month after chemotherapy or surgery) were measured by ELISA (Table S1). The mean MST1 values In 23 
CRC patients before and after treatment were 290.97 ± 164.25 and 365.15 ± 301.99, respectively. There was no sig-
nificant difference in the level of MST1 in CRC patients before and after treatment (p = 0.098; Fig. S1). However, 
the values of MST1 were elevated in 65.22% (15/23) of the CRC samples after treatment.

Thirty-six other tumor patients’ sera (12 lung cancers, 12 gastric cancers, 12 esophageal cancers) were meas-
ured by ELISA to have the MST1 value of 246.20 ± 70.05, which have no difference comparing to colorectal can-
cer patients (p = 0.11; Table S1; Fig. S1).

Figure 3.  Verification results of the MST1 protein. (a) Representative western blotting image of MST1 in the 
CRC and HC sera in one PVDF membrane. Full-length blots are presented in Supplementary Figure S2. (b) 
Scatterplot of the normalized western blotting intensity of MST1 in 20 CRC patients and 20 HCs. (c) Scatterplot 
of the MST1 ELISA concentrations in the HC samples and the CRC samples at different stages.

http://S1
http://S1
http://S1
http://S1
http://S2
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Discussion
Early diagnosis is crucial for improving the survival rate and the treatment effects of CRC patients. Several cancer 
biomarkers such as CEA and CA19-9 are used for the diagnosis, screening and treatment of CRC because of their 
accessibility and the minimal pain caused by serum assays. However, these tumor markers are relatively limited 
due to inadequate sensitivity or specificity. Discovering new biomarkers for diagnosis of CRC is still necessary.

Figure 4.  ROC curve of MST1 and CEA. (a) ROC curve for serum MST1 in CRC and HC. (b) ROC curve for 
serum CEA in CRC and HC. (c) ROC curve for serum MST1 in early stage CRC (stage I and II) and HC. (d) 
ROC curve for serum CEA in early stage CRC (stage I and II) and HC. (e) ROC curve for MST1 Combined with 
CEA and FOBT. (f) Kaplan–Meier survival analysis for MST1.
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Proteomic approaches are widely used in the discovery of cancer biomarkers. Two-dimensional polyacryla-
mide gel electrophoresis (2D-PAGE) can identify protein expression in serum, saliva, or tissue specimens33. 
MALDI-TOF-MS technology in proteomic has the advantages of being rapid, having a high sensitivity, and allow-
ing for high-throughput analysis34,35.

In our Zhejiang University Proteomics Data Analysis System (ZJUPDAS) analysis, denoising with the 
Undecimated Discrete Wavelet Transform (UDWT) is likely to identify most of the true, reproducible peaks. In 
addition, SVM can resolve problems such as the generalization of the medium and small samples in the pattern 
recognition and pattern selection and over-fitting. Genetic algorithm (GA) can find the local optimal solution 
for the combination of multiple peaks. In addition, a leave-one-out cross- validation and independent test sets 
were used to obtain a robust proposed diagnostical model. These steps in the ZJUPDAS analysis ensure that the 
selection of biomarkers is not influenced by systematic bias36,37.

In our study, MALDI-TOF-MS and magnetic beads were used to analyse 217 serum samples, including 127 
CRC and 90 HC samples. The diagnosis pattern consisting of seven biomarkers was able to discriminate CRC 
from HC samples with a specificity of 99% and sensitivity of 98%. In a blind test, the specificity reached 95%, and 
the sensitivity reached 93%. These results indicated that this diagnostic pattern could successfully diagnose CRC 
with high specificity and sensitivity. Furthermore, the 2084 Da peak in the diagnostic pattern was separated by 
HPLC and identified by liquid chromatography-Tandem mass spectrometry (LC-MS/MS) as the protein MST1. 
In our previous study, we have used SELDI-TOF-MS to identify a peptide that has low expression in colorectal 
cancer and a molecular weight of 3940 Da, which is also a part of the MST1 protein32. The other 6 peaks still 
require identification in our future studies.

