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Abstract

Brain-machine interfaces (BMIs) define new ways to interact with our environment and hold great 

promise for clinical therapies. Motor BMIs, for instance, re-route neural activity to control 

movements of a new effector and could restore movement to people with paralysis. Increasing 

experience shows that interfacing with the brain inevitably changes the brain. BMIs engage and 

depend on a wide array of innate learning mechanisms to produce meaningful behavior. BMIs 

precisely define the information streams into and out of the brain, but engage wide-spread 

learning. We take a network perspective and review existing observations of learning in motor 

BMIs to show that BMIs engage multiple learning mechanisms distributed across neural networks. 

Recent studies highlight the advantages of BMI for parsing this learning and its underlying neural 

mechanisms. BMIs therefore provide a powerful tool for studying the neural mechanisms of 

learning that highlights the critical role of learning in engineered neural therapies.

Introduction

Brain-machine interfaces (BMIs) are behavioral interfaces that fundamentally alter how we 

control and receive feedback from our environment. BMIs restore, replace and can even 

augment nervous system functions by reading-out and writing-in neural information. 

Originally, BMIs were conceived as mimicking existing neural computations without 

alteration. Increasingly, however, experience shows that successful BMIs depend on the 

innate flexibility of the brain to perform new computations. Motor BMIs, which repurpose 

neural activity to control the movement of a device (Fig 1a) and promise to restore 

movements to people with paralysis, offer a case in point. Rather than “reading out” 

thoughts about movement, motor BMIs give the brain a new tool it learns to control by 

constructing a new neural representation. Interfacing with the brain inevitably changes the 

brain. Just as neural plasticity allows us to learn new abilities, neural plasticity in response to 

a novel interface yields BMI functionality. Harnessing BMIs’ full clinical potential, 

therefore, requires understanding BMI-related neural plasticity to avoid reading a book 

that’s re-writing itself [1].
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In addition to clinical benefits, BMIs also offer powerful tools for studying the neuroscience 

of learning. This is because BMIs support behavior through the precise specification of the 

relationships between the brain and environment [2–7]. Motor BMIs designate which parts 

of the brain control movement and how. As a result, the BMI creates a “simpler” motor 

apparatus that can be observed and manipulated in experiments. We contend, however, that, 

simplifying the system inputs and outputs does not simplify learning within the system. 

Instead, like all behaviors, BMIs engage a wide array of innate learning mechanisms [8]. By 

making explicit the system inputs and outputs, BMIs allow us to resolve the neural 

computations that drive learning and test how network structure influences learning.

Learning in BMI is well-established, but the underlying neural mechanisms are poorly 

understood and studies report conflicting results. Here, we revisit observations of learning in 

BMI that emphasize how BMI learning is distributed across the brain and engages multiple 

learning mechanisms. We then highlight recent studies that illustrate specific advantages of 

BMI for dissecting learning in such distributed networks. BMIs take many different forms, 

with variations in the brain functions being replaced, the neural signals used for control, and 

the control interface [9]. We focus on motor BMIs where neural activity is used to control 

movements of a device via a “decoder” (Fig. 1a). We will emphasize BMIs using invasively 

recorded neural signals, though learning is also critical in non-invasive systems (e.g. [10]). 

Understanding BMI learning in these systems can help inform our basic understanding of 

learning mechanisms in the brain, and is likely to be essential for building therapies that 

interface with an ever-changing brain.

BMIs define learned sensory-motor mappings

Motor BMIs create closed-loop control systems in which sensory and reward information 

streams can guide action (Fig. 1b). These actions involve both the formulation of a motor 

plan or intent, and movement execution. In BMI, movement execution is mediated directly 

by neural activity. BMIs allow specification of the “command” nodes1, the form of this 

command (e.g. controlling the velocity of a cursor versus the discrete selection of an action), 

and the mapping from neural activity to the command (the decoder). Feedback about the 

state of the effector and reward inputs from the environment allows these commands to be 

goal-directed.

Consider, for example, the information streams when neural activity in the motor cortex is 

used to drive a cursor on a screen in order to acquire a visually-presented target. Vision 

provides direct feedback about the relationship between neural activity and cursor 

movement. Vision also provides the subject information about progress towards task goals, 

which is supplemented by task-level reward information when the target is reached. 

Successful BMI control requires a sensory-motor mapping. The user must generate a 

particular motor command (pattern of activity in the command nodes) based on visual 

information about the current effector state (cursor position, velocity) and task goals (target 

position). This feedback can guide both the formation of motor plans and commands.