Cleavage of Mst1 by caspase-3 can phosphorylate H2B at S14, and the phosphorylation is related to apop-
totic chromatin38. MST1/2 is an important suppressor in the Hippo pathway39. Activated Mst1/2 phosphorylates 
Yes-associated protein (Yap) and decreases the abundance of Yap40. The Hippo signalling pathway is related to 
cell death, cell proliferation and tissue growth and is associated with various human cancers, including colorectal 
cancers41,42. Mst1/2 protein kinases restrain intestinal stem cell proliferation and colonic tumourigenesis by inhib-
iting the overabundance of Yap43. Mst1/2 may suppress tumour initiation44. Although up-regulation of MST1 has 
been observed in some cancers45,46, MST1 has been reported to be down-regulated in gastric cancer and exert a 
tumour suppressive function47. Our results also show MST1 is down-regulated in colorectal cancer of the gastro-
intestinal tract.

The cutoff value of 398.50 µg/ml for MST1 in serum differentiated CRC patients and controls with 82.4% 
sensitivity and 93.8% specificity. The accuracy was significantly better than that for CEA. And the sensitivity 
and specificity of MST1 combined with CEA and FOBT in diagnosis of colorectal cancer were 92.3% and 100%, 
respectively.

In summary, a diagnostic pattern was established and was able to distinguish CRC patients from HC sub-
jects with high specificity and sensitivity. MST1 was identified and indicated to be an early detection protein 
biomarker, even for stage I CRC, and a predictive marker for distant metastasis of CRC. MST1 expression was 
down-regulated in CRC patients compared with HC subjects. Additionally, low MST1 mRNA expression was 
associated with poor prognosis. These results illustrated that MST1 might be an early detection protein biomarker 
for CRC and a predictive marker for distant metastasis and prognosis of CRC. However, our results also indi-
cated that down-regulated expression of MST1 in many cancers, including lung cancer, gastric cancer, esophageal 
cancer and CRC. Therefore, MST1 may be not only a biomarker for CRC. In order to determine potential of our 
findings for clinical applications in colorectal cancer, further study with a larger sample size is needed.

Materials and Methods
Patients.  This study was approved by the Institutional Review Board of Medical Research of The Second 
Affiliated Hospital, Zhejiang University School of Medicine, and all experiments were carried out in accordance 
with the approved guidelines. A total of 324 serum samples were collected from CRC patients (n = 198) and 
healthy individuals (n = 126) who had provided informed consent, at the Second Affiliated Hospital, Zhejiang 
University School of Medicine (Table 5). Sera from CRC patients were collected before the patients were treated 
with a surgical operation and chemotherapy, and the CRC diagnosis was confirmed by pathological diagnosis. 
These CRC patients included 166 with an adenocarcinoma, 15 with a mucinous adenocarcinoma, 3 with a sig-
net-ring cell carcinoma, and 6 with a papillary adenoma and 8 with a tubular adenoma. The clinical stage of the 
CRC patients was 38 stage I, 59 stage II, and 71 stage III/IV. The average age of the patients was 61.0 y, and the 
healthy controls were age- and sex- matched. Within these samples, 127 CRC serum samples and 90 healthy con-
trol serum samples were analysed with MALDI-TOF-MS to identify new biomarkers. The remaining 107 samples 
were selected to verify the biomarkers with western blotting and ELISA. The preoperative sera were collected in 
the morning with limosis. The Sera were separated and stored at frozen −80 °C.

AUC (95% CI) Sensitivity (%) Specificity (%)

MST1 in CRC vs HC 0.934 (0.871–0.997) 82.4 93.8

CEA in CRC vs HC 0.773 (0.647–0.899) 37.3 93.8

MST1 in early stage CRC vs HC 0.925 (0.842–1.000) 80.0 93.8

CEA in early stage CRC vs HC 0.700 (0.534–0.866) 32.0 93.8

Table 4.  Performance of MST1 and CEA in the diagnosis of CRC. CI, coefficient interval.
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Magnetic beads-based sample preparation for MALDI-TOF-MS.  We used MALDI-TOF-MS and 
magnetic beads to screen the serum samples to identify new biomarkers for colorectal cancer. The Sera were cen-
trifuged at 10,000 g for 3 min at 4 °C after thawed on ice. Weak cation-exchange (WCX) magnetic beads (Bruker 
Daltonics, USA) were selected for the protein separation. According to the manufacturer’s protocol, first, 5 μL of 
serum was added to the mixture of 10 μL of beads slurry and 10 μL of binding solution in a 0.2-mL polypropylene 
tube. After incubation for 5 min, the supernatant was discarded. Then, the magnetic beads were washed with 
100 μl wash buffer three times. Finally, the proteins were eluted from the magnetic beads with 5 μL elution buffer 
and mixed with 5 μL stable buffer. Finally, 1 μL protein mixture was deposited on a Micro SCOUT Plate (MSP). 
After natural drying, 1 μL CHCA matrix (3 mg/ml cyano-4-hydroxycinnamic acid, 50% ACN, 20% TFA) was 
added to each spot for detection.

Data processing and analysis.  Spectra were acquired for all samples in parallel using MALDI-TOF-MS 
(Microflex; Bruker Daltonics, USA) with the following settings: ion source 1, 20 kV; ion source 2, 18.4 kV; lens 
voltage 7.5 kV; and pulsed ion extraction, 120 ns. Irradiation with a nitrogen laser operated at 25 Hz and 30% laser 
power was used to achieve ionization-. Mass spectra were detected in linear positive mode, and protein peaks in 
the mass range 900–10,500 Da were recorded with FlexAnalysis acquisition software (Bruker Daltonics, USA). 
The initial data were exported as mzXML files using CompassXport software (Bruker Daltonics, USA).

MzXML files were imported and analysed in the ZJUPDAS, which was designed by Yu JK. ZJUPDAS and 
detailed protocols have been described in our previous report48. Aligned spectra were digitally processed by wave-
let denoising and baseline correction using the wavelet transform method. Wilcoxon rank-sum tests were used to 
compare the mean normalized intensities between the CRC and HC samples. The biomarkers with p < 0.01 were 
selected. These markers were combined randomly to establish patterns by using GA and evaluated with SVM. 
The SVM classifier with a radial based function kernel was used to discriminate among the different groups. A 
leave-one-out cross-validation approach was applied to estimate the accuracy of the classifier. The SVM pattern 
with the local optimal accuracy solution was selected to be the final pattern, and the markers in this SVM pattern 
were selected as the set of potential biomarkers.

Purification and Identification of candidate protein biomarker.  The candidate protein in serum was 
purified using HPLC. The fraction with the candidate protein was collected after analysed by MALDI-TOF-MS, 
and digested with Trypsin. The protein was identified by MS/MS. The detailed methods of purification and iden-
tification were described in our previous study32.

Verification of biomarker using western blotting and ELISA.  The serum samples from 20 CRC 
patients and 20 HC samples were collected and subjected to western blotting analysis (Details in Table 1). In each 
well, 1 μl of serum was loaded and was run in 10% tris-glycine SDS buffer for 2 hours at 120 V. Four CRC samples, 
4 healthy controls and a standard quality control were added onto one gel. The proteins were transferred to a 
PVDF membrane in transfer buffer at 250 mA for 2 hours. After blocking of the membrane with 0.5% skim milk 
in TBST for 1 hour, the membrane was incubated with the MST1 rabbit monoclonal antibody diluted 1:5000 at 
4 °C overnight and then washed 3 times for 15 min each in TBST. The second HRP-coupled anti-rabbit antibody 
diluted 1:10,000 was added to the membrane and incubated for 1 hour at room temperature. After the membrane 
was washed 3 times for 15 min each in TBST, the detection of the proteins was carried out by application of ECL 
solution to the membrane and artificial exposure.

Another 67 serum samples including 16 healthy control and 51 colorectal cancer samples (10 from stage I, 
16 from stage II, 15 from stage III, 10 from stage IV) were analysed using an MST1 ELISA Kit (Abcam, England) 
according to the manufacturer’s instructions. Standard MST1 dilutions (0, 8.32, 24.69, 74.07, 222.2, 666.7 and 
2,000 pg/ml) were prepared, and triplicate 100 μl samples at each concentration were added to a 96-well plate. 
The serum was diluted 1:400 with solution A from the MST1 ELISA Kit, and triplicate 100-μl serum samples 
were added to the same plate. After incubation at room temperature for 2.5 hours, the supernatant in each well 
was removed. After the plates were washed four times, the biotinylated MST1 detection antibody (100 μl) was 
added to each well and incubated at room temperature for 45 min with gentle shaking. After washing, the TMB 
One-Step Substrate Reagent was added for visualization, and the samples were incubated at room temperature 
for 30 min. After addition of the stop solution, the optical density was immediately measured at 450 nm, and a 
standard curve was generated. The concentration of each sample was calculated according to the standard curve.