1We use the term nodes for generality, emphasizing the network/circuit structure in the brain without specifying the resolution of 
computations. This also allows more general consideration of BMIs that operate at different measurement resolutions (e.g. controlled 
with action potentials of single units versus controlled with electrocorticographic activity).
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Many studies demonstrate that the sensory-motor mappings required for goal-directed BMI 

control are learned. Subjects’ performance can improve with practice in BMI, and these 

improvements coincide with changes in neural activity [11–17]. This learning is facilitated 

by the closed-loop nature of BMIs [2] and depends on the presence of feedback [18]. Much 

like in natural behaviors, the presence of feedback drives neural plasticity and adaptation 

(see Box 1).

Moreover, the sensory-motor mapping to be learned is governed by the BMI’s structure. The 

mapping depends on the selected command nodes, the decoder, and forms of feedback, all of 

which are under experimenter control. Motor BMIs provide explicit control and knowledge 

of how neural activity drives behavioral output, effectively “simplifying” the natural 

sensorimotor apparatus [7]. BMIs therefore create readily manipulated, precisely defined 

behavioral systems that engage learning [5].

BMIs simplify the motor execution and feedback information streams, but sensory-motor 

mapping computations are not limited to the feedback and command nodes. Growing 

research shows that learning to control movements and achieve task goals engages and 

depends on wide-spread networks. Studies using large-scale ECoG recordings from human 

subjects revealed engagement of cortical areas well beyond the control nodes, and changes 

across the cortex with task proficiency [16]. A follow-up study also showed evidence of 

long-range cortico-cortical communication throughout BMI learning [19]. BMI skill 

learning also involves, and may require, plasticity in cortico-striatal circuits [18].

Parsing BMI Learning

Mechanisms to learn the sensory-motor mapping

Understanding BMI learning requires parsing how changes distributed across the brain shape 

the formation of a sensory-motor map. Recent work emphasizes two major alternatives. 

Neurofeedback proposes learning occurs in the command nodes driven by feedback of their 

activity. Repurposing existing neural repertoires, in contrast, posits that learning alters how 

subjects activate the command nodes for a given goal. Each alternative reflects different 

views on how learning influences motor planning and execution.

The neurofeedback hypothesis states that reward feedback directly conditions neural activity 

in the command nodes according to behavioral outcomes [2,20]. This hypothesis predicts 

that learning is specific to the command nodes undergoing conditioning. As a result, 

according to this view, BMI learning drives the formation of new functional networks that 

are not fundamentally constrained by existing network structure or neural representations. 

Several observations are consistent with a neurofeedback model of BMI learning. Subjects 

can learn to control BMIs even when they impose fundamentally new associations between 

neural activity and movement. Activity of corticomotor-neuronal cells can be divorced from 

muscle activity with feedback training [21] and subjects can learn decoders with arbitrary 

relationships between neural activity and movement [15]. BMI learning is also associated 

with differential modulation of command nodes relative to nearby nodes [14,18,22–25] and 

cortico-striatal interactions specific to command nodes [26]. While the precise neural 

mechanisms of neurofeedback learning are not fully understood (e.g. see [20]), this 
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hypothesis has largely been considered in the context of error-driven adaptation and spike 

timing dependent plasticity mechanisms and builds on the concept of operant conditioning. 

Models based on Hebbian plasticity (e.g. [27]) and feedback learning (e.g. [28]) can 

reproduce many of the above-described experimental observations.

The repertoire repurposing hypothesis states that rather than forming entirely new 

associations between neural activity and movement commands, BMI learning involves 

repurposing existing motor repertoires in new ways. That is, subjects associate a new goal 

with an existing motor program. This hypothesis offers several predictions. First, learning is 

not necessarily specific to the direct command nodes, and is shaped or constrained by 

existing motor representations. Second, learning occurs “upstream” of the command nodes, 

and involves forming new associations between a desired goal and a motor plan or intent. 

This could involve more explicit strategy-based learning (e.g. [29]) or error-driven 

adaptation in intent/planning nodes. Consistent with these predictions, Hwang and 

colleagues demonstrated that neural activity in the command nodes after learning a decoder 

perturbation was fully consistent with a re-aiming strategy [30]*. Others have similarly 

noted evidence for re-aiming strategies [14,31] and non-perturbation-specific changes in 

neural activity [32]. Sadtler and colleagues also suggest learning strategies are constrained 

by natural motor repertoires. They found that subjects more readily learn BMIs when 

decoders respect statistical correlations of neural activity present during natural movements 

[33].

Multiple learning mechanisms, distributed

Experiments to test these BMI learning hypotheses have yielded seemingly inconsistent 

results. Evidence for re-aiming strategies, for instance, find that learning-related neural 

changes in the command network are not specific to which nodes directly contribute to 

movement, in contradiction to predictions of the neurofeedback hypothesis [30]*. While 

they reflect different views on BMI learning, neurofeedback and repurposing mechanisms 

are not mutually exclusive. Several BMI studies find evidence for co-occurrence of different 

learning mechanisms during adaptation to decoder perturbations [14,31]. Learning has been 

observed at the “intent” level of the circuit (e.g. re-aiming) and as well as at the command 

level (e.g. modifying the output of perturbed command nodes specifically), wholly 

consistent with simultaneous engagement of learning at multiple nodes of the network. 

These different learning mechanisms may also be related to offline sleep-dependent learning 

and online practice-dependent learning observed in BMI (Box 2).

Since multiple, distinct learning mechanisms can co-occur, determining which mechanism is 

driving neural plasticity is the source of substantial interpretational difficulty. Consideration 

of the full network engaged in BMI learning discussed above highlights that the key 

difference in these proposed BMI learning mechanisms is where learning takes place (Fig. 

1c). According to the neurofeedback hypothesis, feedback drives learning in the command 

nodes in order to generate desired movements. This is akin to learning driving updates to an 

“internal model”—a mapping from motor commands to their resulting actions—in motor 

control [34,35]. In repertoire repurposing, learning occurs “upstream” of the command 
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nodes. Rather than learning to generate new command signals, feedback drives changes in 

how subjects select commands for a given task goal.

BMIs define key nodes in the learning network, providing a powerful tool to probe learning. 

By specifying the input and output, you can change the relationship between the BMI and 

existing networks, and hence alter the learning. This can be seen by comparing a BMI where 

the command nodes are located in motor cortex with a BMI where the command nodes are 

located in the posterior parietal cortex. Conditioning at the command nodes and “intent”-

level repertoire adaptation (Fig. 1c) may occur in both kinds of BMIs, but in different ways. 

Shifting the location of the command nodes may lead to changes in “intent”-level learning 

that inputs to the command nodes. How BMIs are constructed—how we build this new 

network—will influence learning. Taking a network perspective, therefore, reveals how the 

BMI approach can help resolve which learning mechanisms are contributing to which 

changes in activity.

Manipulations to probe BMI learning

BMIs are partially removed from the natural sensorimotor apparatus [5]. While BMIs are 

therefore artificial (Box 1), they offer advantages for learning because they can be 

manipulated in ways the natural system cannot.

Feedback manipulations

Sensory and reward inputs provide the feedback that is essential for learning (Fig 1b, c). In 

the majority of motor BMIs, where command nodes are located in motor-related areas, 

sensory and reward information is first processed by other neural circuits. Error-driven 

learning, then, relies on communication between circuits associated with processing the 

reward/sensory information and those forming the command. Understanding how reward 

guides learning, and how sensory networks, motor networks, and the connections between 

them change with learning is a critical challenge. Recent work shows how manipulations 

using the BMI approach can provide new insight into how these sources of information 

affect the motor networks and guide learning (Fig. 2).

A recent study by Shanechi and colleagues used BMIs to probe how the rate of feedback 

influences performance in BMIs [36]*. The authors used a rate-independent decoder, which 

allowed them to isolate the influence of both control and feedback rates on performance 

(Fig. 2a). They show that both feedback and control rates influence performance, suggestive 

of combined feedback and feed-forward control strategies. BMIs have also been used to 

explore how the information available in visual feedback (e.g. seeing an end-point or a full 

arm) influences control [37]. These studies show how the detailed control of the visual 

feedback allowed by BMIs can help understand how sensory errors drive learning.

BMIs can also control the site of feedback where information is provided to guide learning. 

A recent study by Prsa and colleagues showed that feedback via optogenetic neural 

stimulation is sufficient to drive BMI learning [25]**. This demonstrates a BMI where 

sensory feedback is delivered to specific, experimenter-defined nodes within the brain, 

paired with experimenter- defined command nodes (Fig. 2b). Emerging work similarly 
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explores delivering reward information via direct optogenetic stimulation [38]. By defining 

the network precisely, these BMIs can allow us to study the neural mechanisms of feedback-

driven learning. Specifically, does learning depend on anatomical connectivity between 

feedback and command nodes, and does learning drive the formation of new functional 

connections that communicate feedback to the command nodes?

These studies illustrate how, because of their artificial nature, BMIs allow full control and 

knowledge of feedback thereby providing powerful new ways to study how feedback drives 

learning.