Samples MALDI-TOF-MS Western blotting ELISA

Healthy Control

Total Number 90 20 16

Male/Female 48/42 11/9 7/9

Average age, y 61.3 59.6 62.4

Colorectal Cancer

Total Number 127 20 51

Male/Female 70/57 10/10 28/23

Average age, y 60.5 62 61.7

Stage (I/II/III/IV) 25/36/48/18 3/7/8/2 10/16/15/10

Table 5.  Serum samples information.
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Statistical analysis.  SPSS Statistics 20.0 (IBM, Armonk, NY, USA) was used to perform the statistical anal-
ysis. Statistical tests were two sided, and p < 0.05 was considered statistically significant. Chi-square tests were 
applied to compare categorical variables. Two-tailed Student’s t-tests and one-way ANOVA were used to compare 
quantitative data.

References
	 1.	 Yee, Y. K. et al. Epidemiology of colorectal cancer inAsia. J. Gastroen hepatol. 24, 1810–1816 (2009).
	 2.	 Siegel, R., Desantis, C. & Jemal, A. Colorectal cancer statistics, 2014. CA Cancer J Clin. 64, 104–117 (2014).
	 3.	 Yu, S. et al. Cancer Prevention Research in China. Cancer Prev Res. 8, 662–674 (2015).
	 4.	 Gonzalez, M. et al. Risk Factors for Survival after Lung Metastasectomy in Colorectal Cancer Patients: A Systematic Review and 

Meta-Analysis. Ann Surg Oncol. 20, 572–579 (2013).
	 5.	 Jayne, D. G. et al. Five-year follow-up of the Medical Research Council CLASICC trial of laparoscopically assisted versus open 

surgery for colorectal cancer. Brit j. Surg. 97, 1638–1645 (2010).
	 6.	 Jemal, A. R. S. E. W. Cancer Statistics, 2009. Ca-cancer j. Clin. 4, 225–249 (2009).
	 7.	 Lisi, D., Hassan, C. C. & Crespi, M. Participation in colorectal cancer screening with FOBT and colonoscopy: An Italian, multicentre, 

randomized population study. Digest Liver Dis. 42, 371–376 (2010).
	 8.	 Raeisossadati, R. et al. Quantitative analysis of TEM-8 and CEA tumor markers indicating free tumor cells in the peripheral blood 

of colorectal cancer patients. Int j. Colorectal dis. 26, 1265–1270 (2011).
	 9.	 Zhong, W. et al. Association of serum levels of CEA, CA199, CA125, CYFRA21-1 and CA72-4 and disease characteristics in 

colorectal cancer. Pathol Oncol Res. 21, 83–95 (2015).
	10.	 Atkin, W. S. et al. Once-only flexible sigmoidoscopy screening in prevention of colorectal cancer: a multicentre randomised 

controlled trial. Lancet. 375, 1624–1633 (2010).
	11.	 Fabian, C. J. et al. Modulation of Breast Cancer Risk Biomarkers by High-Dose Omega-3 Fatty Acids: Phase II Pilot Study in 

Premenopausal Women. Cancer Prev Res. 8, 912–921 (2015).
	12.	 Hassanein, M. et al. The State of Molecular Biomarkers for the Early Detection of Lung Cancer. Cancer Prev Res. 5, 992–1006 (2012).
	13.	 Duffy, M. J. et al. Tumor markers in colorectal cancer, gastric cancer and gastrointestinal stromal cancers: European group on tumor 

markers 2014 guidelines update. Int j. Cancer. 134, 2513–2522 (2014).
	14.	 Yu, J. et al. High-throughput proteomics integrated with gene microarray for discovery of colorectal cancer potential biomarkers. 