Command manipulations

The objective of learning is to shape neural networks to produce a particular command 

signal for a given behavioral goal. This can be driven by changes distributed across the 

sensorimotor network both at the command nodes themselves, as well as in the inputs to the 

command nodes (Fig. 1b, c). Insights into learning require understanding both changes in 

the command nodes, and their interactions with other parts of the network. By fully defining 

the control system, BMIs provide a lens through which to interpret learning-related changes 

in both the command nodes and the full network.

Experimenter-defined command nodes and neural activity-behavior mappings have clear 

advantages when studying learning (recently reviewed in [5,7]). BMIs can be used to study 

neural adaptation in response to decoder perturbations (e.g. [14,30–33]). Knowledge about 

the decoder can be used to interpret learning-related changes in command nodes [14,17,30–

33,35,39]. Moreover, by defining the command nodes, BMI studies can explore the 

specificity of learning changes within command areas (direct versus indirect nodes) [22–

25,30,40]. Functional connectivity measures like spike-field coherence [41] between 

command nodes and other parts of the brain can allow identification of functional networks 

participating in learning (e.g. [19,26]).

Gulati and colleagues recently used BMIs to explore the specificity of sleep-dependent 

consolidation [42]**. In this study, they first obtain evidence for sleep-dependent offline 

learning mechanisms in BMI that are linked to slow-wave sleep periods. Since the BMI 

allowed them to define the command nodes, they then showed that neural coherence with 

slow-wave activity was specific to neurons directly contributing to behavioral output. This 

suggests sleep-dependent consolidation may be critical for shaping activity specifically in 

the command nodes. Moreover, it points to the task-specificity of sleep consolidation 

learning mechanisms and paves the way to further identify the networks participating in this 

learning.

A hallmark of both BMI and motor skill learning more generally is gradual reduction in 

motor circuit variability as behavior stabilizes (e.g. [15,24,43]). Recent BMI work suggests 

this reduction in variability may be driven by multiple learning mechanisms, one acting 

locally at the level of each command node and another that shapes the command network 

(e.g. through changes in network inputs; Fig. 1c). Athayle and colleagues used factor 

analysis to analyze how the command network changes with learning [39]**. Factor analysis 

allowed them to separate neural variability into components unique to each neuron 
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(individual nodes) and those shared across the population of neurons contributing to 

movement. They found that private variability was initially high but reduced with learning, 

while shared variability increased with learning. Using knowledge of the decoder, they 

further showed that shared variability changes contributed most to behavioral improvements. 

This experiment nicely demonstrates the BMI advantage when adopting a network 

perspective, discussed above in the context of learning sensory-motor mappings. Command 

manipulations that alter how the command population relates to the rest of the network—

inputs to the command nodes coming from intent, feedback and reward nodes—can provide 

critical insights into the neural mechanisms of each form of learning.

Conclusions

BMIs create novel input-output mappings and require learning to produce meaningful 

behavior. As BMIs precisely define both input and output streams in the network, they 

provide new ways to probe learning within these networks. The result is a powerful tool for 

studying the neural mechanisms of learning that highlights the role of learning in engineered 

neural therapies.

Recent work demonstrates the many tools for studying learning within BMI, focusing on 

manipulations of the output or input. Future work aimed towards monitoring learning across 

larger networks will allow further parsing of learning mechanisms and neural 

implementations. Linking observed learning to well-studied learning mechanisms like sleep-

dependent versus practice dependent learning can provide further insight and grounding for 

studies of BMI learning.

Since BMIs tap into our brains innate ability to learn, understanding learning in BMIs will 

ultimately advance clinical applications of this technology. In the search for effective 

treatments, we may find that interfaces which harness learning can improve the patient 

experience compared with those which simply accommodate learning.
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Highlights

• Brain-machine interfaces (BMIs) engage an array of innate learning 

mechanisms

• BMIs allow definition and manipulation of learning networks

• Parsing learning across the network can resolve mechanisms of BMI learning
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Box 1

How does motor BMI learning relate to learning in natural sensorimotor 
learning?

BMIs are inherently artificial, raising concern that BMI learning may not share features 

with learning in more natural systems.

One way in which BMIs are artificial is that they are removed from the natural sensory-

motor apparatus [5], and therefore provide different sensory feedback information. The 

majority of BMIs provide a single form of sensory feedback—most commonly visual in 

primate and human studies, and auditory in rodent studies. Congruent proprioceptive and 

tactile feedback is not provided. BMI subjects with intact motor systems will therefore 

experience conflicting sensory feedback streams. While this has clear impacts on 

performance and control [9], visual information is highly dominant over proprioceptive 

information (e.g. [44]), especially in goal-directed visual behaviors. In these cases, vision 

will therefore drive learning. More broadly, real-world tasks always involve streams of 

information that are relevant and irrelevant to the task.