Oncotarget. 7, 75279–75292 (2016).
	15.	 Wang, X. et al. Identification of specific biomarkers for gastric adenocarcinoma by ITRAQ proteomic approach. Sci Rep. 6, 38871 

(2016).
	16.	 Saraswat, M. et al. Comparative proteomic profiling of the serum differentiates pancreatic cancer from chronic pancreatitis. Cancer 

Med. 6, 1738–1751 (2017).
	17.	 Hong, Y., Wang, X., Shen, D. & Zeng, S. Discrimination analysis of mass spectrometry proteomics for ovarian cancer detection. Acta 

Pharmacol Sin. 29, 1240–1246 (2008).
	18.	 Liu, C. et al. MALDI-TOF MS Combined With Magnetic Beads for Detecting Serum Protein Biomarkers and Establishment of 

Boosting Decision Tree Model for Diagnosis of Hepatocellular Carcinoma. Am j. Clin pathol. 134, 235–241 (2010).
	19.	 Swiatly, A. et al. MALDI-TOF-MS analysis in discovery and identification of serum proteomic patterns of ovarian cancer. Bmc 

Cancer. 17, 472 (2017).
	20.	 Cho, Y. T. et al. Biomarker Characterization by MALDI-TOF/MS. Adv Clin Chem. 69, 209–254 (2015).
	21.	 Jiang, W. P., Wang, Z., Xu, L. X., Peng, X. & Chen, F. Diagnostic model of saliva peptide finger print analysis of oral squamous cell 

carcinoma patients using weak cation exchange magnetic beads. Biosci Rep. 35 (2015).
	22.	 Li, B. et al. Application Value of Mass Spectrometry in the Differentiation of Benign and Malignant Liver Tumors. Med Sci Monit. 

23, 1636–1644 (2017).
	23.	 Liu, Y. et al. Increased concentrations of apo A-I and apo A-II fragments in the serum of patients with hepatocellular carcinoma by 

magnetic beads-assisted MALDI-TOF mass spectrometry. Am j. Clin pathol. 141, 52–61 (2014).
	24.	 Xu, J. et al. The Exploration of Peptide Biomarkers in Malignant Pleural Effusion of Lung Cancer Using Matrix-Assisted Laser 

Desorption/Ionization Time-of-Flight Mass Spectrometry. Dis Markers. 2017, 3160426 (2017).
	25.	 Yang, J. et al. Proteomic Profiling of Invasive Ductal Carcinoma (IDC) using Magnetic Beads-based Serum Fractionation and 

MALDI-TOF MS. J. Clin lab anal. 29, 321–327 (2015).
	26.	 Ma, Y. et al. Proteomic Profiling of Proteins Associated With Lymph Node Metastasis in Colorectal Cancer. J. Cell biochem. 110, 

1512–1519 (2010).
	27.	 Kay, R. et al. Enrichment of low molecular weight serum proteins using acetonitrile precipitation for mass spectrometry based 

proteomic analysis. Rapid Commun Mass Sp. 22, 3255–3260 (2008).
	28.	 Li, T., Dai, S., Wang, Z. & Zhang, H. Improved disc SDS-PAGE for extraction of low molecular weight proteins from serum. 

Electrophoresis. 31, 1090–1096 (2010).
	29.	 Zhao, W. et al. Detection of Serum Protein Biomarkers for the Diagnosis and Staging of Hepatoblastoma. Int j. Mol sci. 16, 

12669–12685 (2015).
	30.	 Zhai, X., Yu, J., Lin, C., Wang, L. & Zheng, S. Combining proteomics, serum biomarkers and bioinformatics to discriminate between 

esophageal squamous cell carcinoma and pre-cancerous lesion. J. Zhejiang univ-sc. B. 13, 964–971 (2012).
	31.	 Wang, J. et al. Application of serum protein fingerprint in diagnosis of papillary thyroid carcinoma. Proteomics. 6, 5344–5349 (2006).
	32.	 Zhai, X., Yu, J., Yang, F. & Zheng, S. Identification of a new protein biomarker for colorectal cancer diagnosis. Mol Med Rep. 6, 

444–448 (2012).
	33.	 Marengo, E. et al. Application of partial least squares discriminant analysis and variable selection procedures: a 2D-PAGE proteomic 

study. Anal Bioanal Chem. 390, 1327–1342 (2008).
	34.	 Deng, B. et al. Effects of pretreatment protocols on human amniotic fluid protein profiling with SELDI-TOF MS using protein chips 

and magnetic beads. Clin Chim Acta. 411, 1051–1057 (2010).
	35.	 Shi, C., Meng, J. & Deng, C. Enrichment and detection of small molecules using magnetic graphene as an adsorbent and a novel 

matrix of MALDI-TOF-MS. Chem Commun. 48, 2418–2420 (2012).
	36.	 Qiu, F. M. et al. Mining novel biomarkers for prognosis of gastric cancer with serum proteomics. J Exp Clin Cancer Res. 28, 126 

(2009).
	37.	 He, W. T. et al. Weak cation exchange magnetic beads coupled with matrix-assisted laser desorption ionization-time of flight-mass 

spectrometry in screening serum protein markers in osteopenia. Springerplus. 5, 679 (2016).
	38.	 Cheung, W. L. et al. Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell. 113, 507–517 

(2003).
	39.	 Yu, F. X. & Guan, K. L. The Hippo pathway: regulators and regulations. Genes Dev. 27, 355–371 (2013).
	40.	 Zhou, D. et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through 

inactivation of the Yap1 oncogene. Cancer cell. 16, 425–438 (2009).
	41.	 Nishio, M., Otsubo, K., Maehama, T., Mimori, K. & Suzuki, A. Capturing the mammalian Hippo: elucidating its role in cancer. 

Cancer Sci. 104, 1271–1277 (2013).



www.nature.com/scientificreports/

1 0SCIENtIfIC Reports | 7: 14265  | DOI:10.1038/s41598-017-14539-x

	42.	 Park, H. W. & Guan, K. L. Regulation of the Hippo pathway and implications for anticancer drug development. Trends Pharmacol 
Sci. 34, 581–589 (2013).

	43.	 Zhou, D. et al. Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of 
Yes-associated protein (Yap) overabundance. Proc Natl Acad Sci USA 108, E1312–E1320 (2011).

	44.	 Song, H. et al. Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression. Proc Natl Acad 
Sci USA 107, 1431–1436 (2010).

	45.	 Babel, I. et al. Identification of tumor-associated autoantigens for the diagnosis of colorectal cancer in serum using high density 
protein microarrays. Mol Cell Proteomics. 8, 2382–2395 (2009).

	46.	 Babel, I. et al. Identification of MST1/STK4 and SULF1 proteins as autoantibody targets for the diagnosis of colorectal cancer by 
using phage microarrays. Mol Cell Proteomics. 10, M110–M1784 (2011).

	47.	 Zhou, G. X. et al. Effects of the hippo signaling pathway in human gastric cancer. Asian Pac J Cancer Prev. 14, 5199–5205 (2013).
	48.	 Wang, J. et al. Application of serum protein fingerprint in diagnosis of papillary thyroid carcinoma. Proteomics. 6, 5344–5349 (2006).

Acknowledgements
This work was supported by Key Projects in the National Science & Technology Pillar Program during the Twelfth 
Five-year Plan Period (2014BAI09B07), the National Natural Science Foundation of China (30901731), and the 
Training Program of the Major Research Plan of the National Natural Science Foundation of China (91229104).

Author Contributions
S.Z. and J.Y. designed the study. X.Z., J.Y., X.F., C.Z., C.G., F.Y., and Y.Y. performed all experiments. X.Z. and J.Y. 
also performed the data analysis and drafted the manuscript. S.Z. and Y.K. critically revised the manuscript. All 
authors reviewed the final manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-14539-x.
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1038/s41598-017-14539-x
http://creativecommons.org/licenses/by/4.0/

	Identification of MST1 as a potential early detection biomarker for colorectal cancer through a proteomic approach

	Results

	Biomarkers and the diagnostic pattern for CRC and healthy control. 
	Identification of candidate biomarkers. 
	Validation of MST1 expression by western blotting. 
	Validation of MST1 expression by ELISA. 
	Evaluation of the diagnostic value of MST1. 
	MST1 expression in samples of prognosis and treatment of CRC. 

	Discussion

	Materials and Methods

	Patients. 
	Magnetic beads-based sample preparation for MALDI-TOF-MS. 
	Data processing and analysis. 
	Purification and Identification of candidate protein biomarker. 
	Verification of biomarker using western blotting and ELISA. 
	Statistical analysis. 

	Acknowledgements

	Figure 1 Biomarker SVM patterns.
	Figure 2 Purification and identification of MST1 (2084 Da).
	Figure 3 Verification results of the MST1 protein.
	Figure 4 ROC curve of MST1 and CEA.
	Table 1 Protein peaks selected for the pattern to compare CRC patients and HC samples.
	Table 2 Prediction results from the training and blind test cases using the established diagnosis pattern.
	Table 3 Structure data of the target protein.
	Table 4 Performance of MST1 and CEA in the diagnosis of CRC.
	Table 5 Serum samples information.