In motor BMI, BMIs also differ in their control implementation: how they use neural 

activity to control effectors compared with natural movement. BMIs differ in the physical 

properties of the effector and the neural activity (number of neurons, their locations 

within the brain) driving movement. These differences will inherently change the 

representations of control and how learning is instantiated within the network. That is, 

moving the command nodes will shift where within the brain different learning 

mechanisms occur. This, however, does not mean that learning sensory-motor mappings 

in BMI must employ fundamentally different mechanisms. The same principles and 

innate learning mechanisms can be brought to bear on the problem.

Several reviews illustrate this point and highlight how learning patterns in motor BMIs 

show many striking similarities to natural sensorimotor learning [3–5]. Thus, BMI 

learning can leverage existing neural mechanisms and circuits for learning.
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Box 2

Linking BMI learning to established learning mechanisms—sleep-
dependent versus practice-dependent learning

There is evidence for both online learning (e.g. [15]) and offline improvements in 

performance after sleep in BMIs [42]**. This suggests the existence of multiple learning 

mechanisms, some sleep-dependent and others practice-dependent [45,46]. How might 

existing observations of learning in BMIs relate to offline and online improvements?

Command node neurofeedback and repertoire repurposing learning mechanisms differ in 

where within the network they occur, and may also recruit fundamentally different forms 

of learning. These mechanisms may share deep analogies across motor learning. 

Neurofeedback can be viewed as updating an “internal model” of how a given command 

drives movement, which in natural motor learning is thought to be a form of practice-

dependent implicit procedural learning [45,47]. Repertoire repurposing, on the other 

hand, is a process of learning the actions to select, which may involve both explicit 

cognitive strategies (e.g. [29]) and sleep-dependent implicit sequence learning 

mechanisms (e.g. [45]). Offline improvements after sleep, therefore, may be driven 

primarily by changes in intent networks while online, practice-dependent performance 

improvements are tied to local changes within the command nodes.

By defining the command nodes in different ways, BMIs allow us to more closely 

examine the analogy. We could, for instance, place command nodes in primary motor 

cortex (M1), and then monitor practice- and sleep-related plasticity across the local 

command network (both direct and indirect nodes) and areas that project to those 

command nodes, such as the posterior parietal cortex (PPC). The above hypotheses 

predict that changes in PPC intent networks will be sleep-dependent (e.g. tied to 

occurrence of sleep spindles [42]), while local changes in M1 command nodes would 

only relate to practice. Interpreting changes in the command nodes will require 

distinguishing changes due to local learning and those driven by changing 

communication with the intent networks [39]**. BMIs are ideally suited to tease apart 

different forms of learning in the command networks.
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Figure 1. 
(a) Motor brain-machine interfaces (BMIs) map neural activity into a command signal to 

move an actuator via a “decoder”. Feedback, such as vision of the device movement closes 

the control loop and facilitates learning. (b) Controlling a motor BMI requires processing 

feedback (sensory information about movement and reward information from task context) 

and using this information to guide formation of a motor output (pink box). Motor output is 

generated through the formation of an intended action and a command. BMIs specify which 

nodes within this network form the command sent to the actuator (direct versus indirect 

nodes). (c) Learning in BMI can occur in multiple sites within this network. Existing studies 
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provide evidence for learning specifically changing activity of the command nodes (shifting 

the mapping from sensory inputs to action outcome; red) and shifts in the selection of motor 

plans (green).
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Figure 2. 
Recent BMI studies probe learning and control by manipulating the information streams in 

BMI. (a) Shanechi et al. [36]** used BMIs to manipulate the rates of the sensory-motor loop 

(left). BMIs allowed them to independently manipulate both the rate at which motor 

commands moved the actuator (“control rate”, red) and the rate of feedback (blue). They 

showed that BMI performance depends on both rates separately (right). Performance 

improved with faster control rates, even when subjects received slower feedback. Increasing 

the feedback rate then further improved performance. These results suggest that BMI may 

involve multiple control strategies—both predictive feed-forward control and feedback-

based control. (b) Prsa et al. [25]** developed a BMI where decoder output drove 

optogenetic stimulation (channelrhodopsin, ChR2). This creates a system where both the 

command and feedback nodes can be precisely defined (left). They show that, with training, 

mice can learn to modulate command node activity to achieve rewards with optogenetic 

stimulation as their only form of sensory feedback (right). Control mice lacking ChR2 were 

unable to learn the task, demonstrating the necessity of this sensory feedback for learning 

the BMI task.
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